
HornDroid: Practical and Sound Static Analysis
of Android Applications by SMT Solving

Stefano Calzavara
Università Ca’ Foscari Venezia

calzavara@dais.unive.it

Ilya Grishchenko
CISPA, Saarland University

grishchenko@cs.uni-saarland.de

Matteo Maffei
CISPA, Saarland University
maffei@cs.uni-saarland.de

Abstract—We present HornDroid, a new tool for the static
analysis of information flow properties in Android applications.
The core idea underlying HornDroid is to use Horn clauses for
soundly abstracting the semantics of Android applications and
to express security properties as a set of proof obligations that
are automatically discharged by an off-the-shelf SMT solver.
This approach makes it possible to fine-tune the analysis in
order to achieve a high degree of precision while still using
off-the-shelf verification tools, thereby leveraging the recent ad-
vances in this field. As a matter of fact, HornDroid outperforms
state-of-the-art Android static analysis tools on benchmarks
proposed by the community. Moreover, HornDroid is the first
static analysis tool for Android to come with a formal proof
of soundness, which covers the core of the analysis technique:
besides yielding correctness assurances, this proof allowed us
to identify some critical corner-cases that affect the soundness
guarantees provided by some of the previous static analysis
tools for Android.

1. Introduction

The Android platform is by far the most popular choice
for mobile devices nowadays, with billions of applications
routinely installed on a massive number of different phones
and tablets. Given this increasing popularity, personal infor-
mation and other sensitive data stored on Android devices
constitute an attractive target for breaching users’ privacy
at scale by malicious application developers. Information
flow control frameworks for Android have thus emerged as
a prominent research direction, with several different pro-
posals spanning from dynamic analysis [11], [19], [34], [17]
to static analysis [39], [38], [24], [14], [20], [23], [2], [15],
[21]. Static analysis is particularly appealing for information
flow control, given its ability to provide full coverage of
all the possible execution paths and the possibility to be
employed in the vetting phase, i.e., before the application is
uploaded onto the Google Play store.

The most recent works in this area [2], [15], [21],
[36] are impressive in their efforts to support a significant
fragment of the Android platform. Most of them leverage
existing static analysers by encoding Android applications in
a suitable format, e.g., FlowDroid [2], DroidSafe [15], and
IccTA [21] use Soot [35], while CHEX [23] uses Wala [13].

Observing that existing static analysers come with intrinsic
limitations that limit the precision of the analysis (e.g., Soot
and Wala do not calculate all objects’ points-to information
in a both flow- and context-sensitive way), Amandroid [36]
relies on a dedicated data-flow analysis algorithm.

Despite all this progress and sophisticated machinery,
none of these tools achieves a satisfactory degree of sound-
ness: even on benchmarks written by the community and
consisting of simple programs (i.e., Droidbench [2]), for
which the ground truth is known, all existing tools miss
several malicious leaks (false negatives). This, along with
the fact that none of these tools comes with a formal model
or soundness proof, makes one wonder how accurately these
analyses capture all the subtleties of the Android execution
model, which is far from being trivial [26], and to which
extent their results are reliable on real-life applications, for
which the ground truth is not known.

Furthermore, the lack of precise and fully documented
analysis definitions complicates the comparison between dif-
ferent approaches: for instance, there is no universal agree-
ment on a single notion of object-sensitivity [28], though
object-sensitivity has been recognized as crucial to support
a precise analysis of real-world Android applications [2].
Hence, at the time of writing, the only way to grasp the
relative strengths and weaknesses of different static analysis
tools for Android applications relies on an hands-on testing
on some common benchmark and a source code inspection
of their implementation.

Our contributions. We present a fresh approach to the static
analysis of Android applications, i.e., a data-flow analysis
based on Horn clause resolution [5]. The core idea is to
soundly abstract the semantics of Android applications into
a set of Horn clauses and to formulate security properties
as a set of proof obligations, which can be automatically
discharged by off-the-shelf SMT solvers. In particular:

• We prove the soundness of our analysis against a
rigorous formal model of a large fragment of the
Android ecosystem, covering Dalvik bytecode, the
event-driven nature of the activity lifecycle, and
inter-component communication. While elaborating
the proof, we identified a few critical corner-cases
that affect the soundness guarantees provided by
some of previous static analysis tools for Android.

We believe that this formal model may constitute
a foundational framework, serving as a starting and
comparison point for future work in the field;

• We fine-tune the Horn clause generation in order
to optimize precision and efficiency, while retaining
soundness. Being a data-flow analysis rather than a
pure taint analysis, our solution statically approx-
imates run-time values, in contrast to most of the
previous works in the field [2], [15], [21]. This
boosts the precision of the analysis: for instance,
it makes it possible to statically determine whether
a conditional branch will never be taken at runtime
and ignore it. A salient feature of our approach is the
usage of SMT solving to discharge proof obligations.
From an engineering point of view, this allows one
to fine-tune the analysis while still building on off-
the-shelf verification tools, thereby leveraging the
continuous advances in this field.

• We develop a tool, called HornDroid, which imple-
ments the analysis described in the formal model
and complements it in order to support additional
Android features, such as reflection, exceptions, and
threading. HornDroid automatically generates Horn
clauses from the application bytecode and relies on
the state-of-the-art SMT solver Z3 [9] for discharg-
ing proof obligations1.

• We conduct a performance evaluation on Droid-
bench, a collection of 120 programs written by
the community, comparing HornDroid with Ic-
cTA [21] (an extension of FlowDroid [2] to inter-
component communication), Amandroid [36] and
DroidSafe [15]. HornDroid outperforms the com-
petitors in terms of sensitivity (i.e., soundness) and
performance, while retaining a high specificity (i.e.,
precision): HornDroid is the only tool that identifies
all the explicit information flows, it exhibits just one
more false positive than Amandroid (the most accu-
rate tool), and it is one order of magnitude faster than
IccTA and AmanDroid, and two orders of magnitude
faster than DroidSafe. Furthermore, we show that
HornDroid scales well to real-life applications from
Google Play by a comparative evaluation on the two
largest applications from the Google Play Top 30,
i.e., Candy Crash Soda Saga and Facebook, which
pose significant problems to existing tools.

2. Design and Motivations

Static information flow control for Android applications
is a mature research area nowadays [39], [38], [24], [14],
[20], [23], with IccTA [21] (an extension of FlowDroid [2]
to inter-component communication), AmanDroid [36] and
DroidSafe [15] representing the state-of-the-art in this field.

1. It would be possible to discharge proof obligations by using at the
same time different SMT solvers, since each of them might perform best
on a certain class of queries. We did not find it necessary in our current
experiments, but we plan to implement this feature in the future.

Although all these proposals are impressive projects, which
significantly advanced the area of information flow control
for Android applications, they all have important limitations,
motivating the need for novel research proposals.

We make this need apparent by focussing on two impor-
tant design choices where these tools differ: value-sensitivity
and flow-sensitivity. It is instructive to highlight the import
of these choices in terms of both the soundness and the
precision of the resulting static analysis. Table 1 summarizes
the design choices of the tools we consider, including ours.

TABLE 1 Design Choices for Static Analysis Tools
IccTA AD DS HD

Value-sensitivity no yes no yes
Flow-sensitivity yes yes no partial

2.1. Value-sensitivity

Value-sensitivity is the ability of a static analysis to
approximate runtime values and use this information to
improve precision, e.g., by skipping unreachable program
branches [25]. Concretely, consider the following code:

int x = 0;
for (int y = 0; y <= 10; y++) { x++; }
TelephonyManager tm = ...
String imei = tm.getDeviceId();
if (x == 0) { leak(imei); }

Though this code is perfectly safe, all the existing tools
(IccTA, AmanDroid and DroidSafe) will identify it as leaky.
IccTA and DroidSafe conservatively assume all the program
points to be potentially reachable. Even AmanDroid raises
a false alarm for this code, though it internally implements
a dedicated data-flow analysis [36].

Besides this simple example, there are many reasons
why real-world static analysis tools for Android applications
should be value-sensitive to be practically useful. First,
several features of Java and the Android APIs, most notably
reflection and dictionary-like containers, e.g., intents and
bundles, need value-sensitivity to be analysed precisely.
Second, the loss of precision entailed by value-insensitivity
may creep and interact badly with other desirable features of
the static analysis, e.g., context-sensitivity, which has been
deemed as crucial by previous studies [2], [15].

Context-sensitivity is the ability of the analysis to com-
pute different static approximations upon different method
calls. To understand why the benefits of context-sensitivity
can be voided by value-insensitivity, consider the following
method, where we assume to know a valid upper bound for
the GPS location values:

void m (double x, double y) {
if (x <= MAX_X && y <= MAX_Y)
...

else
leak("Invalid location:" + x + y);

}

Context-insensitive static analyses would detect a dangerous
information flow whenever the method m is invoked at
two different program points and one of these invocations
provides the location of the device in the actual parameters,
while the other one provides an invalid location. The reason
is that the method m would be analysed only once, hence the
static analysis would detect that both public and confidential
values may reach a sink. Conversely, a context-sensitive
analysis potentially has the ability to discriminate between
the two methods invocations and be precise, but the lack of
value-sensitivity would necessarily lead to the detection of
a non-existent information flow.

Finally, it is worth noticing that value-sensitivity is cru-
cial to support security-relevant, value-dependent security
queries (e.g., “Is the credit card number sent on HTTP rather
than on HTTPS?” or “Is the picture actually uploaded on
Facebook, as opposed to some other untrusted website?”).

2.2. Flow-sensitivity

Flow-sensitivity is the ability of a static analysis to take
the order of statements into account and compute different
approximations at different program points [25]. To under-
stand its importance, consider the following code:

TelephonyManager tm = ...
String imei = tm.getDeviceId();
imei = new String("empty");
leak(imei);

Though the code above is safe, the flow-insensitive analysis
implemented in DroidSafe will identify it as leaky, since
the variable imei does contain a secret information at some
program point. Conversely, both FlowDroid and AmanDroid
will correctly deem the program as safe.

Clearly, it is tempting to target a flow-sensitive informa-
tion flow analysis tool to achieve a higher level of precision,
but, as pointed out by the authors of DroidSafe [15], flow-
sensitivity is very hard to get right for Android applications,
due to their massive use of asynchronous callbacks. Both
FlowDroid and AmanDroid suggest to tackle this problem
by introducing a dummy main method emulating each possi-
ble interleaving of the callbacks defining the application life-
cycle. Unfortunately, it is difficult to ensure that the dummy
main method construction is accurate and comprehensive,
which leads to missing malicious information flows [15].

2.3. HornDroid

Our tool, HornDroid, targets a sound and practical in-
formation flow analysis for Android applications. We report
on the design choices we made to hit the sweet spot between
these two potentially conflicting requirements.

HornDroid implements a value-sensitive information
flow analysis. As anticipated, value-sensitivity is crucial to
support a practically useful analysis of real-world appli-
cations. The analysis implemented in HornDroid is remi-
niscent of abstract interpretation, whereby the operational

semantics of a program is over-approximated by a com-
putable abstract semantics. As it is customary for abstract
interpretation, the design of the analysis is parametric with
respect to the choice of a set of abstract domains, defin-
ing how runtime values are statically approximated: one
can then fine-tune the precision of the analysis by testing
different abstract domains. To ensure the scalability of our
value-sensitive analysis, the abstract semantics implemented
in HornDroid is based on Horn clauses, whose efficient
resolution is supported by state-of-the-art SMT solvers [5].

HornDroid performs a flow-sensitive information flow
analysis on the registers employed by the Dalvik Virtual
Machine, while implementing a flow-insensitive analysis
for callback methods and heap locations. This is crucial
to preserve the precision of the analysis, without sacrific-
ing soundness. We already mentioned that previous studies
highlighted that flow-sensitive analyses may easily produce
unsound results, due to the challenges of predicting all the
possible orderings of the Android callbacks [15]. Moreover,
while carrying out the soundness proof for HornDroid, we
realized that static fields are particularly delicate to treat
in a flow-sensitive fashion. The reason is that static fields
provide a way to implement a shared memory between
otherwise memory-isolated components running in the same
application. Given that the execution order of different An-
droid components is extremely hard to predict, due to their
callback-driven nature, it turns out that flow-insensitivity for
static fields is in practice needed for soundness. Indeed,
since static fields can be used to exchange pointers to heap
locations, a sound flow-sensitive analysis for heap locations
is in general hard to achieve. Our soundness proof, instead,
confirms that flow-sensitivity can be implemented for the
registers employed by the Dalvik Virtual Machine without
missing any malicious information flow.

3. Operational Semantics

We base our technical development on µ-DalvikA, a for-
mal model of the Android semantics obtained by extending
the µ-Dalvik calculus [18] with a complete characterisation
of the activity-specific aspects of the Android platform [26].

3.1. Background and Scope

Android applications are developed in Java and then
compiled to a custom bytecode format called Dalvik, which
is run by the Dalvik Virtual Machine (DVM). Unlike Java
VMs, which are stack machines, the DVM adopts a register-
based architecture. Android applications are different from
standard Java programs, since they are structured in com-
ponents of four different types: activities, services, content
providers and broadcast receivers [31]. These components
represent distinct entry points of the Android framework
into the application. Hence, the operational behaviour of
an Android application does not simply amount to the
sequential execution of its bytecode implementation, but it
heavily relies on callbacks from the Android framework, as
a reaction to user inputs, system events, or inter-component

communication. Different Android components, either in the
same application or from different applications, can commu-
nicate by exchanging intents, i.e., dictionary-like messaging
objects. Intents may be sent either to a specific component
(explicit intents) or to any component which declares the
will of providing a given functionality (implicit intents).

In our formal model we consider Android applications
consisting of activities only. We focus on activities, since
a tested semantics is available for them and because they
exhibit the most complicated life-cycle among all the com-
ponent types [26]. Also, we only model intra-application
communication based on explicit intents: implicit intents
are mostly, if not only, used for inter-application messages.
As we discuss in Section 5, µ-DalvikA does not cover all
the Android features supported by HornDroid: the purpose
of µ-DalvikA is ensuring that the design principles at the
core of HornDroid are sound and that most of the Android-
specific subtleties have been taken into due account.

3.2. Syntax

We write (ri)
i≤n for the sequence r1, . . . , rn. If the

length of the sequence is immaterial, we just write r∗ and we
still let rj stand for its j-th element. We represent the empty
sequence with a dot (·). We let r∗[j 7→ r′] be the sequence
obtained from r∗ by replacing its j-th element with r′. A
partial map is a sequence of key-value bindings (ki 7→ vi)

∗,
where all the keys ki are pairwise distinct. Given a partial
map M , let dom(M) stand for the set of its keys and let
M(k) = v whenever the binding k 7→ v occurs in M . We
identify partial maps which are identical up to the order of
their key-value bindings.

Table 2 provides the syntax of µ-DalvikA programs. It is
an extension of the original µ-Dalvik syntax [18] with a few
additional statements modelling method calls to Android
APIs used for inter-component communication.

