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Abstract. Order-preserving encryption (OPE) is an encryption scheme
with the property that the ordering of the plaintexts carry over to the ci-
phertexts. This primitive is particularly useful in the setting of encrypted
databases because it enables efficient range queries over encrypted data.
Given its practicality and usefulness in the design of databases on en-
crypted data, OPE’s popularity is growing. Unfortunately, nearly all
computationally efficient OPE constructions are vulnerable against ci-
phertext frequency-leakage, which allows for inferring the underlying
plaintext frequency. To overcome this weakness, Kerschbaum recently
proposed a security model, designed a frequency-hiding OPE scheme,
and analyzed its security in the programmable random oracle model
(CCS 2015).
In this work, we demonstrate that Kerschbaum’s definition is imprecise
and using its natural interpretation, we describe an attack against his
scheme. We generalize our attack and show that his definition is, in fact,
not satisfiable. The basic idea of our impossibility result is to show that
any scheme satisfying his security notion is also IND-CPA-secure, which
contradicts the very nature of OPE. As a consequence, no such scheme
can exist. To complete the picture, we rule out the imprecision in the
security definition and show that a slight adaption of Kerschbaum’s tree-
based scheme fulfills it.

1 Introduction

Outsourcing databases is common practice in today’s businesses. The reasons
for that are manifold, varying from the sharing of data among different offices of
the same company to saving on know-how and costs that would be necessary to
maintain such systems locally. Outsourcing information, however, raises privacy
concerns with respect to the service provider hosting the data. A first step to-
wards a privacy-preserving solution is to outsource encrypted data and to let the
database application operate on ciphertexts. However, simply encrypting all en-
tries does in general not work because several standard queries on the database
do no longer work. To maintain as much functionality of the database as possible



while adding confidentiality properties, researchers weakened the security prop-
erties of encryption schemes to find a useful middle ground. Examples include
encryption schemes that support plaintext equality checks, or order-preserving
encryption. In this work, we re-visit the recent work on frequency-hiding order
preserving encryption by Kerschbaum [11] (CCS 2015).

Background and Related Work. Order-preserving encryption (OPE) [3, 20]
is arguably the most popular building block for databases on encrypted data,
since it allows for inferring the order of plaintexts by just looking at the re-
spective ciphertexts. More precisely, for any two plaintexts p1 and p2, whenever
p1 < p2, we have that E(p1) < E(p2). Hence, OPE allows for efficient range
queries and keyword search on the encrypted data. The popularity of this scheme
is vouched for by plenty of industrial products (e.g., Ciphercloud4, Perspecsys5,
and Skyhigh Networks6) and research that investigates OPE usage in differ-
ent scenarios [1, 2, 10, 13, 17, 18]. Despite the growing popularity and usage in
practice, OPE security is debatable. The ideal security notion for OPE is called
indistinguishability against ordered chosen plaintext attacks (IND-OCPA), which
intuitively says that two equally ordered plaintext sequences should be indistin-
guishable under encryption. Boldyreva et al. [3] show that stateless OPE cannot
achieve IND-OCPA, unless the ciphertext size is exponential in the plaintext
size. Consequently, either one has to relax the security notion or to keep a state.

The former approach has been explored in the context of classical OPE [3,
4, 21] as well as a slightly different notion called order-revealing encryption
(ORE) [5, 6, 14, 19]. ORE is more general than OPE in the sense that com-
parison on the ciphertexts can happen by computing a comparison function
different from “<”. Either way, those schemes do not achieve IND-OCPA but
target different, weaker security notions, which allow them to quantify the leak-
age incurred by a scheme or to restrict the attacker’s capabilities. For instance,
the scheme by Boldyreva et al. [3] is known to leak about the first half of the
plaintexts and the scheme by Chenette et al. [6] leaks the first bit where two
encrypted target plaintexts differ. To date, there exist several works that exploit
this extra leakage in order to break OPE applied to different data sets such as
medical data and census data [7–9, 15]. For instance, using a technique based
on bipartite graphs, Grubbs et al. [9] have recently shown how to break the
schemes of Boldyreva et al. [3, 4], thereby achieving recovery rates of up to
98%. As opposed to earlier work, this technique works even for large plaintext
domains such as first names, last names, and even zip codes.

With regards to the latter approach based on stateful OPE schemes, Popa et
al. [16] introduced a client-server architecture, where the client encrypts plain-
texts using a deterministic encryption scheme and maintains a search tree on the
server into which it inserts the ciphertexts. The server exploits the search tree
when computing queries on encrypted data. This approach requires a significant
amount of communication between the client and the server both for encryp-

4 http://www.ciphercloud.com/
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tion and queries. Similarly, but rather reversed, Kerschbaum and Schroepfer [12]
present an OPE scheme where the client stores a search tree that maps plaintexts
to ciphertexts. The ciphertexts are chosen such that ordering is preserved and
then inserted along with the plaintexts in the search tree. The server only learns
the ciphertexts. This approach has less communication between client and server
but requires the client to keep a state that is linear in the number of encrypted
plaintexts. Both of these schemes are provably IND-OCPA-secure.