A µ-DalvikA program P is a sequence of classes cls∗,
which in turn are defined by a class name c, a direct super-
class c′, some implemented interfaces c∗, and a number of
fields fld∗ and methods mtd∗. Field declarations f : τ
include the field name f and its type τ , while method
declarations m : τ∗

n−→ τ {st∗} include the method name
m, the argument types τ∗, the return type τ , and the method
body st∗. The annotation n on top of the arrow tracks the
number of local registers used by the method, which is
statically known in Dalvik.

We briefly discuss below the statements of the language.
An unconditional branch goto pc sets the program counter
to pc. The statement move lhs rhs moves the right-hand
side rhs into the left-hand side lhs: here, lhs may be a
register r, an array cell r1[r2], an object field r.f , or a static
field c.f ; rhs may be any of these elements or a constant.
A conditional branch if4 r1 r2 then pc compares the
content of two registers r1 and r2 using the comparison
operator 4 and sets the program counter to pc if the check
is successful, otherwise it moves to the next instruction.
We then have unary and binary operations, represented by
unop� rd rs and binop⊕ rd r1 r2 respectively, where rd

TABLE 2 µ-DalvikA Syntax
P ::= cls∗

cls ::= cls c ≤ c′ imp c∗ {fld∗; mtd∗}
τprim ::= bool | int | . . .
τ ::= c | τprim | array[τ]
fld ::= f : τ

mtd ::= m : τ∗
n−→ τ {st∗}

st ::= goto pc
| move lhs rhs
| if4 r1 r2 then pc
| unop� rd rs
| binop⊕ rd r1 r2
| new rd c
| newarray rd rl τ
| checkcast rs τ
| instof rd rs τ
| invoke ro m r∗

| sinvoke c m r∗

| return
| newintent ri c
| put-extra ri rk rv
| get-extra ri rk τ
| start-activity ri

r ∈ Registers
pc ∈ N
⊕ ::= + | − | . . .
� ::= − | ¬ | . . .
4 ::= < | > | . . .
prim ::= true | false | . . .
lhs ::= r

| r[r]
| r.f
| c.f

rhs ::= lhs
| prim

is the destination register where the result of the operation
must be stored and the other registers contain the operands.
Object creation is modelled by new rd c, which creates
an object of class c and stores a pointer to it in rd; array
creation is similarly handled by newarray rd rl τ , where
rd is the destination register where the pointer to the new
array must be stored, rl contains the array length and τ
specifies the type of the array cells. The type cast statement
checkcast rs τ checks whether the register rs contains
a pointer to an object of type τ and it moves to the
next instruction if this is the case, otherwise it stops the
execution2. The statement instof rd rs τ stores true in
rd if rs points to an object of type τ , otherwise it stores
false. A method invocation invoke ro m r∗ calls the
method m on the receiver object pointed by ro, passing the

2. The corresponding Dalvik opcodes would raise an exception, but we
do not model exceptions in our formalism.

values in the registers r∗ as actual arguments. The invocation
of static methods is modelled by sinvoke c m r∗. The
return statement has no argument, rather there is a special
register rret for holding return values: the return value must
be moved to rret by the callee before calling return.

The last four statements are used to model inter-
component communication. Intent creation is modelled by
newintent ri c, which creates an intent for the ac-
tivity c and stores a pointer to it in ri. The statement
put-extra ri rk rv adds to the intent pointed by ri a new
key-value binding k 7→ v, where k and v are the contents of
rk and rv respectively. The statement get-extra ri rk τ
retrieves from the intent pointed by ri the value bound to
key k, where k is the content of rk, provided that this value
has type τ . Finally, start-activity ri sends the intent
pointed by ri, thus starting a new activity. Throughout the
paper, we only consider well-formed programs.
Definition 1. A program P is well-formed iff: (1) all its class

names are pairwise distinct, (2) for each of its classes,
all the field names are pairwise distinct, and (3) for each
of its classes, all the method names are pairwise distinct.

Notice that the last condition of the definition above is
not restrictive, since overloading resolution is performed at
compile time in Java [1] and Dalvik bytecode thus identifies
methods through their signature, rather than their name. In
our formalism, we then suppose that method names are
tagged with some distinctive information drawn from their
signature, so that we can identify each method of a given
class just by its name. Notice that two different classes
can still define two methods with the same name, which
is important to model dynamic dispatching.

From now on, we focus our attention on some well-
formed program P = cls∗. Most of the definitions we
present in the paper depend on P , but we do not make
this dependence explicit in the notation to keep it lighter.

3.3. Dalvik Semantics

Table 3 defines the semantic domains employed by the
operational semantics of µ-DalvikA. Values include primi-
tive values and locations, i.e., pointers to heap elements ex-
tended with an annotation λ. Annotations have no semantic
import and are only needed for our static analysis: we will
discuss their role in Section 4.

A local configuration Σ = α·π ·H ·S represents the state
of a specific activity. It includes a call stack α, a pending
activity stack π, a heap H , and a static heap S. A call stack
α is a list of local states, which is populated upon method
invocation. Each local state includes: (1) a program point
pp = c,m, pc, where c and m identify the invoked method,
while pc points to the next instruction to execute; (2) a list
of statements st∗, modelling the method body; and (3) a
map R binding local registers to their current value.

A pending activity stack π is a list of intents, which
are treated as (untyped) dictionaries in our formalism. As
anticipated, for the sake of simplicity, we only consider
explicit intents in the formalization, i.e., intents which are

meant to be delivered to an activity of a given class c: this
class is specified after the ‘at’ symbol (@) in the intent
syntax3. We use π to keep track of which activities have been
started by the activity modelled by the local configuration.

Finally, a heap H is a mapping between locations and
memory blocks, where each block is either an object, an
array or an intent. Object fields are annotated with their
static type, though we typically omit this annotation when
it is unimportant. The static heap S simply binds static fields
to their corresponding value.

The small-step operational semantics of µ-DalvikA is
defined by a reduction relation Σ Σ′. Reduction takes
place by fetching the next statement to execute, based on
the program counter of the top-most local state of the call
stack in Σ, and by running it to produce Σ′. The definition
of the reduction relation is lengthy, but unsurprising, and it
is given in Appendix A. The only point worth noticing here
is that, when a new memory block is created, e.g., by new,
the corresponding pointer to the heap is annotated with the
program point c,m, pc where creation takes place.

3.4. Activity Semantics

The operational behaviour of an activity does not depend
only on its bytecode implementation, but also on external
events, like user inputs and system callbacks. The event-
driven nature of Android applications gives rise to highly
non-deterministic executions, which are not trivial to ap-
proximate correctly by static analysis.

3.4.1. Formalizing Activities. We start by introducing a
formal notion of activity.
Definition 2. A class cls is an activity class if and only

if cls = cls c ≤ c′ imp c∗ {fld∗; mtd∗} for some
c′ ≤ Activity. An activity is an instance of an activity
class. We stipulate that each activity has the following
fields: (1) finished: a boolean flag stating whether the
activity has finished or not; (2) intent: a pointer to the
intent which started the activity; (3) result: a pointer to
an intent storing the result of the activity computation;
and (4) parent: a pointer to the parent activity, i.e., the
activity which started the present one.

We require that each activity has a (possibly empty) set
of event handlers for user inputs: given an activity class c,
we let handlers(c) = {m1, . . . ,mn} be the set of the names
of the methods of c which may be dispatched when some
user input event occurs. We assume a set of activity states
ActStates and a relation Lifecycle ⊆ ActStates × ActStates
defining the state transitions admitted by the activity lifecy-
cle [26]. We assume that each activity class c has a set
of callbacks for each activity state s, whose names are
returned by a function cb(c, s); for the running state we
let cb(c, running) = handlers(c), i.e., when an activity is
running, any callback set for user inputs may be dispatched.

3. Extending the formalism to include implicit intents would not be
difficult, but this would introduce non-determinism on the choice of the
receiving activity, thus making the presentation harder to follow.

TABLE 3 µ-DalvikA Semantic Domains

Pointers p ∈ Pointers
Program points pp ::= c,m, pc
Annotations λ ::= pp | c | in(c)
Locations ` ::= pλ
Values u, v ::= prim | `
Registers R ::= (r 7→ v)∗

Local states L ::= 〈pp · st∗ ·R〉
Call stacks α ::= ε | L :: α
Pending activity stacks π ::= ε | i :: π

Objects o ::= {|c; (fτ 7→ v)∗|}
Arrays a ::= τ [v∗]
Intents i ::= {|@c; (k 7→ v)∗|}
Memory blocks b ::= o | a | i
Heaps H ::= (` 7→ b)∗

Static heaps S ::= (c.f 7→ v)∗

Local configurations Σ ::= α · π ·H · S

We then extend the syntax of µ-DalvikA with the ele-
ments in Table 4. A frame ϕ includes a location ` pointing
to an activity, a corresponding activity state s, a pending
activity stack π and a call stack α. Frames are organized in
an activity stack Ω, modelling different activities executing
in the same application: a single frame in Ω has priority of
execution and is underlined. A configuration Ψ includes an
activity stack Ω, a heap H and a static heap S.

TABLE 4 Extensions to the Syntax of µ-DalvikA

Activity states s ∈ ActStates
Frames ϕ ::= 〈`, s, π, α〉 | 〈`, s, π, α〉
Activity stacks Ω ::= ϕ | ϕ :: Ω
Configurations Ψ ::= Ω ·H · S

Convention: each activity stack Ω contains at most one
active (underlined) frame.

3.4.2. Reduction Rules. Before presenting the formal se-
mantics, we need to introduce some additional definitions.
We start with the notion of callback stack, identifying the
admissible format of a call stack for new frames pushed
on the activity stack upon the invocation of a callback
from the Android system. Let sign(c,m) = τ∗

n−→ τ
iff there exists a class clsi such that clsi = cls c ≤
c′ imp c∗ {fld∗; mtd∗,m : τ∗

n−→ τ {st∗}}. Let then lookup
stand for a method lookup function such that lookup(c,m) =
(c′, st∗) iff: (1) c′ is the class defining the method which is
dispatched when m is invoked on an object of type c, and
(2) st∗ is the method body.
Definition 3. Given a location ` pointing to an activity of

class c, we let α`.s stand for an arbitrary callback stack
for state s, i.e., any call stack 〈c′,m, 0 · st∗ · R〉 :: ε,
where (c′, st∗) = lookup(c,m) for some m ∈ cb(c, s),
sign(c′,m) = τ1, . . . , τn

loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ `, (rloc+1+j 7→ vj)
j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn.

In the definition, we let 0 be the default value for local
registers. There is just one default value for registers in
the model, since registers are untyped in Dalvik. In the
following, it is also convenient to presuppose for each type

τ the existence of a a default value 0τ , used to initialize
fields of type τ upon object creation.

A tricky aspect of the operational semantics of activities,
which has never been formalized before, is the serialization
of objects upon inter-component communication. Different
activities may exchange objects using intents, but these
objects are never passed by reference: rather, they are se-
rialized at the sender side and a copy of them is created
at the receiver side. The intent itself is serialized upon
communication. We formalize this serialization routine by
two mutually recursive functions serHVal(v) = (v′, H ′) and
serHBlk(b) = (b′, H ′), returning a serialized copy of their
argument and a new heap where all the pointers created
in the serialization process have been instantiated correctly.
We refer to Table 5 below for the definition of the two
functions. Their definition uses a set of pointers Γ to keep
track of which pointers have already been followed in the
serialization process, so as to allow the serialization of
memory blocks including self-references.

Finally, the operational semantics requires the next def-
inition of successful call stack. A successful call stack
is the call stack of an activity which has completed its
computation.
Definition 4. A call stack α is successful if and only if

α = 〈pp · return ·R〉 :: ε for some pp and R. We let
α range over successful call stacks.

Now we have all the ingredients to define the formal
semantics of activities, which is given by the reduction rules
in Table 5. As anticipated, the rules closely follow previous
work by Payet and Spoto [26], which we extend to provide
a more accurate account of inter-component communication
by modelling value-passing based on a serialization routine.
We give a short explanation of all the rules, we refer to [26]
for a longer description.

Rule (A-ACTIVE) allows the execution of the state-
ments in the active frame, using the reduction relation
for local configurations described in Section 3.3. Rule (A-
DEACTIVATE) models the situation where the active frame
has run up to completion: the frame loses priority and one
of the other rules can be applied. Rule (A-STEP) models
the transition of the top-level activity from state s to one of
its successors s′ in the activity lifecycle: correspondingly,
a new callback method is executed. Two side-conditions
constrain the possible state transitions, based on the presence

TABLE 5 Reduction Relation for Configurations (Ω ·H · S ⇒ Ω′ ·H ′ · S′)

(A-ACTIVE)
α · π ·H · S α′ · π′ ·H ′ · S′

Ω :: 〈`, s, π, α〉 :: Ω′ ·H · S ⇒ Ω :: 〈`, s, π′, α′〉 :: Ω′ ·H ′ · S′
(A-DEACTIVATE)
Ω :: 〈`, s, π, α〉 :: Ω′ ·H · S ⇒ Ω :: 〈`, s, π, α〉 :: Ω′ ·H · S

(A-STEP)
(s, s′) ∈ Lifecycle π 6= ε⇒ (s, s′) = (running, onPause)

H(`).finished = true⇒ (s, s′) ∈ {(running, onPause), (onPause, onStop), (onStop, onDestroy)}
〈`, s, π, α〉 :: Ω ·H · S ⇒ 〈`, s′, π, α`.s′〉 :: Ω ·H · S

(A-DESTROY)
H(`).finished = true

Ω :: 〈`, onDestroy, π, α〉 :: Ω′ ·H · S ⇒ Ω :: Ω′ ·H · S

(A-BACK)
H ′ = H[` 7→ H(`)[finished 7→ true]]

〈`, running, ε, α〉 :: Ω ·H · S ⇒ 〈`, running, ε, α〉 :: Ω ·H ′ · S

(A-REPLACE)
H(`) = {|c; (fτ 7→ v)∗, finished 7→ u|} o = {|c; (fτ 7→ 0τ)∗, finished 7→ false|} H ′ = H, pc 7→ o

〈`, onDestroy, π, α〉 :: Ω ·H · S ⇒ 〈pc, constructor, π, αpc.constructor〉 :: Ω ·H ′ · S

(A-HIDDEN)
ϕ = 〈`, s, π, α〉 s ∈ {onResume, onPause} (s′, s′′) ∈ {(onPause, onStop), (onStop, onDestroy)}

ϕ :: Ω :: 〈`′, s′, π′, α′〉 :: Ω′ ·H · S ⇒ ϕ :: Ω :: 〈`′, s′′, π′, α`′.s′′〉 :: Ω′ ·H · S

(A-START)
s ∈ {onPause, onStop} i = {|@c; (k 7→ v)∗|} ∅ ` serHBlk(i) = (i′, H ′) pc, p

′
in(c) 6∈ dom(H,H ′)

o = {|c; (fτ 7→ 0τ)∗, finished 7→ false, intent 7→ p′in(c), parent 7→ `|} H ′′ = H,H ′, pc 7→ o, p′in(c) 7→ i′

〈`, s, i :: π, α〉 :: Ω ·H · S ⇒ 〈pc, constructor, ε, αpc.constructor〉 :: 〈`, s, π, α〉 :: Ω ·H ′′ · S

(A-SWAP)
ϕ′ = 〈`′, onPause, ε, α′〉 H(`′).finished = true

ϕ = 〈`, s, i :: π, α〉 s ∈ {onPause, onStop} H(`′).parent = `

ϕ′ :: ϕ :: Ω ·H · S ⇒ ϕ :: ϕ′ :: Ω ·H · S

(A-RESULT)
ϕ′ = 〈`′, onPause, ε, α′〉 H(`′).finished = true ϕ = 〈`, s, ε, α〉 s ∈ {onPause, onStop}
H(`′).parent = ` ∅ ` serHVal(H(`′).result) = (`′′, H ′) H ′′ = (H,H ′)[` 7→ H(`)[result 7→ `′′]]

ϕ′ :: ϕ :: Ω ·H · S ⇒ 〈`, s, ε, α`.onActivityResult〉 :: ϕ′ :: Ω ·H ′′ · S

where:

Γ ` serHVal(prim) = (prim, ·)
pλ ∈ Γ

Γ ` serHVal(pλ) = (ν(pλ), ·)

pλ /∈ Γ Γ ∪ {pλ} ` serHBlk(H(pλ)) = (b,H ′′) H ′ = H ′′, ν(pλ) 7→ b

Γ ` serHVal(pλ) = (ν(pλ), H ′)

∀i ∈ [1, n] : Γ ` serHVal(vi) = (ui, Hi) H ′ = H1, . . . , Hn

Γ ` serHBlk(τ [(vi)
i≤n]) = (τ [(ui)

i≤n], H ′)

∀i ∈ [1, n] : Γ ` serHVal(vi) = (ui, Hi) H ′ = H1, . . . , Hn

Γ ` serHBlk({|c′; (fi 7→ vi)
i≤n|}) = ({|c′; (fi 7→ ui)

i≤n|}, H ′)

∀i ∈ [1, n] : Γ ` serHVal(vi) = (ui, Hi) H ′ = H1, . . . , Hn

Γ ` serHBlk({|@c′; (ki 7→ vi)
i≤n|}) = ({|@c′; (ki 7→ ui)

i≤n|}, H ′)

Conventions: the activity stack on the left-hand side does not contain underlined frames, but for the first two rules. In the serialization
rules we assume the existence of a function ν() assigning to each pointer a fresh pointer with the same annotation, used to store the
result of the serialization.

of pending activities to start and on whether the activity has
finished or not.

Rule (A-DESTROY) models the removal of a finished
activity from the activity stack. Rule (A-BACK) models
the scenario where the user hits the back button on the
Android device and the top-most activity gets finished by
the system. Rule (A-REPLACE) corresponds to screen ori-
entation changes: the foreground activity is destroyed and
gets replaced by a fresh activity instance; notice that the
new pointer to the heap is annotated with the class of the
activity. Rule (A-HIDDEN) models the scenario where a
new activity (the frame ϕ) has come to the foreground and
hides a previously running activity, which gets stopped or
destroyed by the system.

The starting of a new activity is modelled by rule (A-
START). The top-most activity is paused or stopped and
there is some intent i to be sent to c: the intent is serialized
and a new instance of c is pushed on the activity stack,
setting its intent field to a pointer to the serialized copy
of i and setting its parent field to a pointer to the activity
which sent the intent. The pointer to the new activity is
annotated with the class c, while the pointer to the serialized
copy of the intent gets the annotation in(c): again, this is
needed just for the static analysis and will be discussed later.
Notice that, if multiple activities need to be started, rule (A-
SWAP) allows a parent activity to substitute itself to a child
activity on the top of the activity stack, so that rule (A-
START) can be applied again to fire the remaining intents.
Finally, rule (A-RESULT) allows a finished activity in the
foreground to return the result of its computation to the
parent activity: the parent activity gets a serialized copy of
the result and becomes active by executing a corresponding
callback, bound to the onActivityResult state.

3.5. Examples

One reason why it is useful to have a formal semantics
before devising a static analysis technique is to pinpoint
corner cases which may potentially lead to unsound analysis
results. We discuss two examples below.

3.5.1. Static Fields. Even though inter-component com-
munication does not allow for the exchange of references,
activities in the same application can still share memory by
using static fields. This is apparent in the formal semantics,
since the syntax of configurations Ψ contains a global static
heap S, which can be accessed by using publicly known
names of static fields. We then observe that the order of
execution of different activities, or even different callbacks
inside the same activity, is very hard to predict: for instance,
the rules in Table 5 highlight that even activities which are
not on the top of the activity stack may become active and
execute callbacks by rule (A-HIDDEN). Also, the same call-
back may be executed multiple times, since an activity may
be routinely recreated by the Android system due to user
activities (e.g., screen orientation changes), which cannot
be known statically, as modelled by rule (A-REPLACE).

The implication on static analysis is that it is extremely
challenging to implement flow-sensitivity on accesses to
static fields without producing unsound results. Furthermore,
given that static fields may be used to share pointers to heap
locations, flow-sensitivity for heap accesses is also hard to
achieve. Since we target soundness in this work, the static
analysis we devise in the next section is flow-insensitive on
both static fields and heap locations.

3.5.2. Serialization. Rule (A-START) of the operational
semantics highlights that intents are serialized upon inter-
component communication. This means that, when a parent
activity starts a child activity, the latter operates on a copy
of the intent sent by the former and not on the same intent.

The implication on static analysis is that, although the
callback bound to the onActivityResult state of the parent
activity is always executed after the construction of the
child activity, no change to the intent done by the child
activity should overwrite the original over-approximation of
the intent computed for the parent activity when a result is
returned to it. This applies to any object which is serialized
with the intent. The static analysis in the next section pro-
vides a conservative over-approximation of this behaviour.

4. Static Analysis

The static analysis we propose works by translating an
input program P into a corresponding abstract program ∆,
i.e., a set of Horn clauses modelling an over-approximation
of its semantics. By feeding these clauses to an automated
theorem prover and by showing the unsatisfiability of an
appropriate logical formula, we can prove that some set of
undesired configurations is never reached by P .

4.1. Overview

The analysis is based on the syntactic categories in
Table 6. We start by discussing how values are approxi-
mated. We presuppose the existence of an arbitrary set of
abstract domains used to approximate primitive values: for
each primitive value prim , we assume that there exists a
corresponding abstraction p̂rim , e.g., integer numbers could
be approximated by their sign. Locations of the form ` = pλ,
instead, are abstracted into their annotation λ. An abstract
value v̂ is a set of elements drawn from either the abstract
domains or the set of annotations.

The different forms of annotations λ provide insight on
different aspects of the static analysis. Program point annota-
tions pp = c,m, pc are used to represent pointers to memory
blocks instantiated using the statements new, newarray
and newintent: by abstracting these elements with the
program point where they are created, we implement a plain-
object-sensitive static analysis [29]. We chose it because
it is well-understood and convenient to both formalize and
present: we plan to integrate more advanced analyses like
2full+1H in future releases. Class name annotations c, in-
stead, are used to represent activities in an object-insensitive

TABLE 6 Abstract Domains and Analysis Facts

Facts f ::=
Abs. registers | Rpp(t

∗ ; t∗)
Abs. heap entries | H(t, t′)
Abs. static fields | Sc,f(t)
Abs. right-hand sides | RHSpp(t)
Abs. results | Resc,m(t∗ ; t)
Abs. pending activities | I(t, t′)
Set membership | t ∈ t′
Subtyping | t ≤ t′
Horn clauses | ∀x∗.

∧
i fi =⇒ f

Abs. programs ∆ ::= {f1, . . . , fn}

Abs. values û, v̂ ::= ∅ | {p̂rim} | {λ} | v̂ ∪ v̂
Abs. objects ô ::= {|c; (fτ 7→ v̂)∗|}
Abs. arrays â ::= τ [v̂]

Abs. intents î ::= {|@c; v̂|}
Abs. mem. blocks b̂ ::= ô | â | î

Variables x, y ∈ Vars
Constants k ::= v̂ | b̂ | τ | λ
Terms t ::= k | x | in(t)

way: different activities of the same class c are all abstracted
by the annotation c, since it is generally hard to statically
discriminate between different activity instances. Finally, we
use the annotation in(c) to abstract all the intents which are
used to start an activity of class c.

Coming to memory blocks, our analysis is field-sensitive
on objects, but field-insensitive on both arrays and intents.
It is easier to implement field-sensitivity for objects, since
field names are statically known in Java. Implementing field-
sensitivity for arrays would require precise information on
array bounds and indexes; intents, instead, would need an
accurate string analysis, to deal with their dictionary-like
programming patterns. It would be possible to leverage
existing proposals [10] to implement a more precise analysis
in terms of field-sensitivity, but we propose a simpler frame-
work here to focus on the Android-specific aspects of the
analysis. Notice that, just like the objects they approximate,
abstract objects ô feature type annotations on their fields,
which are omitted when unimportant.

Abstract values and abstract memory blocks, plus all the
types available in the analysed program and the annotations,
determine a universe of constants, ranged over by k. A
term t is either a constant k, a variable x drawn from a
denumerable set Vars disjoint from the set of constants, or
an expression of the form in(t′) for some term t′. The set of
terms is used to define the syntax of facts f, logical formulas
built on selected predicate symbols used by the analysis.

The fact Rc,m,pc(û
∗ ; v̂∗) states that, whenever the

method m of class c is invoked with some arguments over-
approximated by û∗, the state of the local registers at the
pc-th statement is over-approximated by v̂∗. The syntax of
the fact highlights that: (1) the analysis is flow-sensitive
for register values, since it computes different static ap-
proximations at different program points, and (2) method
invocations are handled in a context-sensitive way, where
the notion of context coincides with the (abstraction of) the
actual arguments supplied to the method upon invocation.
The fact H(λ, b̂) states that some location pλ refers to a
heap element storing a memory block over-approximated
by b̂ at some point of the program execution. Notice that
the fact does not contain any program point information,
i.e., the analysis is flow-insensitive for heap locations, which

is important for soundness (see Section 3.5). Similarly, the
fact Sc,f(v̂) states that the static field f of class c contains
a value which is over-approximated by v̂ at some point of
the program execution. The fact RHSpp(v̂) states that the
right-hand side of the move statement at program point
pp evaluates to a value over-approximated by v̂. The fact
Resc,m(û∗ ; v̂) states that, whenever the method m of class
c is invoked with some arguments over-approximated by û∗,
its return value is over-approximated by v̂. The fact I(c, î)
tracks that an activity of class c has sent an intent which is
over-approximated by î. We then have set membership facts
t ∈ t′ and subtyping facts τ ≤ τ ′ with the obvious meaning.

Finally, Horn clauses define the abstract semantics of
programs. A Horn clause has the form:

∀x1, . . . ,∀xm.f1 ∧ . . . ∧ fn =⇒ f,

where all the variables of f1, . . . , fn, f belong to
{x1, . . . , xm} and each variable of f occurs among
the variables of f1, . . . , fn. Since most of the Horn clauses
we present do not make use of constants, to improve
readability we omit the universal quantifiers in front
of Horn clauses and we just represent each variable
occurring therein with a constant of the expected type.
The few exceptions where constants are actually used are
disambiguated using a sans serif font, e.g., we use c to
denote the constant corresponding to the activity class c
specifically, rather than some universally quantified variable
standing for an arbitrary activity class. We let an underscore
() stand for any syntactic element occurring in a Horn
clause which is not significant to understanding.

4.2. Analysis Specification

4.2.1. Abstract Semantics of Dalvik. We start by present-
ing the abstract evaluation rules for right-hand sides, which
are simple and provide a good intuition on how the static
analysis works. These rules are given in Table 7.

To abstract a primitive value prim at any program point
pp, we just pick the corresponding element p̂rim from the
underlying abstract domain. To abstract the content of the
register ri at program point pp, we take the fact Rpp(; v̂∗)
and we return the i-th abstract value v̂i. To abstract the

TABLE 7 Abstract Evaluation of Right-hand Sides

〈〈prim〉〉pp = {RHSpp({p̂rim})} 〈〈ri〉〉pp = {Rpp(; v̂∗) =⇒ RHSpp(v̂i)} 〈〈c.f〉〉pp = {Sc,f(v̂) =⇒ RHSpp(v̂)}

〈〈ri.f〉〉pp = {Rpp(; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|c; (f ′ 7→ v̂′)∗, f 7→ û|}) =⇒ RHSpp(û)}

〈〈ri[rj]〉〉pp = {Rpp(; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, τ [û]) =⇒ RHSpp(û)}

content of a static field c.f at any program point, we take any
fact Sc,f(v̂) and we return the abstract value v̂. Abstracting
the content of the field f of an object at program point pp
is slightly more complicated: if the pointer to the object is
stored in the register ri, we pick the i-th abstract value v̂i
from the fact Rpp(; v̂∗) modelling the state of the registers
at pp; then, if v̂i contains any pointer abstraction λ, we use
it to match a corresponding abstract heap entry H(λ, ô) and
we return the value of the field f of the abstract object ô
contained therein. We similarly abstract the content of array
cells: just notice that, since the representation of arrays is
field-insensitive, the index of the cell does not play any role
in the static analysis.

The rules for abstracting a right-hand side are useful
to define the abstract semantics of the move statement.
Other statements require some additional definitions. First,
for each comparison operator 4 and each primitive operation
�,⊕ of the concrete semantics, we presuppose the existence
of a corresponding abstract operation 4̂, �̂ and ⊕̂ defined
over the elements of the appropriate abstract domain. Then,
given an abstract memory block b̂, we define a function
̂get-type(b̂) as follows:

̂get-type(b̂) =

c if b̂ = {|c; (f 7→ v̂)∗|}
array[τ] if b̂ = τ [v̂]

Intent if b̂ = {|@c; v̂|}

Finally, we assume a function l̂ookup(m), which returns the
set of classes which define (or inherit) a method called m.

With these definitions, we are ready to introduce the
abstract semantics of statements. The idea is to define, for
each possible form of statement st , a translation (|st |)pp into
a set of Horn clauses, which over-approximate the semantics
of st at program point pp. The full formal semantics of the
translation is given in Table 8 and explained below.

The rule for goto pc′ propagates the state of the
registers at the current program counter pc to pc′. The
rule for if4 ri rj then pc′ propagates the state of the
registers at the current program counter pc either to pc′

or to pc + 1, based on the outcome of a comparison 4̂
between the abstract values v̂i and v̂j approximating the
content of registers ri and rj respectively: both branches
may be enabled, as the result of an over-approximation
of the contents of the registers. The two rules for unary
and binary operations just employ the appropriate abstract
operation to update the approximation of the content of the
destination register rd. The four rules for the move state-

ment rely on the auxiliary rules for abstracting a right-hand
side we introduced before: these rules store their result in a
RHS fact, which occurs in the premises of the Horn clause
used to update the abstraction of the left-hand side. The most
interesting point to notice here is that field-sensitivity or its
absence has an import on how fields are updated: for objects,
we replace the old value of the field with the new one; for
arrays and intents, instead, we add the new value to the
old approximation, since their abstraction over-approximates
the content of the entire data structure, rather than just the
single element which is updated. The rules for instof and
checkcast use the ̂get-type function previously defined.