Even though these schemes achieve the ideal IND-OCPA security notion,
Kerschbaum [11] raises general doubts about the security definition of OPE.
Aside the leakage that is introduced by many schemes on top of the order infor-
mation (e.g., leaking half of the plaintext [3] or the first bit where two plaintexts
differ [6]), one central problem of OPE is the leakage of the plaintext frequency. It
is easy to distinguish the encryption of data collections in which elements occur
with different frequencies. For instance, the encryption of the sequences 1, 2, 3, 4
and 1, 1, 2, 2 are not necessarily indistinguishable according to the IND-OCPA
security definition.

In order to solve the frequency-leakage problem, Kerschbaum has recently
strengthened the IND-OCPA definition of OPE so as to further hide the fre-
quency of plaintexts under the encryption, thus making the encryptions of the
above two sequences indistinguishable [11] (CCS 2015). To this end, Kerschbaum
introduces the notion of randomized order, which is a permutation of the se-
quence 1, . . . , n where n is the length of the challenge plaintext sequence. Such
a permutation is called randomized order if, when applied to a plaintext se-
quence, the resulting plaintext sequence is ordered with respect to “≤”. The
original IND-OCPA security definition requires that the two challenge plaintext
sequences agree on all such common randomized orders, which implies that every
pair of corresponding plaintexts in the two sequences occurs with the same fre-
quency. For instance, this does not hold for the above two sequences 1, 2, 3, 4 and
1, 1, 2, 2, since the former can only be ordered using the permutation (1, 2, 3, 4)
while the latter can be ordered by any of (1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), or
(2, 1, 4, 3). Kerschbaum’s insight to make the definition frequency-hiding is that
the existence of one common randomized order should be sufficient in order not
to be able to distinguish them. For instance, the above sequences both share
the randomized order (1, 2, 3, 4) and should thus be indistinguishable when en-
crypted. This intuition is captured by the security notion of indistinguishability
against frequency-analyzing ordered chosen plaintext attacks (IND-FA-OCPA).
Besides devising a novel definition, Kerschbaum also presents a cryptographic
instantiation of an OPE scheme and analyzes its security with respect to the
new definition in the programmable random oracle model.

Despite the seeming improvement added by Kerschbaum’s scheme, Grubbs et
al. [9] show that using auxiliary information, such as the plaintext distribution
that is likely to underlie a certain ciphertext collection, this scheme can be
broken with significant recovery rates. In contrast to the practical attacks in [9],
our work targets the purely theoretic side of frequency-hiding OPE and we do
not consider having auxiliary information at disposal.



Our Contributions. In this work, we present both negative and positive re-
sults for frequency-hiding order-preserving encryption. On the negative side, we
observe that the original definition of IND-FA-OCPA is imprecise [11], which
leaves room for interpretation. In particular, the security proof for the scheme
presented in [11] seems to suggest that the game challenger chooses a random-
ized order according to which one of the challenge sequences is encrypted. This
fact, however, is not reflected in the definition. Hence, according to a natural
interpretation of the definition, we show that it is, in fact, not achievable. We
develop this impossibility result for the natural interpretation of IND-FA-OCPA
step by step. Investigating on Kerschbaum’s frequency-hiding scheme [11], we
show that it can actually be attacked–without using auxiliary information as
done by Grubbs et al. [9]–allowing an adversary to win the IND-FA-OCPA
game with very high probability. We further observe that this concrete attack
can be generalized into a result that allows us to precisely quantify an attacker’s
advantage in winning the security game for two arbitrary plaintext sequences
that adhere to the security game restrictions. Since Kerschbaum provides formal
security claims for his construction [11], we identify where the security proof
is incorrect. All these considerations on the concrete scheme finally lead to our
main negative result: IND-FA-OCPA security is impossible to achieve or, more
precisely, any IND-FA-OCPA secure OPE scheme is also secure with respect to
IND-CPA, which clearly contradicts the very functionality of OPE. Hence, such
an OPE scheme cannot exist.

As mentioned above, the impossibility of IND-FA-OCPA is bound to an im-
precision in the definition in [11], which is only presented informally and lacks
necessary information to make it achievable. We hence clarify those impreci-
sions. The underlying problem of the original definition lies in the capability
of the game challenger, which, when reading the definition naturally, is very re-
stricted. The challenger has, for instance, no means to ensure that the encryption
algorithm chooses a common randomized order of the two challenge plaintext se-
quences. To remedy those shortcomings, we devise a more formal definition that
removes the consisting imprecisions and makes it possible to devise a frequency-
hiding OPE scheme. In particular, we first augment the OPE model, allowing for
specifying a concrete ordering when encrypting plaintexts, e.g., to concretely say
that the sequence 1, 1, 2, 2 should be encrypted sticking to the randomized order
(1, 2, 4, 3). Secondly, we show that an extension of Kerschbaum’s scheme [11],
adapted to the new model, is provably secure with respect to the correct defini-
tion.