The rule for invoke is the most complicated one, since
it has to deal with dynamic dispatching. The challenge
here is that the name of the invoked method is statically
known from the syntax of the statement, but the method
implementation is not, since it depends on the runtime
type of the receiver object, an information which is only
over-approximated when solving the Horn clauses, rather
than when generating them. We then use the method name
and the number of arguments passed upon invocation to
narrow the set of possible classes of the receiver object,
using the functions l̂ookup and sign, and we generate one
Horn clause for each of them. We then rely on subtyping
to make the analysis precise, by imposing that a Horn
clause generated for class c′′ can only be fired if the class
c′ of (the abstraction of) the receiver object is a subtype
of c′′. Besides implementing a sound approximation of
the dynamic dispatching mechanism, the rule for invoke
generates additional Horn clauses used to propagate the
abstraction of the method return value from the callee to the
caller: this is done by using a Res fact, which is introduced
by a return statement in the implementation of the callee,
as we discuss below. The rule for static method invocation
follows a similar logic, but it is significantly simpler, due to
the lack of dynamic dispatching on static calls.

The rules for object and array creation create a new
abstract heap entry H(λ, b̂), where λ is the current program
point and b̂ is the abstraction of a freshly initialized ob-
ject/array. The rule for return introduces a Res fact, stor-
ing an over-approximation of the method return value; notice
that the arguments v̂∗call supplied upon method invocation
are propagated in the Res fact, which is important to imple-
ment context-sensitivity, i.e., to propagate the result to the
right caller. The rule for start-activity tracks that the
present activity c has sent an intent: an over-approximation
of the intent is propagated from the corresponding abstract

TABLE 8 Abstract Semantics of µ-DalvikA - Statements (let pp = c,m, pc)

(|goto pc′|)pp = {Rpp(; v̂∗) =⇒ Rc,m,pc′(; v̂∗)}
(|if4 ri rj then pc′|)pp = {Rpp(; v̂∗) ∧ v̂i 4̂ v̂j =⇒ Rc,m,pc′(; v̂∗)}∪

{Rpp(; v̂∗) ∧ ¬(v̂i 4̂ v̂j) =⇒ Rc,m,pc+1(; v̂∗)}
(|binop⊕ rd ri rj |)pp = {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ v̂i ⊕̂ v̂j])}
(|unop� rd ri|)pp = {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ �̂ v̂i])}
(|move rd rhs|)pp = {RHSpp(v̂

′) ∧ Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ v̂′])} ∪ 〈〈rhs〉〉pp
(|move ra[ridx] rhs|)pp = {RHSpp(v̂

′′) ∧ Rpp(; v̂∗) ∧ λ ∈ v̂a ∧ H(λ, τ [v̂′]) =⇒ H(λ, τ [v̂′ ∪ v̂′′])}∪
{Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗)} ∪ 〈〈rhs〉〉pp

(|move ro.f rhs|)pp = {RHSpp(v̂
′′) ∧ Rpp(; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′|}) =⇒

H(λ, {|c′; (f ′ 7→ û′)∗, f 7→ v̂′′)|})} ∪ {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗)} ∪ 〈〈rhs〉〉pp
(|move c′.f rhs|)pp = {RHSpp(v̂

′) =⇒ Sc′,f(v̂
′)} ∪ {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗)} ∪ 〈〈rhs〉〉pp

(|instof rd rs τ |)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ ̂get-type(b̂) ≤ τ =⇒ Rc,m,pc+1(; v̂∗[d 7→ t̂rue])}∪
{Rpp(; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ ̂get-type(b̂) 6≤ τ =⇒ Rc,m,pc+1(; v̂∗[d 7→ f̂alse])}

(|checkcast rs τ |)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂s ∧ H(λ, b̂) ∧ ̂get-type(b̂) ≤ τ =⇒ Rc,m,pc+1(; v̂∗)}
(|invoke ro m′ (rij)j≤n|)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ =⇒

Rc′′,m′,0((v̂ij)j≤n ; (0̂k)k≤loc , (v̂ij)j≤n) | c′′ ∈ l̂ookup(m′) ∧ sign(c′′,m′) = (τj)
j≤n loc−−→ τ}∪

{Rpp(; v̂∗) ∧ λ ∈ v̂o ∧ H(λ, {|c′; (f 7→ û)∗|}) ∧ c′ ≤ c′′ ∧ Resc′′,m′((v̂ij)j≤n ; v̂′ret) =⇒
Rc,m,pc+1(; v̂∗[ret 7→ v̂′ret]) | c′′ ∈ l̂ookup(m′)}

(|sinvoke c′ m′ (rij)j≤n|)pp = {Rpp(; v̂∗) =⇒ Rc′,m′,0((v̂ij)j≤n ; (0̂k)k≤loc , (v̂ij)j≤n) | sign(c′,m′) = (τj)
j≤n loc−−→ τ}∪

{Rpp(; v̂∗) ∧ Resc′,m′((v̂ij)j≤n ; v̂′ret) =⇒ Rc,m,pc+1(; v̂∗[ret 7→ v̂′ret])}
(|new rd c′|)pp = {Rpp(; v̂∗) =⇒ H(pp, {|c′; (f 7→ 0̂τ)∗|}} ∪ {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ pp])}
(|newarray rd rl τ |)pp = {Rpp(; v̂∗) =⇒ H(pp, τ [0̂τ])} ∪ {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ pp])}
(|return|)pp = {Rpp(v̂

∗
call ; v̂∗) =⇒ Resc,m(v̂∗call ; v̂ret)}

(|start-activity ri|)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c′; û|}) =⇒ I(c, {|@c′; û|})}∪
{Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗)}

(|newintent rd c′|)pp = {Rpp(; v̂∗) =⇒ H(pp, {|@c′; ∅|})} ∪ {Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗[d 7→ pp])}
(|put-extra ri rk rj |)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c′; v̂′|}) =⇒ H(λ, {|@c′; v̂′ ∪ v̂j |})}∪

{Rpp(; v̂∗) =⇒ Rc,m,pc+1(; v̂∗)}
(|get-extra ri rk τ |)pp = {Rpp(; v̂∗) ∧ λ ∈ v̂i ∧ H(λ, {|@c′; v̂′|}) =⇒ Rc,m,pc+1(; v̂∗[ret 7→ v̂′])}

heap entry into the I fact modelling the presence of a pending
activity which is about to start. The last rules for managing
intents should be easy to understand, based on the intuitions
given for the other rules.

4.2.2. Abstract Semantics of Activities. We can finally
introduce the abstract semantics of activities. Intuitively, it
is defined by: (1) the Horn clauses produced by translating
each statement in the bytecode, and (2) a small set of
bytecode-independent Horn clauses, abstracting the event-
driven behaviour of activities. This is formalized next.
Definition 5. Let P = (clsi)

i≤n be a program where clsi =
cls ci ≤ c′ imp c∗ {fld∗; (mtd j)

j≤hi} and mtd j =

mj : τ∗
loc−−→ τ {(stk)k≤sij}, we let (|P |) be defined as

follows:

(|P |) =
⋃

i≤n,j≤hi,k≤sij

(|stk|)ci,mj ,k ∪R,

where R stands for the union of all the rules in Table 9.

We explain the rules from Table 9. Rule Cbk simulates
the invocation of a callback: since we do not approximate
the activity state in the abstract semantics, any callback
method bound to a state s of the activity lifecycle may
be non-deterministically dispatched; the statically unknown

arguments supplied to the callback are abstracted by the
top element (>) of the abstract domain associated to their
type, which is a sound over-approximation of any value of
that type. Rule Fin tracks updates to the finished field of an
activity in the abstract semantics: since it is hard to statically
track whether an activity has finished or not, the rule sets
the field to the top element of the abstract domain used to
represent boolean value (>bool). Rule Rep approximates the
behaviour of rule (A-REPLACE) of the concrete semantics:
the activity fields may be reset to their default abstract value
as the result of a screen orientation change.

Rule Act represents the starting of a new activity. If
an intent has been sent by an activity of class c′ to start
an activity of class c, we introduce: (1) a new abstract
heap entry to bind an abstraction of the intent to in(c),
and (2) a new abstract heap entry to bind an abstraction
of the started activity to c. No serialization happens in the
abstract semantics: if an intent is used to send an object
in the concrete semantics, a reference to the corresponding
abstract object is sent in our abstraction. This is sound, since
our analysis is flow-insensitive on heap values, hence no
over-approximation of the original object is ever lost as
the result of an update to the heap at the receiver side.
We then have rule Res, which is used to communicate a
result from a child activity to its parent, thus simulating the

TABLE 9 Abstract Semantics of µ-DalvikA - Activity Rules

Cbk = {H(c, {|c; (f 7→)∗|}) ∧ c ≤ c′ =⇒ Rc′,m,0((>τj)j≤n ; (0̂k)k≤loc , c, (>τj)j≤n) |
c′ is an activity class ∧ ∃s : m ∈ cb(c′, s) ∧ sign(c′,m) = τ1, . . . , τn

loc−−→ τ}
Fin = {H(c, {|c; (f 7→)∗, finished 7→ |}) =⇒ H(c, {|c; (f 7→)∗, finished 7→ >bool|})}
Rep = {H(c, {|c; (fτ 7→)∗|}) =⇒ H(c, {|c; (fτ 7→ 0̂τ)∗|})}
Act = {I(c′, {|@c; v̂|})) =⇒ H(in(c), {|@c; v̂|})}∪

{I(c′, {|@c; v̂|})) =⇒ H(c, {|c; (fτ 7→ 0̂τ)∗, finished 7→ f̂alse, parent 7→ c′, intent 7→ in(c)|})}
Res = {H(c′, {|c′; (f ′ 7→)∗, parent 7→ c, result 7→ λ|} ∧ H(c, {|c; (f 7→)∗, result 7→ |} =⇒

H(c, {|c; (f 7→)∗, result 7→ λ|}}
Sub = {τ ≤ τ ′ | τ ≤ τ ′ is a valid subtyping judgement}

behaviour of rule (A-RESULT) in the concrete semantics;
again, no serialization happens in the process, rather a
pointer to the result is passed. Finally, rule Sub corresponds
to an axiomatization of the subtyping relationships for the
analysed program.

4.3. Formal Results

The soundness of the analysis is proved using repre-
sentation functions, a standard approach in program analy-
sis [25]. The representation function βCnf maps an arbitrary
configuration Ψ into a corresponding set of facts ∆, mod-
elling an over-approximation of Ψ. Its definition is lengthy,
but unsurprising, e.g., each element ` 7→ b of the heap is
converted into an abstract heap entry H(λ, b̂), where λ is the
annotation on ` and b̂ is an abstraction of b. After defining
βCnf, we introduce a partial order v on analysis facts, with
the intuitive understanding that f v f ′ whenever f is a more
precise abstraction than f ′. The partial order is then lifted
to abstract programs by having ∆ <: ∆′ if and only if
∀f ∈ ∆ : ∃f ′ ∈ ∆′ : f v f ′.

Our main theorem states that any reachable configuration
in the concrete semantics is over-approximated by some set
of facts which is provable using the abstract semantics of the
program and an abstraction of the initial configuration. The
proof is parametric with respect to the choice of the abstract
domains/operations used for primitive values, provided they
offer some minimal soundness guarantees. This allows for
choosing different trade-off between efficiency and precision
of the analysis.

Theorem 1 (Preservation). If Ψ ⇒∗ Ψ′ under a program
P , there exists ∆ :> βCnf(Ψ

′) such that:

(|P |) ∪ βCnf(Ψ) ` ∆.

By providing an over-approximation of any reachable
configuration of the concrete semantics in terms of a cor-
responding set of facts, the theorem can be used to prove
the absence of undesired information flows of sensitive data
into local registers of selected sink methods. In particular,
we leverage the theorem to develop a provably sound taint
analysis, based on standard ideas. Due to space constraints,
we refer to Appendix A for full details.

5. Experiments

We developed HornDroid, a static analysis tool for An-
droid applications based on our theory. HornDroid imple-
ments a sound, fully automatic taint analysis aimed at de-
tecting malicious information flows in Android applications.
The analysis is based on a publicly available database of
sources and sinks specific to the Android platform [27].

Figure 1. HornDroid Architecture

The architecture of HornDroid is shown in Figure 1.
Given an Android application as an input, HornDroid gen-
erates Horn clauses defining an over-approximation of the
application semantics, following the formal specification in
Section 4; the choice of the underlying abstract domains and
operations implements a simple taint propagation logic. The
Horn clauses are encoded in the SMT-LIB format supported
by many popular SMT solvers, including our choice Z3 [9].
HornDroid automatically generates analysis queries based
on its database of sources and sinks4 and the unsatisfiability
of the queries is verified using the Property-Directed Reach-
ability (PDR) engine implemented in Z3 [16]. If no query
is satisfiable, no information leak from a source to a sink
may occur in the analysed application.

5.1. Evaluation on DroidBench

DroidBench [2] is a set of small applications which
has been proposed by the research community as a test-
ing ground for static information flow analysis tools for
Android. The current version of the benchmark (2.0) in-
cludes 120 test cases, featuring both leaky (positive) and
benign (negative) examples. We tested IccTA, AmanDroid,
DroidSafe and HornDroid on this benchmark, the results are

4. We use the latest and largest database available in the literature, i.e.
the one used in DroidSafe [15].

summarized in the confusion matrix in Table 10, reporting
the number of true positives (tp), true negatives (tn), false
positives (fp) and false negatives (fn) produced by the
tools.

TABLE 10 Confusion Matrix on DroidBench
Output

leaky benign
IccTA/AD/DS/HD IccTA/AD/DS/HD

leaky tp : 64 / 70 / 89 / 96 fn : 36 / 30 / 11 / 4
benign fp : 8 / 5 / 10 / 6 tn : 11 / 14 / 9 / 13

IccTA does not detect 36 out of 100 leaky applications,
AmanDroid misses 30 and DroidSafe still misses 11. Most
of the leaks missed by IccTA and AmanDroid are due to
flow-sensitivity and some callbacks which are not correctly
detected by the analysis; as to DroidSafe, we do not have
definite answers on the unsound results, given the sheer
size of the project and the lack of complete documentation.
HornDroid performs much better than all its competitors
on DroidBench, since it only misses 4 leaky applications:
all these cases are related to implicit flows, which are not
covered by standard taint analyses (and our formal proof).

But even better, despite the strong security guarantees it
provides, the analysis performed by HornDroid is not overly
conservative, since it detects as potentially leaky only 6 out
of 19 benign applications. We notice that 3 of these false
alarms are due to flow insensitivity of the heap abstraction,
one to an over-approximation of exceptions, and 2 to an
over-approximated treatment of inter-app communication.
Only AmanDroid is more precise, since it produces one
less false positive; on the other hand, it misses many more
malicious information flows than HornDroid (30 vs 4). For
the sake of completeness, we report in Table 12 a full
breakdown of the experiments on DroidBench, omitting the
cases where all the tools agree with the ground truth.

The experimental results on DroidBench are summarized
by a few standard statistical measures in Table 11, which
highlight that soundness in HornDroid does not come at the
cost of precision.

TABLE 11 Performance Measures on DroidBench
IccTA AD DS HD

Sensitivity 0.64 0.70 0.89 0.96
Specificity 0.58 0.74 0.47 0.68
F-Measure 0.61 0.72 0.62 0.80

Sensitivity = tp/(tp+ fn) ∼ Soundness
Specificity = tn/(tn+ fp) ∼ Precision
F-Measure = 2 ∗ (sens ∗ spec)/(sens+ spec) ∼ Aggregate

Besides the quality of the results, also performances are
important. Table 13 reports the mean and the median of
the analysis times for the applications in DroidBench. As it
turns out, HornDroid is one order of magnitude faster than
both IccTA and AmanDroid, which in turn are one order
of magnitude faster than DroidSafe. The extremely good

performances of HornDroid are due to both design choices,
like flow insensitivity on the activity life-cycle, and excellent
support by Z3 in Horn clauses resolution.

5.2. Evaluation on Real Applications

In order to evaluate the practicality of our analysis, we
performed a test on the two largest applications available
in the Google Play Top 30: the game Candy Crash Soda
Saga (51.7 Mb) and the Facebook application (46.5 Mb).
We ran the experiments on a server with 64 multi-thread
cores and 758 Gb of memory, however the highest memory
consumption by HornDroid was around 10 Gb, so it is pos-
sible to reproduce our results even on a modern commercial
machine.

HornDroid found an information leak in Facebook, while
Candy Crash Soda Saga appears to be secure. The analysis
took around 30 minutes and 60 minutes respectively. We
tested all the existing competitors on both applications,
to check whether they could confirm the analysis results.
Unfortunately, AmanDroid crashed just after the begin-
ning of the analysis of Facebook, while both DroidSafe
and IccTA failed to terminate within the timeout we set
(2 hours). We were able instead to analyse Candy Crash
Soda Saga using AmanDroid in around 50 minutes, get-
ting an information flow. After a manual inspection, we
realized this is a false positive due to the incorrect in-
clusion of the onHandleIntent method of the class
IntentService among the possible sources of sensitive
information: this is not included in more recent propos-
als [15], [21]. Both IccTA and DroidSafe were not able
to analyse the application within 2 hours. Due to space
constraints, we refer to [7] for a more comprehensive ex-
perimental evaluation on real applications.

5.3. Features and Limitations

As anticipated, the formalization in the previous sections
only captures the core of the analysis implemented in Horn-
Droid and establishes the soundness of its principles. The
tool, however, supports more features which are needed to
make the analysis scale to real applications. We detail here
some important aspects of HornDroid which are not covered
by our formal model and we comment on current limitations.

Android Components. Although the µ-DalvikA model only
represents activities and their life-cycle, HornDroid sup-
ports all the component types available on the Android
platform, including services, broadcast receivers and content
providers [31]. The implementation of the analysis for these
components does not significantly differ from the one for
activities we presented in the paper, though it requires a
correct modelling of their specific life-cycle.

Fragments. Fragments are used to separate the func-
tionality of an activity among different independent sub-
components [32]. In order to support a sound analysis of
fragments, HornDroid over-approximates their life-cycle by

TABLE 12 DroidBench Results
Category Case Leaky? IccTA DS AD HD
Aliasing Merge1 no yes yes no yes
Android-Specific Parcel1 yes no yes yes yes

PublicAPIField1 yes no yes no yes
PublicAPIField2 yes no yes no yes

Arrays and Lists ArrayAccess1 no yes yes yes no
ArrayAccess2 no yes yes yes no
ArrayCopy1 yes yes yes no yes
ArrayToString1 yes no yes yes yes
HashMapAccess1 no yes yes no no
ListAccess1 no yes yes yes no
MultidimensionalArray1 yes yes no yes yes

Callbacks MultiHandlers1 yes no no no yes
Ordering1 yes no yes yes yes
RegisterGlobal1 yes yes yes no yes
RegisterGlobal2 yes yes yes no yes
Unregister1 no yes yes yes yes

Emulator Detection ContentProvider1 yes yes yes no yes
IMEI1 yes no no no no
PlayStore1 yes yes yes no yes

Fields and Object Sensitivity FieldSensitivity4 no no yes no yes
ObjectSensitivity2 no no yes no yes

General Java Exceptions3 no yes yes yes yes
Serialization1 yes no yes no yes
StartProcessWithSecret1 yes no yes no yes
StaticInitialization1 yes no yes yes yes
StaticInitialization3 yes no yes yes yes
StringFormatter1 yes no yes no yes
StringPatternMatching1 yes no yes yes yes
StringToCharArray1 yes yes yes no yes
StringToOutputStream1 yes no yes yes yes
VirtualDispatch3 no yes no no no

Implicit Flows ImplicitFlow1 yes no yes no yes
ImplicitFlow2 yes no no no no
ImplicitFlow3 yes no no no no
ImplicitFlow4 yes no no no no

Inter-App Communication Echoer yes no yes no yes
SendSMS yes yes yes no yes

Inter-Component Communication ActivityCommunication1 yes yes yes no yes
ActivityCommunication3 yes no yes yes yes
ActivityCommunication6 yes no yes yes yes
ComponentNotInManifest1 no no yes no yes
IntentSink1 yes no yes yes yes
IntentSink2 yes no yes no yes
IntentSource1 yes no yes yes yes
ServiceCommunication1 yes no yes yes yes
Singletons1 yes no no no yes

Lifecycle ActivityLifecycle1 yes no yes yes yes
ActivitySavedState1 yes no yes yes yes
ApplicationLifecycle1 yes yes yes no yes
ApplicationLifecycle2 yes yes yes no yes
ApplicationLifecycle3 yes yes yes no yes
BroadcastReceiverLifecycle2 yes no yes no yes
FragmentLifecycle1 yes no yes yes yes
FragmentLifecycle2 yes no yes no yes
SharedPreferenceChanged1 yes yes no yes yes

Reflection Reflection1 yes yes no yes yes
Reflection2 yes no no no yes
Reflection3 yes no yes yes yes
Reflection4 yes no no yes yes

Threading Executor1 yes yes yes no yes
JavaThread1 yes yes yes no yes
JavaThread2 yes no yes no yes
Looper1 yes no yes no yes

TABLE 13 Analysis Time for DroidBench (Seconds)
IccTA AD DS HD

Average Analysis Time 19 11 176 1
Median Analysis Time 15 10 186 1

executing all the fragments along with the containing activ-
ity in a flow-insensitive way. This might lead to precision
problems on real applications, but this is the simplest of the
sound options, which follows the philosophy we adopted for
activity analysis.

Arrays. Though the static analysis we formalized is field-
insensitive on arrays, HornDroid supports a more precise
treatment of array indexes. Being value-sensitive, HornDroid
statically approximates which indexes of an array may be
accessed at runtime: if a secret value is stored in the first
position of the array, but only the second element of the
array is leaked, the tool does not raise an alarm, contrarily
to all the other existing tools (cf. the breakdown on the
experiments in [7]).

Exceptions. HornDroid implements a conservative solution
to handle exceptions, i.e., exceptions are always assumed to
be thrown. A similar coarse over-approximation is imple-
mented in FlowDroid [2]. We leave a more precise treatment
of exceptions to future work: we believe that the value-
sensitivity of the analysis implemented in our tool will be
crucial to limit the number of false alarms for exception
handling. For instance, a value-sensitive analysis can ensure
that a null pointer exception is never raised at runtime, since
it over-approximates the set of the possible runtime values.

Inter-app Communication. HornDroid has limited support
for inter-application communication, i.e., it conservatively
detects an information leak whenever an intent storing secret
data is sent to another application. More precise results
could be achieved by analysing all the communicating ap-
plications simultaneously, but the current implementation of
HornDroid only supports the analysis of a single application.
We plan to leverage existing state-of-the-art solutions to
overcome this limitation [21].

Threading. HornDroid handles multithreading by assuming
that threads are executed in a sequential, but arbitrary order,
much in the same spirit of the callbacks defining the activity
life-cycle. This is the same strategy used in FlowDroid.
We conjecture, but did not prove yet, that this strategy is
sound in our case, since the analysis is flow insensitive
on everything except for registers, which are not shared.
For flow-sensitive analysis techniques (e.g., FlowDroid),
instead, this strategy is in general unsound, since it may
miss potential interleavings arising due to synchronization
on shared memory (e.g., static heaps). The only aspect that
should be added to our static analysis is a thread pool
simulation. In Java, every time the method execute is
called on a thread, this is placed in a pool and then executed

by the system by calling the runnable method run. Our
static analysis similarly binds each invocation of execute
to a corresponding run method.

Reflection. Though supporting reflection soundly is an open
research problem [30], HornDroid still covers a significant
fraction of common reflection cases by implementing a
simple string analysis. The solution we propose is in the
same spirit of DroidSafe, i.e., reflective calls which can be
statically resolved are replaced by direct calls to the appro-
priate method. Pragmatically, however, we observed that we
are able to achieve much better results than DroidSafe for
the reflection cases in DroidBench.

Limitations. A comprehensive implementation of analysis
stubs for method calls to the Android APIs is still lacking:
we only implemented some selected stubs for our experi-
ments, to show that our approach is feasible and practical.
When a stub to an external library is missing, the tool
tries to be conservative: the return value of the call is
over-approximated to the top element of the corresponding
abstract domain, and it is tainted whenever at least one
of the arguments is tainted. Other important limitations of
HornDroid are shared with existing solutions [2], [15]. First,
the analysis does not capture implicit information flows at
present. Second, the analysis does not consider native code:
this is a point we leave as a future work, observing that
SMT solving has been successfully applied in the past to C
code (see, e.g., the SLAM project [3]). Third, the analysis
is oblivious to the semantics of the information flows, i.e.,
it lacks any built-in declassification mechanism to qualify
legitimate data flows. Since our analysis approximates data
information rather than just tracking taints, however, it is
in principle possible to encode expressive data-dependent
declassification policies, e.g., one could define the result
of an encryption as untainted only if the encryption is
performed with the right key.

6. Additional Related Work

Several papers have proposed an operational semantics
for Android applications by now. The first attempt is due
to Chaudhuri [8], who presented a core calculus to model
Android applications. Later research proposed much more
concrete models: Jeon et al. developed µ-Dalvik, a relatively
simple formal language which thoroughly models a signif-
icant fraction of the Dalvik opcodes [18]. Wognsen et al.
presented an even richer language, which also formalises
exceptions and some common uses of reflection [37]. Re-
cently, Payet and Spoto complemented existing research by
defining the first operational semantics for Android activi-
ties [26]. The semantics takes into account the event-driven
behaviour of the activity lifecycle and, to some extent, the
inter-component communication mechanism. Unfortunately,
though, it represents only a small subset of the opcodes
available in Dalvik and just models the control flow of activ-
ities, rather than the data flows enabled by inter-component
communication. Our proposal integrates [18] and [26], while

providing the first accurate description of how data flows
between different components of an Android application.

Cassandra [22] is, to the best of our knowledge, the
only tool implementing a provably sound information flow
analysis for Android applications. The analysis is based on
security types: well-typed programs ensure a termination-
insensitive notion of non-interference, which proves the
absence of both explicit and implicit information flows.
By capturing implicit flows, Cassandra provides stronger
security assurances than other static analysis tools, includ-
ing ours. On the other hand, the analysis implemented in
Cassandra is exclusively focused on the bytecode, and it
does not track information leaks enabled by the applica-
tion lifecycle. Moreover, the design of Cassandra is not
very practical, since it requires application developers to
write security certificates, giving a typing of all fields and
methods in the application. Being type-based, Cassandra
does not track any static approximation of runtime values,
thus making it easy for malicious developers to force an
overwhelming number of false alarms. We are not aware of
any experimental evaluation of Cassandra so far.

Static analyses for improving the security of Android
applications are not limited to information flow control: im-
portant applications include the detection of over-privileged
apps [12] and of attack surfaces for privilege escalation [6].
Finally, it is worth mentioning that also dynamic analysis of
Android applications is a popular research line [11], [19],
[34], [17]. Dynamic analysis is largely complementary to
static analysis, since it is typically more precise, but it hardly
provides full coverage of all the possible execution paths and
thus is not suitable to be employed in the vetting phase of
an application.

7. Conclusion

We presented HornDroid, a tool for the static analysis
of Android applications based on Horn clause resolution.
HornDroid is the first static analysis tool for Android that
comes with a formal proof of soundness covering a large
fragment of the Android ecosystem. Based on an available
benchmark proposed by the community, we experimentally
showed that HornDroid is much more efficient than com-
petitors, very precise, and it is the first tool to detect all the
existing (explicit) information flows.

Our approach makes it easy to fine-tune the static analy-
sis, since one has just to modify the Horn clause generation
algorithm, while the resolution can be performed using
off-the-shelf SMT solvers, thus leveraging the tremendous
progress in this field. In order to facilitate future extensions
by the community, we make our tool freely available, as
source code as well as through a web interface [7].

We are currently working on the verification of CTL
formulas, by using a recently developed encoding into Horn
clauses [4]. Furthermore, we plan to extend our tool in
order to check non-interference properties and prove the
absence of implicit information flows. We would also like
to identify sound solutions to implement flow-sensitivity for
heap locations, thus making our static analysis even more

precise. For further boosting the precision, we intend to
integrate in HornDroid a recently developed string analysis
engine for Z3 [33]. Finally, we intend to extend the formal
model and the proof of soundness in order to cover the entire
analysis.

References

[1] “The Java Language Specification,” https://docs.oracle.com/javase/
specs/jls/se7/html/, last accessed on February 2013.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in PLDI. ACM, 2014, pp. 259–269.

[3] T. Ball, V. Levin, and S. K. Rajamani, “A Decade of Software Model
Checking with SLAM,” pp. 68–76, 2011.

[4] T. A. Beyene, M. Brockschmidt, and A. Rybalchenko, “CTL+FO
Verification As Constraint Solving,” in SPIN. ACM, 2014, pp. 101–
104.

[5] N. Bjørner, K. L. McMillan, and A. Rybalchenko, “Program Verifi-
cation as Satisfiability Modulo Theories,” in SMT. ACM, 2012, pp.
3–11.

[6] M. Bugliesi, S. Calzavara, and A. Spanò, “Lintent: Towards security
type-checking of Android applications,” in FMOODS/FORTE, 2013,
pp. 289–304.

[7] S. Calzavara, I. Grishchenko, and M. Maffei, “Full version of the
present submission and HornDroid implementation,” available online
at https://www.sps.cs.uni-saarland.de/horndroid/.

[8] A. Chaudhuri, “Language-Based Security on Android,” in PLAS.
ACM, 2009, pp. 1–7.

[9] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
TACAS. Springer-Verlag, 2008, pp. 337–340.

[10] I. Dillig, T. Dillig, and A. Aiken, “Precise Reasoning for Programs
Using Containers,” in POPL. ACM, 2011, pp. 187–200.

[11] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,”
ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 5:1–5:29, 2014.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in CCS, 2011, pp. 627–638.