To summarize, our contributions are as follows.

– We show that the original definition of IND-FA-OCPA is imprecise. We then
demonstrate that the frequency-hiding OPE scheme of [11] is insecure under
a natural interpretation of IND-FA-OCPA. We further generalize the attack,
which allows us to rigorously quantify the success probability of an attacker
for two arbitrary plaintext sequences. To conclude on the concrete scheme,
we identify and explain the problem in the security proof.



– Going one step beyond the concrete scheme, we prove a general impossibility
result showing that IND-FA-OCPA cannot be achieved by any OPE scheme.

– We clarify the imprecise points in the original security definition and provide
a corrected version called IND-FA-OCPA∗.

– To define IND-FA-OCPA∗ in the first place, we have to augment the OPE
model, adding a concrete random order as input to the encryption function.

– Finally, we prove that an extension of [11] fulfills our new definition.

Overall, we believe this work yields a solid foundation for order-preserving
encryption, showing that a state-of-the-art security definition is impossible to
realize along with an attack on a previously published scheme, and presenting
an achievable definition and a concrete realization.

Outline. The rest of the paper is structured as follows. We recall the OPE model
and its security definitions in Section 2. In Section 3 we describe the relevant
parts of Kerschbaum’s scheme [11]. We present our attack, its generalization, and
the problem in the security proof in Section 4. Section 5 proves the impossibility
result. In Section 6 we present the augmented OPE model and the definition of
IND-FA-OCPA∗. We show that an adaption of [11] to the new model achieves
IND-FA-OCPA∗ in Section 7. Finally, we conclude this work in Section 8.

2 Order-Preserving Encryption

In this section, we briefly review the formal definitions of order-preserving en-
cryption, originally proposed in [20], following the definition adopted in [11].

Definition 1 ((Order-Preserving) Encryption). An (order-preserving) en-
cryption scheme OPE = (K,E,D) is a tuple of ppt algorithms where S ← K(κ) .

The key generation algorithm takes as input a security parameter κ and outputs
a secret key (or state) S.

(S′, y)← E(S, x). The encryption algorithm takes as input a secret key S and a
message x. It outputs a new key S′ and a ciphertext y;

x ← D(S, y). The decryption algorithm takes as input a secret key S and a
ciphertext y and outputs a message x.

An OPE scheme is complete if for all S, S′, x, and y we have that if (S′, y)←
E(S, x), then x← D(S′, y).

The next definition formalizes the property of order preservation for an en-
cryption scheme. Roughly speaking, this property says that the ordering on the
plaintext space carries over to the ciphertext space.

Definition 2 (Order-Preserving). An encryption scheme OPE = (K,E,D) is
order-preserving if for any two ciphertexts y1 and y2 with corresponding messages
x1 and x2 we have that whenever y1 < y2 then also x1 < x2.



This general definition allows for modeling both stateful as well as stateless
versions of OPE. We focus on the stateful variant in this paper, hence, the key
S defined above is actually the state. The definition, moreover, does not specify
where the state has to reside, allowing us to model client-server architectures.

2.1 Security Definitions

Indistinguishability Against Ordered Chosen Plaintext Attacks. The
standard security definition for order-preserving encryption is indistinguisha-
bility against ordered chosen plaintext attacks (IND-OCPA) [3]. Intuitively, an
OPE scheme is secure with respect to this definition if for any two equally ordered
plaintext sequences, no adversary can tell apart their corresponding ciphertext
sequences. IND-OCPA is fulfilled by several schemes (e.g., [12, 16]). We recall
the selective version of the definition in the following.

Definition 3 (IND-OCPA). An order-preserving encryption scheme OPE =
(K,E,D) has indistinguishable ciphertexts under ordered chosen plaintext at-
tacks (IND-OCPA) if for any ppt adversary A, the following probability is neg-
ligible in the security parameter κ:∣∣∣Pr[ExpAOCPA(κ, 1) = 1]− Pr[ExpAOCPA(κ, 0) = 1]

∣∣∣
where ExpAOCPA(κ, b) is the following experiment:

Experiment ExpAOCPA(κ, b)
(X0, X1)← A where |X0| = |X1| = n and
∀1 ≤ i, j ≤ n. x0,i < x0,j ⇐⇒ x1,i < x1,j

S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i)← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′.

Definition 3 requires that the challenge plaintext sequences are ordered ex-
actly the same, which in particular implies that the plaintext frequency must be
the same.

Indistinguishability Under Frequency-Analyzing Ordered Chosen
Plaintext Attacks. A drawback of the previous definition is that it can be
achieved by schemes that leak the plaintext frequency, although any two se-
quences in which plaintexts occur with different frequencies, e.g., 1, 2, 3, 4 and
1, 1, 1, 1, are trivially distinguishable by the attacker. In order to target even
such sequences, Kerschbaum [11] proposes a different security definition: instead
of requiring the sequences to have exactly the same order, it is sufficient for
them to have a common randomized order. For a plaintext list X of length n,
a randomized order is a permutation of the plaintext indices 1, . . . , n which are
ordered according to a sorted version of X. This is best explained by an example:



consider the plaintext sequence X = 1, 5, 3, 8, 3, 8. A randomized order thereof
can be any of Γ1 = (1, 4, 2, 5, 3, 6), Γ2 = (1, 4, 3, 5, 2, 6), Γ3 = (1, 4, 2, 6, 3, 5), or
Γ4 = (1, 4, 3, 6, 2, 5), because the order of 3 and 3 as well as the order of 8 and 8
does not matter in a sorted version of X. Formally, a randomized order is defined
as follows.