[13] S. Fink and J. Dolby, “WALA – The TJ Watson Libraries for
Analysis,” 2012. [Online]. Available: http://wala.sf.net/

[14] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Auto-
matically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale,” in TRUST. Springer-Verlag, 2012, pp. 291–307.

[15] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information Flow Analysis of Android Applications
in DroidSafe,” in NDSS. IEEE, 2015.

[16] K. Hoder and N. Bjørner, “Generalized Property Directed Reachabil-
ity,” in SAT. Springer-Verlag, 2012, pp. 157–171.

[17] P. Hornyack, S. Han, J. Jung, S. E. Schechter, and D. Wetherall,
“These Aren’t the Droids You’Re Looking for: Retrofitting Android
to Protect Data from Imperious Applications,” in CCS. ACM, 2011,
pp. 639–652.

[18] J. Jeon, K. K. Micinski, and J. S. Foster, “SymDroid: Symbolic
Execution for Dalvik Bytecode,” University of Maryland, Tech. Rep.,
2012.

[19] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake, “Run-Time Enforcement
of Information-Flow Properties on Android - (Extended Abstract),”
in ESORICS. ACM, 2013, pp. 775–792.

[20] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static
Analyzer for Detecting Privacy Leaks in Android Applications,” in
MoST, 2012.

[21] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. Mcdaniel, “IccTA: De-
tecting Inter-Component Privacy Leaks in Android Apps,” in ICSE.
IEEE Press, 2015, pp. 280–291.

[22] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. We-
ber, “Cassandra: Towards a Certifying App Store for Android,” in
SPSM@CCS. ACM, 2014, pp. 93–104.

[23] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in CCS.
ACM, 2012, pp. 229–240.

[24] C. Mann and A. Starostin, “A Framework for Static Detection of
Privacy Leaks in Android Applications,” in SAC. ACM, 2012, pp.
1457–1462.

[25] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer-Verlag, 1999.

[26] É. Payet and F. Spoto, “An Operational Semantics for Android
Activities,” in PEPM. ACM, 2014, pp. 121–132.

[27] S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks,” in
NDSS, 2014.

[28] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick Your Contexts
Well: Understanding Object-Sensitivity,” in POPL. ACM, 2011, pp.
17–30.

[29] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick Your Contexts
Well: Understanding Object-sensitivity,” in POPL. ACM, 2011, pp.
17–30.

[30] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “More Sound Static
Handling of Java Reflection,” Tech. Rep., 2014.

[31] The Android Developers Guide, “App Components,” available online
at http://developer.android.com/guide/components/index.html.

[32] ——, “Fragments,” available online at http://developer.android.com/
guide/components/fragments.html.

[33] M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A Symbolic String Solver
for Vulnerability Detection in Web Applications,” in CCS. ACM,
2014, pp. 1232–1243.

[34] O. Tripp and J. Rubin, “A Bayesian Approach to Privacy Enforcement
in Smartphones,” in USENIX. USENIX, 2014, pp. 175–190.

[35] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing Java Bytecode Using the Soot Frame-
work: Is It Feasible?” in CC. Springer-Verlag, 2000, pp. 18–34.

[36] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps,” in CCS. ACM, 2014, pp. 1329–1341.

[37] E. R. Wognsen, H. S. Karlsen, M. C. Olesen, and R. R. Hansen, “For-
malisation and Analysis of Dalvik Bytecode,” Sci. Comput. Program.,
vol. 92, pp. 25–55, 2014.

[38] Z. Yang and M. Yang, “LeakMiner: Detect Information Leakage on
Android with Static Taint Analysis,” in WCSE. IEEE, 2012, pp.
101–104.

[39] Z. Zhao and F. C. C. Osorio, “TrustDroid: Preventing the use of
SmartPhones for information leaking in corporate networks through
the use of static analysis taint tracking,” in MALWARE. IEEE, 2012,
pp. 135–143.

Appendix

We present an instrumented semantics, which is useful for our soundness proof. With respect to the informal presentation
in Section 3, we need to extend the syntax of semantic domains as follows:

L ::= 〈pp · v∗ · st∗ ·R〉
Σ ::= ` · α · π ·H · S

In the instrumented semantics, local states L additionally contain a sequence of values v∗, representing the actual arguments
provided upon method invocation when the local state was pushed on the call stack. Local configurations Σ, instead, are
extended with a pointer ` to the activity modelled by the configuration.
Definition 6. Given a heap H , we let the partial function typeH(v) be defined as follows:

typeH(v) =

c if v = ` ∧H(`) = {|c; (f 7→ v)∗|}
array[τ] if v = ` ∧H(`) = τ [v∗]

Intent if v = ` ∧H(`) = {|@c; (k 7→ v)∗|}
τprim if v = prim

where τprim is the type of the primitive value prim .

Let now super(c) = c′ iff there exists clsi s.t. clsi = cls c ≤ c′ imp c∗ {fld∗; mtd∗}. Similarly, let inter(c) = {c∗} iff
there exists clsi s.t. clsi = cls c ≤ c′ imp c∗ {fld∗; mtd∗}. Table 14 gives the subtyping rules for µ-DalvikA, which are
used, e.g., when defining the outcome of a type cast statement. Notice that array subtyping is covariant, which is unsound
in presence of side-effects: like Java and the original presentation of µ-Dalvik, we detect possible type errors at runtime.

TABLE 14 Subtyping (τ ≤ τ ′)

(SUB-REFL)
τ ≤ τ

(SUB-TRANS)
τ ≤ τ ′ τ ′ ≤ τ ′′

τ ≤ τ ′′
(SUB-EXT)
c ≤ super(c)

(SUB-IMPL)
c′ ∈ inter(c)
c ≤ c′

(SUB-ARRAY)
τ ≤ τ ′

array[τ] ≤ array[τ ′]

Let a[i] = vi whenever a = τ [v∗] and o.f = v whenever o = {|c; (fi 7→ vi)
∗, f 7→ v|}. Table 15 defines a convenience

relation used to evaluate the right-hand side of a move instruction under a local configuration Σ. Notice that the evaluation
of registers depends only on the top-most local state of the call stack of Σ.

TABLE 15 Evaluation of Right-hand Sides (ΣJrhsK = v)

(RHS-REGISTER)
ΣJrK = R(r)

(RHS-ARRAY)
` = ΣJraK
a = H(`)
j = ΣJridx K

ΣJra[ridx]K = a[j]

(RHS-OBJECT)
` = ΣJroK
o = H(`)

ΣJro.fK = o.f
(RHS-STATIC)
ΣJc.fK = S(c.f)

(RHS-PRIM)
ΣJprimK = prim

Convention: in all the rules, let Σ = · α · π ·H · S with α = 〈pp · · st∗ ·R〉 :: α′.

It is also useful to define substitutions for different syntactic categories, e.g., we let o[f 7→ v] = {|c; (fi 7→ vi)
∗[f 7→ v]|}

when o = {|c; (fi 7→ vi)
∗|}, and Σ[H 7→ H ′] = ` · α · π · H ′ · S when Σ = ` · α · π · H · S. We do not provide full

formal definitions for these substitutions, since their meaning will be clear from the context: it is only worth noticing that
substitutions operating on elements of a local state only affect the top-most local state of a local configuration Σ when
applied to it. For instance, given Σ = ` ·α · π ·H · S with α = 〈pp · v∗ · st∗ ·R〉 :: α′, we let Σ[R 7→ R′] = ` ·α′′ · π ·H · S
where α′′ = 〈pp · v∗ · st∗ ·R′〉 :: α′, i.e., α′ is unchanged.

We are finally ready to define the formal semantics of statements. Let Σ = ` · α · π ·H · S, we let get-stm(Σ) = stpc
when α = 〈c,m, pc · · st∗ ·R〉 :: α′; we then let Σ Σ′ if get-stm(Σ) = st and Σ, st ⇓ Σ′ can be proved using the rules
in Tables 16. There are only three perhaps surprising points: (1) when storing a value in an array cell, a dynamic check
on the type of the value is performed, so as to ensure type soundness even in presence of the unsound subtyping rule for
arrays; (2) when a new object is created, the pointer to it is annotated with the program point where creation takes place;
and (3) upon method invocation, the value of the actual arguments is tracked in the syntax of the new local state. While
(1) is an important aspect of the operational semantics, both (2) and (3) only serve static analysis purposes. Notice that we
also use lookup to retrieve method bodies upon static calls: in this case, we assume c′ = c.

TABLE 16 Concrete small step semantics of µ-DalvikA (Σ, st ⇓ Σ′) - Statements

(R-GOTO)
Σ,goto pc′ ⇓ Σ[pc 7→ pc′]

(R-TRUE)
ΣJr1K 4 ΣJr2K

Σ,if4 r1 r2 then pc′ ⇓ Σ[pc 7→ pc′]

(R-FALSE)
¬(ΣJr1K 4 ΣJr2K)

Σ,if4 r1 r2 then pc′ ⇓ Σ+

(R-MOVEREG)
v = ΣJrhsK

R′ = R[r 7→ v]

Σ,move r rhs ⇓ Σ+[R 7→ R′]

(R-MOVEFLD)
v = ΣJrhsK ` = ΣJroK

o = H(`) H ′ = H[` 7→ o[f 7→ v]]

Σ,move ro.f rhs ⇓ Σ+[H 7→ H ′]

(R-MOVEARR)
v = ΣJrhsK

` = ΣJraK typeH(`) = array[τ] typeH(v) ≤ τ
a = H(`) j = ΣJridx K H ′ = H[` 7→ a[j 7→ v]]

Σ,move ra[ridx] rhs ⇓ Σ+[H 7→ H ′]

(R-MOVESFLD)
v = ΣJrhsK

S′ = S[c′.f 7→ v]

Σ,move c′.f rhs ⇓ Σ+[S 7→ S′]

(R-UNOP)
v = �ΣJrsK
R′ = [rd 7→ v]

Σ,unop� rd rs ⇓ Σ+[R 7→ R′]

(R-BINOP)
v = ΣJr1K⊕ ΣJr2K
R′ = R[rd 7→ v]

Σ,binop⊕ rd r1 r2 ⇓ Σ+[R 7→ R′]

(R-NEWOBJ)
o = {|c′; (fτ 7→ 0τ)∗|}
` = pc,m,pc /∈ dom(H)

H ′ = H[` 7→ o] R′ = R[rd 7→ `]

Σ,new rd c
′ ⇓ Σ+[H 7→ H ′, R 7→ R′]

(R-NEWARR)
len = ΣJrlK

a = τ [(0τ)j≤len] ` = pc,m,pc /∈ dom(H)
H ′ = H[` 7→ a] R′ = R[rd 7→ `]

Σ,newarray rd rl τ ⇓ Σ+[H 7→ H ′, R 7→ R′]

(R-CAST)
` = ΣJrsK

typeH(`) ≤ τ
Σ,checkcast rs τ ⇓ Σ+

(R-INSTOFTRUE)
` = ΣJrsK

typeH(`) ≤ τ
R′ = R[rd 7→ true]

Σ,instof rd rs τ ⇓ Σ+[R 7→ R′]

(R-INSTOFFALSE)
` = ΣJrsK

typeH(`) 6≤ τ
R′ = R[rd 7→ false]

Σ,instof rd rs τ ⇓ Σ+[R 7→ R′]

(R-RETURN)
α = 〈c,m, pc · · ·R〉 :: 〈pp′ · v∗ · st∗ ·R′〉 :: α′

α′′ = 〈pp′ · v∗ · st∗ ·R′[rret 7→ ΣJrretK]〉 :: α′

Σ,return ⇓ Σ[α 7→ α′′]

(R-SCALL)

lookup(c′,m′) = (c′, st∗) sign(c′,m′) = τ1, . . . , τn
loc−−→ τ

R′ = ((rj 7→ 0)j≤loc , (rloc+k 7→ ΣJr′kK)
k≤n)

α′′ = 〈c′,m′, 0 · (ΣJr′kK)
k≤n · st∗ ·R′〉 :: α+

Σ,sinvoke c′ m′ r′1, . . . , r
′
n ⇓ Σ[α 7→ α′′]

(R-CALL)
` = ΣJroK

lookup(typeH(`),m′) = (c′, st∗) sign(c′,m′) = τ1, . . . , τn
loc−−→ τ

R′ = ((rj 7→ 0)j≤loc , rloc+1 7→ `, (rloc+1+k 7→ ΣJr′kK)
k≤n)

α′′ = 〈c′,m′, 0 · (ΣJr′kK)
k≤n · st∗ ·R′〉 :: α+

Σ,invoke ro m
′ r′1, . . . , r

′
n ⇓ Σ[α 7→ α′′]

(R-NEWINTENT)
i = {|@c′; ·|} ` = pc,m,pc /∈ dom(H)
H ′ = H[` 7→ i] R′ = R[rd 7→ `]

Σ,newintent rd c
′ ⇓ Σ+[H 7→ H ′, R 7→ R′]

(R-PUTEXTRA)
` = ΣJriK i = H(`) k = ΣJrkK
v = ΣJrvK H ′ = H[` 7→ i[k 7→ v]]

Σ,put-extra ri rk rv ⇓ Σ+[H 7→ H ′]

(R-GETEXTRA)
` = ΣJriK

k = ΣJrkK H(`) = i typeH(i.k) ≤ τ
v = i.k R′ = R[rret 7→ v]

Σ,get-extra ri rk τ ⇓ Σ+[R 7→ R′]

(R-STARTACT)
` = ΣJriK H(`) = i π′ = i :: π

Σ,start-activity ri ⇓ Σ+[π 7→ π′]

Convention: in all the rules, let Σ = · α · π ·H · S with α = 〈c,m, pc · · · R〉 :: α0. We let Σ+ (resp. α+) stand for Σ (resp. α)
where pc is replaced by pc + 1.

First, we extend the semantic domains specification from Table 3 and the corresponding abstract domains specification
from Table 6:

Taints h ::= secret | public
Values u, v ::= primh | ` Abs. values û, v̂ ::= ∅ | {p̂rim

h
} | {λ} | v̂ ∪ v̂

We introduce a definition of taint h that ranges over public and secret values forming two-valued lattice with secret as the
top element. Plus, primitive values prim and their abstractions are extended with a taint annotation.

Second, we define a taint function } that extracts taints from values and its abstract version }̂ as follows:

}(v) =

if v = ` ∧H(`) = {|c; (f 7→ vi)

∗|}⊔
i }(vi) if v = ` ∧H(`) = τ [v∗i]

if v = ` ∧H(`) = {|@c; (k 7→ vi)
∗|}

h if v = primh

}̂(v̂) =

⊔
i }̂(v̂i) if v̂ = {λ} ∧ H(λ, {|c; (f 7→ v̂i)

∗|})
}̂(v̂i) if v̂ = {λ} ∧ H(λ, τ [v̂i])

}̂(v̂i) if v̂ = {λ} ∧ H(λ, {|@c; v̂i|})
h if v̂ = {p̂rim

h
}

}̂(v̂i) t }̂(v̂j) if v̂ = v̂i ∪ v̂j
public if v̂ = ∅

The taint function } returns taint annotations for primitive values. In case of a pointer it returns a join of taints that can be
accessed by the pointer. The abstract taint function }̂ is defined in a similar way, with extensions for the empty set, which
is public and the union of two abstract values, for which we have again the join of the taints.