Definition 4 (Randomized order). Let n be the number of not necessarily
distinct plaintexts in sequence X = x1, x2, . . . , xn where xi ∈ N for all i. For a
randomized order Γ = γ1, γ2, . . . , γn, where 1 ≤ γi ≤ n and i 6= j =⇒ γi 6= γj
for all i, j, of sequence X it holds that

∀i, j. (xi > xj =⇒ γi > γj) ∧ (γi > γj =⇒ xi ≥ xj)

Using this definition, Kerschbaum [11] defines security of OPE against
frequency-analyzing ordered chosen plaintext attacks. Since the definition is in-
formal in [11], we report the natural way to read the definition.

Definition 5 (IND-FA-OCPA). An order-preserving encryption scheme
OPE = (K,E,D) has indistinguishable ciphertexts under frequency-analyzing
ordered chosen plaintext attacks (IND-FA-OCPA) if for any ppt adversary A,
the following probability is negligible in the security parameter κ:∣∣∣Pr[ExpAFA−OCPA(κ, 1) = 1]− Pr[ExpAFA−OCPA(κ, 0) = 1]

∣∣∣
where ExpAFA−OCPA(κ, b) is the following experiment:

Experiment ExpAFA−OCPA(κ, b)
(X0, X1)← A where |X0| = |X1| = n and X0 and X1

have at least one common randomized order Γ
S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i)← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′

It is clear that while the standard IND-OCPA definition could be achieved,
in principle, by a deterministic encryption scheme, the frequency-hiding variant
can only be achieved by using randomized ciphertexts since otherwise frequencies
are trivially leaked.

Discussion. Comparing the two definitions, we observe that IND-FA-OCPA is
a generalization of IND-OCPA since the constraint on the sequences X0 and X1

allows for a greater class of instances. In order to see that, we have to consider
the constraint, which is

∀1 ≤ i, j ≤ n. x0,i < x0,j ⇐⇒ x1,i < x1,j .

This constraint is an alternative way of saying that X0 and X1 should agree
on all randomized orders. Hence, duplicate plaintexts may occur in any of the
sequences, but they should occur symmetrically in the other sequence as well.



3 Kerschbaum’s Construction

We review the OPE scheme of [11]. At a high level, encryption works by inserting
plaintexts into a binary search tree that stores duplicates as often as they occur.
When an element arrives at its designated node, a ciphertext is selected according
to this position.

More formally, let T be a binary tree. We denote by ρ the root of T . For a
node t ∈ T we write t.m to denote the message stored at t and t.c to denote
the respective ciphertext. We further use t.left and t.right to denote the left
and right child of t, respectively. There are several other parameters: N is the
number of distinct plaintexts, n is the number of plaintexts in the sequence
that is to be encrypted, k = log(N) is the required number of bits necessary
to represent a plaintext in a node, ` = kκ is this number expanded by a factor
of κ and refers to the size of the ciphertexts. Finally, the construction requires
a source of randomness, which is called in terms of a function RandomCoin()
(hereafter called RC() for brevity). According to Kerschbaum, this function can
be implemented as a PRF that samples uniformly random bits.

We refer in the following to the client as the one storing the binary tree. This
is well motivated in the cloud setting where the client outsources encrypted data
to the cloud server who may not have access to the actual message-ciphertext
mapping. One may wonder why a client that anyway has to store a mapping of
plaintexts to ciphertexts cannot simply store the data itself: Kerschbaum also
presents an efficient compression technique for the tree which in some cases can
lead to compression ratios of 15.

Implementation of S ← K(κ). The client sets up an empty tree T . The state
S consists of the tree T as well as all parameters k, `, n, and N . Furthermore,
S contains the minimum ciphertext min = −1 and the maximum ciphertext
max = 2κ log(n). These minimum and maximum numbers are only necessary
to write the encryption procedure in a recursive way. Usually, n is not known
upfront, so it has to be estimated. If the estimation is too far from reality, the
tree has to be freshly setup with new parameters.

Algorithm 1 E(S, x) where S = t,min,max

1: if t = ⊥ then
2: t.m = x
3: t.c = min + bmax−min

2
c

4: if t.c = 0 then
5: rebalance the tree
6: end if
7: return t.c
8: end if
9: b← −1

10: if x = t.m then
11: b← RC()
12: end if
13: if b = 1 ∨ x > t.m then
14: E(t.right , t.c+ 1,max , x)
15: else
16: if b = 0 ∨ x < t.m then
17: E(t.left ,min, t.c− 1, x)
18: end if
19: end if



Implementation of (S′, y)← E(S, x). To encrypt a plaintext x, the client pro-
ceeds as follows. Whenever the current position in the tree is empty (especially
in the beginning when the tree is empty), the client creates a new tree node and
inserts x as the plaintext (lines 1.1–1.8). The ciphertext is computed as the mean
value of the interval from min to max (line 1.3). In particular, the first cipher-
text will be 2κ log(n)−1. Whenever there is no ciphertext available (line 1.4), the
estimation of n has shown to be wrong and the tree has to be rebalanced. We do
not detail this step here since it is not important for our attack; instead we refer
the interested reader to [11] for a detailed explanation. If instead, the current
position in the tree is already occupied and the message is different from x, then
we either recurse left (line 1.17) or right (line 1.14) depending on the relation
between the occupying plaintext and the one to be inserted. The same happens
in case x is equal to the stored message, but then we use the RC procedure to
decide where to recurse (lines 1.9–1.12).

Implementation of x← D(S, y). To decrypt a given ciphertext y, we treat the
tree as a binary search tree where the key is t.c and search for y. We return t.m
as soon as we reach a node t where t.c = y.
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Fig. 1. An example for different binary search trees after inserting the sequence X =
1, 5, 3, 8, 3, 8, depending on the output of RC.

Example 1. To simplify the access to the construction, we review a detailed
example. Figure 1 shows the four possible resulting binary search trees after



inserting X = 1, 5, 3, 8, 3, 8, depending on the output of RC. We use a ciphertext
space of {1, . . . , 256}. Each different output of RC corresponds to one of the four
possible randomized orders Γi for 1 ≤ i ≤ 4.

Security. The scheme is proven secure against frequency-analyzing ordered cho-
sen plaintext attack. To this end, [11] constructs a simulator which, given the two
challenge plaintext sequences, produces identical views independent of which of
two sequences is chosen. We investigate on the proof in the next section.

4 An Attack on Kerschbaum’s FH-OPE Scheme

In this section, we investigate on the security achieved by Kerschbaum’s con-
struction [11]. In order to start, we observe that Kerschbaum proves his con-
struction secure. However, as we show later in this section, the security proof
makes an extra assumption on the game challenger’s capabilities, namely that the
challenger can dictate the randomized order used by the encryption algorithm
to encrypt either challenge plaintext sequence. Using the natural interpretation
of IND-FA-OCPA (see Definition 5), this additional assumption is not justified
and, hence, Kerschbaum’s scheme is no longer secure. We thus present a concrete
attack, which is related to the distribution based on which randomized sequences
are chosen for encryption (Section 4.1). We then explain more in detail why Ker-
schbaum’s security result is incorrect with respect to Definition 5 (Section 4.2).
Finally, we show that even if randomized orders are chosen uniformly at random,
the scheme is still vulnerable (Section 4.3).

4.1 A Simple Attack

1

2κ log(n)−1

⊥
2

2κ log(n)−1 + 2κ log(n)−2

⊥ . . .

⊥
n∑n

i=1 2κ log(n)−i

Fig. 2. The resulting binary search tree when encrypting sequence X0.

Our attack consists of two plaintext sequences that are given to the challenger
of the FA-OCPA game, who encrypts step-by-step randomly one of the two
sequences. By observing the sequence of resulting ciphertexts, we will be able to
determine which sequence the challenger chose with very high probability.



Consider the two plaintext sequences X0 = 1, 2, 3, . . . , n and X1 = 1, . . . , 1
such that |X0| = |X1| = n. Clearly, both X0 and X1 have a common randomized
order, namely Γ = 1, 2, 3, . . . , n, i.e., the identity function applied to X0. More-
over, consider the binary search tree produced by the scheme when encrypting
X0 in Figure 2. This tree is generated fully deterministically since the elements
in X0 are pairwise distinct, or equivalently, X0 has only a single randomized
order. Now let us investigate how X1 would be encrypted by Algorithm 1. In
every step, the RC procedure has to be called in order to decide where to insert
the incoming element. If coins are drawn uniformly at random then only with
a probability of 1/2n(n−1)/2 RC will produce the bit sequence 1 . . . 1 of length
n(n − 1)/2, which is required in order to produce the exact same tree as in
Figure 2. Notice that the RC sequence must be of length n(n − 1)/2 since for
every plaintext that is inserted on the right, the function has to be called once
more. Hence, the Gaussian sum

∑n−1
i=1 i describes the number of required bits.

Consequently, an adversary challenging the FH-OCPA challenger with X0 and
X1 will win the game with probability (1/2)(1 − 1/2n(n−1)/2) where the factor
1/2 accounts for the probability that the challenger chooses X1. Hence, if X1

is chosen, our attacker wins with overwhelming probability, otherwise he has to
guess. Notice that the combined probability is nevertheless non-negligible.

In conclusion, the central observation is that the number of calls to RC
strongly depends on how many equal elements are met on the way to the fi-
nal destination when encrypting an element. Therefore, not all ciphertext trees
are equally likely.