The specification of the taint propagation logic for the value amounts to changing the binary and unary operations for
both concrete and abstract semantics as follows:

vd = v1 ⊕ v2 }(vd) = }(v1) t }(v2) }̂(v̂d) = }̂(v̂1) t }̂(v̂2)

vd = �vs }(vd) = }(vs) }̂(v̂d) = }̂(v̂s)

In case of a binary operation the taint value of the destination register is raised to the highest taint among the values of the
registers used in the operation. The result of a unary operation has the same taint as the source.

Also we assume to have two sets of pairs Sinks and Sources, that contain a pair (c, m), if a method m of a class c is a
sink/source respectively We assume that when a source return a value, it always has secret taint.
Definition 7. Let Ψ be the initial configuration of a program P , we say that P leaks starting from Ψ if and only if there exists

(c,m) ∈ Sinks such that Ψ⇒∗ Ω·H ·S and Ω contains an active frame 〈`, s, π, α〉 such that α = 〈c,m, 0· ·st∗ ·R〉 :: α′,
R(rk) = v and }(v) = secret for some rk and some v.

Lemma 1. If for all sinks (c,m) ∈ Sinks : (|P |)∪ βCnf(Ψ) ` Rc,m,0(; v̂∗) we have }̂(v̂i) = public for each i, then program
P does not leak starting from Ψ.

Proof: We prove the contrapositive. Assume that a program P satisfies Definition 7, then there exists a configuration
Ψ′, starting from Ψ, where one of the registers rk in a sink (c,m) contains a secret value. By Theorem 2 there exists
∆ :> βCnf(Ψ

′) such that (|P |) ∪ βCnf(Ψ) ` ∆. The relation ∆ :> βCnf(Ψ
′) can only hold if Rc,m,0(; v̂∗) ∈ ∆ and

}̂(v̂k) = secret.

1. Representation Functions

We presuppose the existence of a representation function βPrim which associates to each primitive value prim a
corresponding abstract value {p̂rim}. For a location ` = pλ, we let βLoc(`) = {λ}. Based on this, we define βVal(v)
as follows:

βVal(v) =

{
βPrim(v) if v = prim

βLoc(v) if v = `

We typically omit brackets around singleton abstract values. We then define βBlk(b) as follows:

βBlk(b) =

{|c; (f 7→ v̂)∗|} if b = {|c; (f 7→ v)∗|} and ∀i : βVal(vi) = v̂i
{|@c; v̂|} if b = {|@c; (f 7→ v)∗|} and v̂ = ti βVal(vi)

τ [v̂] if b = τ [v∗] and v̂ = ti βVal(vi)

Using these definitions, we can define how configurations are translated into facts by a corresponding representation function.
This requires one to define a number of clauses, summarized below:

βLst(〈c,m, pc · u∗ · st∗ ·R〉) = {Rc,m,pc(û∗ ; v̂∗) | ∀j : ûj = βVal(uj) ∧ ∀k : v̂k = βVal(R(rk))} ∪
⋃
i (|st i|)c,m,i

βCall(α) =
⋃
i∈[1,n] βLst(Li) whenever α = L1 :: . . . :: Ln

βHeap(H) = {H(λ, b̂) | H = H ′, ` 7→ b ∧ λ = βLoc(`) ∧ b̂ = βBlk(b)}
βStat(S) = {S(c, f, v̂) | S = S′, c.f 7→ v ∧ v̂ = βVal(v)}
β`Pact(π) = {I(c, b̂) | c = βLoc(`) ∧ π = π0 :: i :: π1 ∧ b̂ = βBlk(i)}
βLcnf(` · α · π ·H · S) = βCall(α) ∪ β`Pact(π) ∪ βHeap(H) ∪ βStat(S)
βFrm(〈`, s, π, α〉) = βFrm(〈`, s, π, α〉) = β`Pact(π) ∪ βCall(α)
βStk(Ω) =

⋃
i∈[1,n] βFrm(ϕi) whenever Ω = ϕ1 :: . . . :: ϕn

βCnf(Ω ·H · S) = βStk(Ω) ∪ βHeap(H) ∪ βStat(S)

2. Ordering Abstract Values and Facts

We presuppose the existence of a pre-order vPrim on primitive singleton abstract values. Based on this, we define a
pre-order vVal on abstract values by having û vVal v̂ iff:

• ∀p̂rim ∈ û : ∃p̂rim
′
∈ v̂ : p̂rim vPrim p̂rim

′
;

• ∀λ ∈ û : λ ∈ v̂.

We then build a pre-order vSeq on sequences of abstract values by having û∗ vSeq v̂
∗ iff û∗ and v̂∗ have the same length

and:

∀i : ûi vVal v̂i.

We can then define a pre-order vBlk on abstract blocks as follows:

• if b̂ = {|c; (f 7→ û)∗|} and b̂′ = {|c; (f 7→ v̂)∗|} and û∗ vSeq v̂
∗, then b̂ vBlk b̂

′;
• if b̂ = {|@c; û|} and b̂′ = {|@c; v̂|} and û vVal v̂, then b̂ vBlk b̂

′;
• if b̂ = τ [û] and b̂′ = τ [v̂] and û vVal v̂, then b̂ vBlk b̂

′.

Finally, we let f v f ′ be the least pre-order on facts such that:

• Rc,m,pc(û∗call ; û
∗) v Rc,m,pc(v̂∗call ; v̂

∗) whenever û∗call vSeq v̂
∗
call and û∗ vSeq v̂

∗;
• H(λ, b̂) v H(λ, b̂′) whenever b̂ vBlk b̂

′;
• S(c, f, û) v S(c, f, v̂) whenever û vVal v̂;
• RHSpp(û) v RHSpp(v̂) whenever û vVal v̂;
• Resc,m(û∗call ; û

∗) v Resc,m(v̂∗call ; v̂
∗) whenever û∗call vSeq v̂

∗
call and û∗ vSeq v̂

∗;
• I(c, b̂) v I(c, b̂′) whenever b̂ vBlk b̂

′.

3. Formal Results

3.1. Preliminaries.
Definition 8. A local configuration Σ = ` ·α ·π ·H ·S is well-formed if and only if, whenever α = L1 :: . . . :: Ln, we have:

• either n ∈ {0, 1}, i.e., α is either empty or it contains just a single local state;
• or n ≥ 2 and for each i ∈ [2, n], either of the following conditions hold true:

– Li = 〈c′,m′, pc′ · v∗ · st ′∗ ·R′〉 and Li−1 = 〈c,m, pc · · st∗ ·R〉 with stpc = invoke ro m′ r′1, . . . , r
′
n,

lookup(typeH(ΣJroK),m′) = (c′, st ′∗), sign(c′,m′) = τ1, . . . , τn
loc−−→ τ and v∗ = (ΣJr′kK)

k≤n

– Li = 〈c′,m′, pc′ · v∗ · st ′∗ ·R′〉 and Li−1 = 〈c,m, pc · · st∗ ·R〉 with stpc = sinvoke c′ m′ r′1, . . . , r
′
n,

lookup(c′,m′) = (c′, st ′∗), sign(c′,m′) = τ1, . . . , τn
loc−−→ τ and v∗ = (ΣJr′kK)

k≤n.

Lemma 2 (Preserving Local Well-formation). If Σ is well-formed and Σ ∗ Σ′, then Σ′ is well-formed.

Proof: By induction on the length of the reduction sequence and a case analysis on the last rule applied.
Definition 9. A heap H is well-typed if and only if, whenever H(`) = {|c; (fi 7→ vi)

i≤n|}, for all i ∈ [1, n] we have
typeH(vi) ≤ τi, where τi is the declared type of field fi for an object of type c according to the underlying program.

Assumption 1 (Java Type Soundness). If `·α·π·H ·S `·α′ ·π′ ·H ′ ·S′, then for any value v we have typeH′(v) ≤ typeH(v).
Moreover, if H is well-typed, then also H ′ is well-typed.

Definition 10. A configuration Ψ = Ω ·H · S is well-formed if and only if:

• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ {〈`, s, π, α〉, 〈`, s, π, α〉}, we have H(`) = {|c; (f 7→ v)∗|} for some activity
class c and ` = pc for some pointer p;

• whenever Ω = Ω0 :: ϕ :: Ω1 with ϕ ∈ {〈`, s, π, α〉, 〈`, s, π, α〉}, we have that Σ = ` · α · π ·H · S is a well-formed
local configuration;

• H is a well-typed heap.

Lemma 3 (Preserving Well-formation). If Ψ is well-formed and Ψ⇒∗ Ψ′, then Ψ′ is well-formed.

Proof: By induction on the length of the reduction sequence and a case analysis on the last rule applied, using
Lemma 2 and Assumption 1 to deal with case (A-ACTIVE).
From now on, we tacitly focus only on well-formed configurations. All the formal results only apply to them: notice that
well-formed configurations always reduce to well-formed configurations by Lemma 3.

3.2. Main Results.
Lemma 4. If ∆ ⊆ ∆′, then ∆ <: ∆′.

Lemma 5. If ∆ <: ∆′ and ∆′ <: ∆′′, then ∆ <: ∆′′.

Lemma 6. If ∆1 <: ∆2 and ∆3 <: ∆4, then ∆1 ∪∆3 <: ∆2 ∪∆4.

Assumption 2 (Soundness of the Abstract Operations). We assume all the following properties:

• if u4 v, then û 4̂ v̂ for any û, v̂ such that û :> βVal(u) and v̂ :> βVal(v)
• for any v̂ :> βVal(v), we have �̂v̂ :> βVal(�v)
• for any û, v̂ such that û :> βVal(u) and v̂ :> βVal(v), we have û ⊕̂ v̂ :> βVal(u⊕ v)

Assumption 3 (Overriding). If lookup(c,m) = (c′, st∗), then c ≤ c′.
In the next results, let ∆ ` ∆′ whenever ∆ ` f for each f ∈ ∆′.

Lemma 7 (Right-hand Sides). Let Σ = ` · α · π · H · S with α = 〈pp · u∗ · st∗ · R〉 and let ΣJrhsK = v, then for any
∆ :> βLcnf(Σ) there exists v̂ such that βVal(v) vVal v̂ and ∆ ∪ 〈〈rhs〉〉pp ` RHSpp(v̂).

Proof: By a case analysis on the structure of rhs .
Lemma 8 (Local Preservation). If Σ Σ′ under a given program P , then for any ∆ :> βLcnf(Σ) there exists ∆′ :> βLcnf(Σ

′)
such that (|P |) ∪∆ ` ∆′.

Proof: (Sketch) By a case analysis on the rule applied in the reduction step. The cases for the move instruction use
Lemma 7. The case for the return instruction exploits the (implicit) well-formation assumption of the local configuration
Σ. The case for the invoke instruction uses Assumption 3. The cases for comparison operators and primitive operations
exploit Assumption 2.
Lemma 9 (Serialization). Both the following statements hold true:

• if serHVal(v) = (v′, H ′), then βVal(v) = βVal(v
′)

• if serHBlk(b) = (b′, H ′), then βBlk(b) = βBlk(b
′)

Proof: If v = prim , then v′ = prim and βVal(v) = βVal(v
′) = βPrim(prim). If v = pλ, then v′ = p′λ for some pointer

p′ and βVal(v) = βLoc(pλ) = λ = βLoc(p
′
λ) = βVal(v

′). The second point is a direct consequence of the first one.
Definition 11. We define a function sizeH which assigns to values and blocks a natural number as follows:

• Γ ` sizeH(prim) = 1
• ` /∈ Γ; Γ, ` ` sizeH(`) = 1 + sizeH(H(`))
• ` ∈ Γ; Γ, ` ` sizeH(`) = 0
• Γ ` sizeH({|c; (fi 7→ vi)

∗|}) = 1 +
∑

i sizeH(vi)
• Γ ` sizeH({|@c; (ki 7→ vi)

∗|}) = 1 +
∑

i sizeH(vi)
• Γ ` sizeH(τ [v∗]) = 1 +

∑
i sizeH(vi)

Lemma 10 (Heap Serialization). If ∆ :> βHeap(H), then:

• serHVal(v) = (v′, H ′) implies ∆ :> βHeap(H ′)
• serHBlk(b) = (b′, H ′) implies ∆ :> βHeap(H ′)

Proof: By simultaneous induction on the size of the syntactic element in the antecedent. If v = prim , then H ′ is
empty, hence βHeap(H ′) = ∅ and we are done. If v = pλ, then H ′ = H ′′, p′λ 7→ b with serHBlk(H(pλ)) = (b,H ′′) and
v′ = p′λ. By induction hypothesis ∆ :> βHeap(H ′′), so to conclude we just need to show that:

∆ :> βHeap(p′λ 7→ b)
= {H(λ, βBlk(b))} by definition
= {H(λ, βBlk(H(pλ)))} by Lemma 9
= βHeap(pλ 7→ H(pλ)) by definition

but this follows from the hypothesis ∆ :> βHeap(H). The remaining cases for blocks follow by inductive hypothesis.
Theorem 2 (Preservation). If Ψ⇒∗ Ψ′ under a given program P , then there exists ∆ :> βCnf(Ψ

′) such that (|P |)∪βCnf(Ψ) `
∆.