4.2 Understanding the Problem

In this section, we analyze the core of the problem.

Artifacts of the Construction. The analysis in the previous section shows
that randomized orders are not drawn uniformly random. Otherwise, the ad-
versary’s success probability would be (1/2)(1 − 1/n!) since X1 has n! many
randomized orders and the probability that a specific one is chosen uniformly is
1/n!. Instead, we analyzed the probability that the encryption algorithm chooses
that specific randomized order, which depends on the number of calls to RC and
its results, which should all be 1.

In order to exemplify this artifact, we consider the sequence 1, 1, 1. We depict
the different trees when encrypting the sequence in Figure 3. As we can see,
different trees require a different number of calls to RC, and have thus a different
probability of being the encryption tree. On the one hand, the trees in Figure 3a
and Figure 3c–3e all have a probability of 1/8 to be the result of the encryption
since each of them requires RC to be called three times. On the other hand, the
two trees in Figure 3b have a probability of 1/4 of being chosen each since RC
has to be called only twice.

To formally capture the probability range of different randomized orders,
we want to understand which randomized orders are most probable and which
ones are least probable. Before we start the analysis, we observe that it does



not matter whether we consider the probability or the number of calls to RC,
since every call to RC adds a factor of 1/2 to the probability that a certain
randomized order is chosen. So as we have seen in the concrete counter-example
in the previous section and the example above, a tree with linear depth represents
the least likely randomized order since it requires the most calls to RC, which
increases by one every time a new element is encrypted. Conversely, randomized
orders represented by a perfectly balanced binary tree are more likely since they
require the minimum number of calls to RC. Let H be the histogram of plaintext
occurrences in a sequence. Then, as before, the number of calls to RC can be
computed as the sum over every node’s depth in the subtree in which all duplicate
elements reside, which is at least

∑
p∈X

∑H(p)
i=1 log(i)

H(p)
=
∑
p∈X

log(H(p)!)

H(p)
≥
∑
p∈X

H(p)
2 log

(
H(p)
2

)
H(p)

=− |X|
2

+
1

2

∑
p∈X

log(H(p))

where we make use of the fact that
(
n
2

)n
2 ≤ n! ≤ nn in the first inequality. All

other randomized orders lie probability-wise somewhere in between.

⊥

⊥

(a)
Γ1 = (1, 2, 3),
RC() = 111.

(b) Γ2 =
(2, 1, 3),
RC() = 01,
and Γ3 =
(2, 3, 1),
RC() = 10.

⊥

⊥

(c)
Γ4 = (3, 2, 1),
RC() = 000.

⊥

⊥

(d)
Γ5 = (1, 3, 2),
RC() = 110.

⊥

⊥

(e)
Γ6 = (3, 1, 2),
RC() = 001.

Fig. 3. The trees displaying different randomized orders for the sequence 1, 1, 1.

Proof Technique. Despite our counter-example, the scheme is proven secure
in the programmable random oracle model [11]; this obviously constitutes a
contradiction. To understand the problem in depth, we have to have a closer
look at the security proof. The idea behind the proof is as follows: the challenger
selects uniformly at random a common randomized order with respect to the
two challenge sequences. This common randomized order is then given as source
of randomness to the random oracle which answers questions accordingly. More
precisely, let Γ = (γ1, . . . , γn) be the selected order. Whenever the algorithm
cannot decide where to place a plaintext xj in the search tree, i.e., xi = xj for
i < j, meaning that xi is an entry that is already encrypted in the tree, then the



challenger asks the random oracle for a decision on i and j. The oracle answers
with 1 if γi < γj and with 0 if γi > γj (notice that γi 6= γj by Definition 4).
In this way, the challenger produces a search tree and corresponding ciphertexts
that are valid for both challenge sequences and which are in fact independent of
the bit. Hence, the adversary has no chance of determining which sequence has
been chosen other than guessing.

The Simulation is Incorrect. The proof strategy clearly excludes the attack
described in the previous section. The reason is that the RC function is supposed
to output uniformly random coins. As we have seen, even if RC outputs truly
random coins then not every possible randomized order of the chosen sequence
is equally likely. Hence, the choice of the random sequence is in two aspects
unfaithful: first, the challenger restricts the number of randomized orders to
those that both sequences have in common while RC does not know the two
sequences and can, hence, not choose according to this requirement. Second, the
fact that the choice is uniform does not reflect the reality. As we have seen, one
artifact of the construction is that not every randomized order is equally likely.
Consequently, forcing RC to generate output based on a common randomized
order changes the distribution from which coins are drawn and, hence, neither
all randomized orders are possible nor are their probabilities of being chosen
correctly distributed. In the extreme case described in Section 4.1, it even would
disallow all but one randomized order to be the result of the encryption routine.
As a consequence, the proof technique changes the behavior of RC to an extent
that makes the simulation incorrect.