Proof: By induction on the length of the reduction sequence. If the reduction sequence is empty, we have Ψ′ = Ψ
and the result follows by picking ∆ = βCnf(Ψ). Otherwise, assume that Ψ ⇒∗ Ω ·H · S in n ≥ 0 reduction steps and let
Ω ·H ·S ⇒ Ω′ ·H ′ ·S′. By induction hypothesis there exists ∆′ :> βCnf(Ω ·H ·S) such that (|P |)∪βCnf(Ψ) ` ∆′, we show
that there exists ∆ such that ∆ :> βCnf(Ω

′ ·H ′ · S′) and (|P |) ∪ βCnf(Ψ) ` ∆. The proof is by a case analysis on the rule
applied in the last reduction step:

(A-ACTIVE) : let Ω = Ω0 :: 〈`, s, π, α〉 :: Ω1 and Ω′ = Ω0 :: 〈`, s, π′, α′〉 :: Ω1 with ` · α · π · H · S ` · α′ · π′ · H ′ · S′.
Since βLcnf(` · α · π · H · S) ⊆ βCnf(Ω · H · S), we have βLcnf(` · α · π · H · S) <: βCnf(Ω · H · S) by Lemma 4.
Since βLcnf(` · α · π · H · S) <: βCnf(Ω · H · S) and βCnf(Ω · H · S) <: ∆′, we get βLcnf(` · α · π · H · S) <: ∆′

by Lemma 5. Hence, by Lemma 8 there exists ∆′′ :> βLcnf(` · α′ · π′ ·H ′ · S′) such that (|P |) ∪∆′ ` ∆′′. By the
weakening property of the logic, the latter implies (|P |) ∪ βCnf(Ψ) ∪∆′ ` ∆′′. Since we have (|P |) ∪ βCnf(Ψ) ` ∆′

and (|P |) ∪ βCnf(Ψ) ∪∆′ ` ∆′′, we get (|P |) ∪ βCnf(Ψ) ` ∆′′ by the admissibility of the cut rule. Recall now that
∆′′ :> βLcnf(` · α′ · π′ ·H ′ · S′) = βCall(α

′) ∪ β`Pact(π
′) ∪ βHeap(H ′) ∪ βStat(S

′), so we have:

(1) ∆′′ :> βCall(α
′)

(2) ∆′′ :> β`Pact(π
′)

(3) ∆′′ :> βHeap(H ′)
(4) ∆′′ :> βStat(S

′)

We then observe that (|P |) ∪ βCnf(Ψ) ` ∆′ :> βCnf(Ω ·H · S), which similarly implies:

(5) ∆′ :> βStk(Ω0)
(6) ∆′ :> βStk(Ω1)

Combining all these facts, we get ∆′ ∪∆′′ :> βCnf(Ω
′ ·H ′ ·S′) by Lemma 6. Given that (|P |)∪ βCnf(Ψ) ` ∆′ ∪∆′′,

we conclude the case;
(A-DEACTIVATE) : in this case βCnf(Ω · H · S) = βCnf(Ω

′ · H ′ · S′), hence the conclusion immediately follows by the induction
hypothesis;

(A-STEP) : let Ω = 〈`, s, π, α〉 :: Ω0 and Ω′ = 〈`, s′, π, α`.s′〉 :: Ω0 for some (s, s′) ∈ Lifecycle, H ′ = H and S′ = S. Since
(|P |) ∪ βCnf(Ψ) ` ∆′ :> βCnf(Ω ·H · S), we have:

(1) ∆′ :> βStk(Ω0)
(2) ∆′ :> β`Pact(π)

Since we only focus on well-formed configurations, we have H(`) = {|c; (f 7→ u)∗|} for some activity class c and
` = pc for some pointer p. We then observe that α`.s′ = 〈c′,m, 0 · v∗ · st∗ ·R〉 :: ε, where (c′, st∗) = lookup(c,m)

for some m ∈ cb(c, s), sign(c′,m) = τ1, . . . , τn
loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ `, (rloc+1+j 7→ vj)
j≤n),

for some values v1, . . . , vn of the correct type τ1, . . . , τn. By Assumption 3, we also have c ≤ c′.
Given that ∆′ :> βCnf(Ω · H · S), we have ∆′ :> βHeap(H), which implies that there exists H(λ, b̂) ∈ ∆′ such
that λ = βLoc(`) = c and b̂ w βBlk({|c; (f 7→ u)∗|}). This implies that b̂ = {|c; (f 7→ v̂)∗|} for some v∗ such that
∀i : v̂i w βVal(ui). Since (|P |) ∪ βCnf(Ψ) ` ∆′ and H(λ, b̂) = H(c, {|c; (f 7→ v̂)∗|}) ∈ ∆′, we have in particular
(|P |) ∪ βCnf(Ψ) ` H(c, {|c; (f 7→ v̂)∗|}), hence:

(|P |) ∪ βCnf(Ψ) ` Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n),

by using the implications Cbk included in (|P |). We then observe that:

{Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} :> βCall(α`.s′)

By combining (1), (2) and the last observation through Lemma 6 we then get:

{Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} ∪∆′ :> βCall(α`.s′) ∪ βStk(Ω0) ∪ β`Pact(π) = βStk(Ω
′)

Since (|P |) ∪ βCnf(Ψ) ` {Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} ∪∆′, we conclude the case;
(A-DESTROY) : in this case βCnf(Ω

′ ·H ′ · S′) ⊆ βCnf(Ω ·H · S), hence βCnf(Ω
′ ·H ′ · S′) <: βCnf(Ω ·H · S) by Lemma 4. Since

βCnf(Ω
′ ·H ′ ·S′) <: βCnf(Ω ·H ·S) and βCnf(Ω ·H ·S) <: ∆′, we have βCnf(Ω

′ ·H ′ ·S′) <: ∆′ by Lemma 5. Given
that (|P |) ∪ βCnf(Ψ) ` ∆′, we conclude the case;

(A-BACK) : let Ω′ = Ω = 〈`, running, ε, α〉 :: Ω0, H ′ = H[` 7→ H(`)[finished 7→ true]] and S′ = S. Let b = H(`). Since we
only focus on well-formed configurations, we have b = {|c; (f 7→ u)∗, finished 7→ v|} for some activity class c and
some boolean value v. Let then b′ = H ′(`) = {|c; (f 7→ u)∗, finished 7→ true|} according to the reduction rule.
Given that ∆′ :> βCnf(Ω · H · S), we have ∆′ :> βHeap(H), which implies that there exists H(λ, b̂) ∈ ∆′ such
that λ = βLoc(`) and b̂ w βBlk(b). This means that b̂ = {|c; (f 7→ û)∗, finished 7→ v̂|} for some u∗, v such that
∀i : ûi w βVal(u) and v̂ w βVal(v). We then observe that:

βBlk(b
′) = {|c; (f 7→ βVal(u))∗, finished 7→ t̂rue|}

Since (|P |) ∪ βCnf(Ψ) ` ∆′ and H(λ, b̂) ∈ ∆′, we have in particular (|P |) ∪ βCnf(Ψ) ` H(λ, b̂), hence:

(|P |) ∪ βCnf(Ψ) ` H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|}),

by using the implication Fin included in (|P |). We then observe that:

H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|}) w H(λ, {|c; (f 7→ û)∗, finished 7→ t̂rue|})
= H(βLoc(`), {|c; (f 7→ û)∗, finished 7→ t̂rue|})
w H(βLoc(`), βBlk(b

′))

Hence, (|P |)∪βCnf(Ψ) ` ∆′∪{H(λ, {|c; (f 7→ û)∗, finished 7→ >bool|})} :> βHeap(H ′), which is enough to conclude
the case;

(A-REPLACE) : let Ω = 〈`, onDestroy, π, α〉 :: Ω0 and Ω′ = 〈pc, constructor, π, αpc.constructor〉 :: Ω0 with H(`) = {|c; (f 7→
v)∗, finished 7→ u|}, H ′ = H, pc 7→ o with o = {|c; (f 7→ 0τ)∗, finished 7→ false|}, and S′ = S. Since we only
focus on well-formed configurations, we know that c is an activity class and ` = p′c for some pointer p′.
Given that (|P |) ∪ βCnf(Ψ) ` ∆′ :> βCnf(Ω ·H · S), we have:

(1) ∆′ :> β`Pact(π)
(2) ∆′ :> βStk(Ω0)

Since βLoc(`) = βLoc(p
′
c) = βLoc(pc), from (1) we get:

(3) ∆′ :> βpcPact(π)

We then observe that αpc.constructor = 〈c′,m, 0 · v∗ · st∗ · R〉 :: ε, where (c′, st∗) = lookup(c, constructor),
sign(c′, constructor) = τ1, . . . , τn

loc−−→ τ and:

R = ((ri 7→ 0)i≤loc , rloc+1 7→ pc, (rloc+1+j 7→ v′j)
j≤n),

for some values v′1, . . . , v
′
n of the correct type τ1, . . . , τn. By Assumption 3, we also have c ≤ c′.

Given that ∆′ :> βCnf(Ω · H · S), we have ∆′ :> βHeap(H), which implies that there exists H(λ, b̂) ∈ ∆′ such
that λ = βLoc(`) = c and b̂ w βBlk(H(`)). This implies that b̂ = {|c; (f 7→ v̂)∗, finished 7→ û|} for some v̂∗, û
such that ∀i : v̂i w βVal(vi) and û w βVal(u). Since (|P |) ∪ βCnf(Ψ) ` ∆′ and H(λ, b̂) ∈ ∆′, we have in particular
(|P |) ∪ βCnf(Ψ) ` H(λ, b̂) = H(c, {|c; (f 7→ v̂)∗, finished 7→ û|}), hence:

(|P |) ∪ βCnf(Ψ) ` Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n),

by using the implications Cbk included in (|P |). We then observe that:

{Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} :> βCall(αpc.constructor)

By combining (2), (3) and the last observation through Lemma 6 we then get:

{Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} ∪∆′ :> βCall(αpc.constructor) ∪ βStk(Ω0) ∪ βpcPact(π) = βStk(Ω
′)

Since (|P |) ∪ βCnf(Ψ) ` {Rc′,m,0((>τj)j≤n ; (0̂)k≤loc , c, (>τj)j≤n)} ∪∆′, we proved that the change to the activity
stack is correctly over-approximated.
To conclude, we need to deal with the change to the heap. We first observe that (|P |)∪βCnf(Ψ) ` ∆′ :> βCnf(Ω·H ·S)
and βCnf(Ω ·H · S) :> βHeap(H), hence:

(4) ∆′ :> βHeap(H)

Since (|P |) ∪ βCnf(Ψ) ` H(λ, b̂) = H(c, {|c; (f 7→ v̂)∗, finished 7→ û|}), we have5:

(|P |) ∪ βCnf(Ψ) ` H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse|})),
by using the implication Rep. We then observe that:

{H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse|}))} :> βHeap(pc 7→ o).

By combining (4) with the latter observation by Lemma 6, we get:

∆′ ∪ {H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse|}))} :> βHeap(H ′)

Since (|P |) ∪ βCnf(Ψ) ` ∆′ ∪ {H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse|}))}, we proved that also the change to the
heap is over-approximated correctly;

(A-HIDDEN) : analogous to case (A-STEP);
(A-START) : let Ω = 〈`, s, i :: π, α〉 :: Ω0 and Ω′ = 〈pc, constructor, ε, αpc.constructor〉 :: 〈`, s, π, α〉 :: Ω0 with i = {|@c; (k 7→

v)∗|}. Also, let S′ = S and H ′ = H,H ′′, pc 7→ o, p′in(c) 7→ i′ with serHBlk(i) = (i′, H ′′) and o = {|c; (f 7→
0τ)∗, finished 7→ false, intent 7→ p′in(c), parent 7→ `|}. Since we only focus on well-formed configurations, we know
that ` = p′c′ for some pointer p′ and some activity class c′.
Given that (|P |) ∪ βCnf(Ψ) ` ∆′ :> βCnf(Ω · H · S), we have ∆′ :> β`Pact(i :: π), which implies that there exists
I(λ, b̂) ∈ ∆′ such that λ = βLoc(`) = c′ and b̂ w βBlk(i). This implies that b̂ = {|@c; v̂|} for some v̂ such that
v̂ w ti βVal(vi). We then have:

(|P |) ∪ βCnf(Ψ) ` H(in(c), {|@c; v̂|}),
and:

(|P |) ∪ βCnf(Ψ) ` H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse, parent 7→ c′, intent 7→ in(c)|}),
by using the implications Act included in (|P |). Using the latter fact and the implications Cbk, we can prove that
the change to the activity stack is over-approximated correctly, similarly to what we did in case (A-REPLACE): we
omit details.
We focus instead on the changes to the heap. Since ∆′ :> βHeap(H) and serHBlk(i) = (i′, H ′′), we know that
∆′ :> βHeap(H ′′) by Lemma 10. We then observe that:

{H(c, {|c; (f 7→ 0̂τ)∗, finished 7→ f̂alse, parent 7→ c′, intent 7→ in(c)|})} = βHeap(pc 7→ o)

Finally, we notice that:

{H(in(c), {|@c; v̂|})} :> {H(in(c), βBlk(i)} since b̂ = {|@c; v̂|}) w βBlk(i)
= βHeap(p′in(c) 7→ i) by definition
= βHeap(p′in(c) 7→ i′) by Lemma 9

5. We assume here that boolean fields are initialized to false. The proof can be adapted to the case where they are initialized to true by using the
implication in rule Fin.

By combining all these observations, we prove that the new heap is over-approximated correctly;
(A-SWAP) : in this case βCnf(Ω · H · S) = βCnf(Ω

′ · H ′ · S′), hence the conclusion immediately follows by the induction
hypothesis;

(A-RESULT) : let:
Ω = 〈`′, onPause, ε, α′〉 :: 〈`, s, ε, α〉 :: Ω0,

and:
Ω′ = 〈`, s, ε, α`.onActivityResult〉 :: 〈`′, onPause, ε, α′〉 :: Ω0,

with H(`′).parent = `. Also, let S′ = S and H ′ = (H,H ′′)[` 7→ H(`)[result 7→ `′′]] with:

serHVal(H(`′).result) = (`′′, H ′′).

Since we focus only on well-formed configurations, we have ` = pc and `′ = p′c′ for some pointers p, p′ and
some activity classes c, c′. Also, let H(`) = {|c; (f 7→ v̂)∗|} and H(`′) = {|c′; (f ′ 7→ v̂′)∗, parent 7→ `|}. Since
H(`) = {|c; (f 7→ v̂)∗|}, to prove that the changes to the activity stack are correctly over-approximated we can
proceed like in case (A-STEP), using the implications in Cbk: we omit details.
We focus instead on the changes to the heap. Since ∆′ :> βCnf(Ω ·H · S), we have in particular:

(1) ∆′ :> βHeap(H)

By (1) and serHVal(H(`′).result) = (`′′, H ′′), using Lemma 10, we prove:

(2) ∆′ :> βHeap(H ′′)

Again by (1), there exists H(λ, b̂) ∈ ∆′ such that λ = βLoc(`) = c and b̂ w βBlk(H(`)). This implies that b̂ = {|c; (f 7→
v̂)∗|} for some v̂∗ s.t. ∀i : v̂i w βVal(vi). Similarly, we show that there exists H(λ′, b̂′) ∈ ∆′ s.t. λ′ = βLoc(`

′) = c′ and
b̂′ w βBlk(H(`′)), and b̂′ = {|c′; (f ′ 7→ v̂′)∗, parent 7→ c, result 7→ λ′′|} for some v̂′∗, λ′′ such that ∀i : v̂′i w βVal(v

′
i)

and λ′′ = βLoc(H(`′).result). Hence, we have:

(|P |) ∪ βCnf(Ψ) ` H(c, {|c; (f 7→ v̂)∗|}) ∧ H(c′, {|c′; (f ′ 7→ v̂′)∗, parent 7→ c|}),

which allows us to prove:
(|P |) ∪ βCnf(Ψ) ` H(c, {|c; (f 7→ v̂)∗[result 7→ λ′′]|}),

by using the implication Res. We then observe that:

{H(c, {|c; (f 7→ v̂)∗[result 7→ λ′′]|})} :> βHeap(` 7→ H(`)[result 7→ H(`′).result]) by definition
= βHeap(` 7→ H(`)[result 7→ `′′]) by Lemma 9

Since H ′ = (H,H ′′)[` 7→ H(`)[result 7→ `′′]] = H[` 7→ H(`)[result 7→ `′′]], H ′′, by combining (1), (2) and the last
observation using Lemma 6, we conclude as follows:

(|P |) ∪ βCnf(Ψ) ` ∆′ ∪ {H(c, {|c; (f 7→ v̂)∗[result 7→ λ′′]|})} :> βHeap(H ′)