4.3 Generalizing the Attack in an Ideal Setting

Since the scheme is vulnerable to an attack and it chooses the randomized order
under which a sequence is encrypted in a non-uniform way, we find it interesting
to also investigate whether the scheme is still vulnerable in an ideal setting where
the choice of the randomized order happens uniformly.

The answer to this question is unfortunately positive, as the following result
shows. Concretely, only if two sequences agree on essentially all randomized
orders, the adversary has a negligible advantage of distinguishing them.

Theorem 1. Let X0 and X1 be two plaintext sequences of length n. Further
assume that X0 has m0 and X1 has m1 randomized orders, respectively, and that
they have m randomized orders in common. Then, for the idealized construction
of [11] which encrypts plaintexts under a uniformly chosen randomized order,
there exists an adversary whose success probability in winning the IND-FA-OCPA
game is at least 1−mm0+m1

2m0m1
.

Proof. We construct an adversary, which submits both X0 and X1 to the FA-
OCPA challenger. Since X0 has m0 randomized orders, the probability that one
of those in common with X1 is chosen by the encryption procedure is m

m0
due to

the uniformly random behavior. Likewise, for X1, the probability that a common
randomized order is chosen by the encryption procedure is m

m1
. Hence, depending



on the challenger’s bit b, the adversary sees a non-common randomized order
with probability 1 − m

mb
, which also reflects its success probability for winning

the game when the challenger picks b. Consequently,

Pr[A wins] =
∣∣∣Pr[ExpAFA−OCPA(κ, 1) = 1]− Pr[ExpAFA−OCPA(κ, 0) = 1]

∣∣∣
=

1

2

(
1− m

m0

)
+

1

2

(
1− m

m1

)
= 1−mm0 +m1

2m0m1

In the example from the previous section, we have parameters m0 = 1, m1 =
n!, and m = 1. Substituting those into Theorem 1, we get the aforementioned
non-negligible success probability of

1−mm0 +m1

2m0m1
= 1− 1 + n!

2n!
=

1

2

(
1− 1

n!

)
.

5 Impossibility of IND-FA-OCPA

The previously presented results raise the question if IND-FA-OCPA, as pre-
sented in [11] can be achieved at all. It turns out that this is not the case: in this
section, we prove an impossibility result for frequency-hiding order-preserving
encryption as defined in Definition 5. Formally we prove the following theorem.

Theorem 2. Let X0 and X1 be two arbitrary plaintext sequences of the same
length that do not share any randomized order. Let furthermore OPE be an
order-preserving encryption scheme secure against IND-FA-OCPA. Then, the
probability of distinguishing whether X0 is encrypted or whether X1 is encrypted
with OPE is negligibly close to 1/2.

Before we prove the theorem using Definition 5, we argue why it implies the
impossibility of frequency-hiding OPE. According to the theorem, no adversary
can distinguish the encryptions of two arbitrary sequences of his choice that
are ordered in a completely different manner. This constitutes a formulation
of the IND-CPA property for multiple messages, restricted to sequences that
do not share a randomized order. The restriction, however, is not necessary
since sequences that share a randomized order are trivially indistinguishable by
IND-FA-OCPA. To exemplify, let the two sequences be X0 = 1, 2, . . . , n and
X1 = n, n − 1, . . . , 1, so X1 is the reverse of X0. According to Theorem 2, no
adversary can distinguish which one of the two is encrypted. However, due to
the correctness of OPE it must be the case that the encryption Y ∗ fulfills for all
i and j and b ∈ {0, 1}

y∗i ≥ y∗j =⇒ xbi ≥ xbj .

Consequently, if X0 is encrypted we have y∗i < y∗j for i < j and vice versa for
X1. Hence, an adversary could trivially distinguish which of the two sequences
is encrypted. Hence, by contraposition of Theorem 2, an IND-FA-OCPA-secure
OPE scheme cannot exist.



Proof (Theorem 2). In the security game G(b), on input X0 and X1 by A, the
challenger encrypts sequence Xb, gives the ciphertexts Y ∗ to A, who replies with
a guess b′. A wins if b = b′.

We define three games. G1 = G(0). For G2, we select a sequence X∗ which
has a randomized order in common with both X0 and X1. Notice that such a
sequence always exists, e.g., take the series a, a, . . . , a (n times) for arbitrary a
in an appropriate domain. Instead of encrypting X0 as in G1, we now encrypt
X∗. Finally, G3 = G(1).

In order to show that G1 ≈ G2, assume that there exists a distinguisher A
that can distinguish between G1 and G2 with non-negligible probability. Then we
construct a reduction B that breaks IND-FA-OCPA. On A’s input, B forwards
X0 and a sequence X∗ to the IND-FA-OCPA challenger. The challenger answers
with Y ∗, which B again forwards to A. A outputs a bit b′, which B again forwards
to the challenger. The simulation is obviously efficient. If the internal bit of the
IND-FA-OCPA challenger is 0, we perfectly simulate G1, while we simulate G2

when the bit is 1. Hence, the success probability of A carries over to B since B
only forwards messages. Since we assumed that A can successfully distinguish
G1 and G2 with non-negligible probability, it must be the case that B wins the
IND-FA-OCPA game with non-negligible probability. This is a contradiction.

The proof of G2 ≈ G3 is symmetric to the one above. In conclusion, we have
that G1 ≈ G2 ≈ G3, and hence, G(0) ≈ G(1), meaning that every adversary can
distinguish between encryptions of X0 and X1 that do not share a randomized
order only with negligible probability.

6 An Achievable Definition: IND-FA-OCPA∗

Since the notion of indistinguishable ciphertexts under frequency-analyzing or-
dered chosen plaintext attacks is not achievable, it is desirable to understand the
problem of the original definition and try to come up with a suitable one that
still captures the idea of frequency-hiding but is achievable.

Interestingly enough, the solution to our problem can be found by investigat-
ing again Kerschbaum’s security proof. The proof builds a random oracle that
overcomes the issues of the definition. Even though this construction of the oracle
is incorrect, as we have shown previously, it helps us identify the problem with
the definition. In the definition, the challenger has no means to tell the encryp-
tion algorithm which randomized order to choose when encrypting the chosen
challenge sequence. Hence, it could be the case that the algorithm chooses an
order that is not common to both challenge sequences. Had the challenger a way
to decide which order to encrypt with, the problem were gone.

Consequently, we tackle the problem from two angles: (1) we augment the
OPE model by one more input to the encryption function, namely, the random-
ized order that is supposed to be used and (2) we strengthen the challenger’s
capabilities during the security game: it may now, additionally to selecting which
sequence to encrypt, also choose a common randomized order as input to the
encryption algorithm. This new definition still captures the notion of frequency-



hiding in the same way, it just excludes the attacks presented in this work and
makes the definition, thus, achievable.

6.1 Augmented OPE Model

We present the augmented model in the following definition. Notice that the only
difference to Definition 1 is the additional input Γ to the encryption function.
This additional input serves the purpose of deciding from outside of the function,
which randomized order should be used to encrypt the plaintexts. In contrast,
standard OPE decides about the ordering randomly inside of the function. We
stress that augmented OPE is more general than OPE since the input Γ can be
replaced by the result of a call to a random function.

Definition 6 (Augmented OPE). An augmented order-preserving encryp-
tion scheme OPE∗ = (K,E,D) is a tuple of ppt algorithms where

S ← K(κ). The key generation algorithm takes as input a security parameter κ
and outputs a secret key (or state) S;

(S′, y) ← E(S, x, Γ ). The encryption algorithm takes as input a secret key S, a
message x, and an order Γ and outputs a new key S′ and a ciphertext y;

x← D(S, y). The decryption algorithm x← D(S, y) takes as input a secret key
S and a ciphertext y and outputs a message x.

6.2 The New Definition IND-FA-OCPA∗

The new security game is close in spirit to Definition 5. The difference is that (1)
it is defined over an augmented OPE scheme which makes the randomized order
used for encryption explicit and (2) the challenger chooses that order uniformly
at random from the orders that both challenge sequences have in common. Since
we define the notion adaptively, we introduce some new notation with respect
to randomized orders.

In the following definition, we let Γ = γ1, . . . , γn and we use the notation
Γ ↓i to denote the order of the sequence γ1, . . . , γi. Notice that this order is
unique since Γ is already an order. For instance, take the randomized sequence
Γ = 1, 6, 4, 3, 2, 5. Then, Γ↓3= 1, 3, 2, which is the order of 1, 6, 4.

Definition 7 (IND-FA-OCPA∗). An augmented order-preserving encryption
scheme OPE∗ = (K,E,D) has indistinguishable ciphertexts under frequency-
analyzing ordered chosen plaintext attacks if for any ppt adversary A, the fol-
lowing probability is negligible in the security parameter κ:∣∣∣Pr[ExpAFA−OCPA∗(κ, 1) = 1]− Pr[ExpAFA−OCPA∗(κ, 0) = 1]

∣∣∣
where ExpAFA−OCPA∗(κ, b) is the following experiment:



Experiment ExpAFA−OCPA∗(κ, b)
(X0, X1)← A where |X0| = |X1| = n and X0 and X1

have at least one common randomized order
Select Γ uniformly at random from the common randomized orders of X0, X1

S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i)← E(Si−1, xb,i, Γ↓i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′.

7 Constructing Augmented OPE

We show how to construct an augmented OPE scheme. Interestingly enough,
the key observation to OPE∗ is that the scheme of [11], which we presented in
Section 3 can be modified so as to fit the new model.

As we introduce a third input to the encryption function, namely an order
that is as long as the currently encrypted sequence plus one, we have to show
how to cope with this new input in the construction. The key idea is quite
simple: usually, the encryption scheme draws randomness from a PRF when the
plaintext to be encrypted is already encrypted, in order to decide whether to
move left or right further in the tree. The additional input solves this decision
problem upfront, so there is no need for using randomness during the encryption.

While the setup and re-balancing algorithms are as described in [11], we
describe the new encryption algorithm in Algorithm 2. Furthermore, we require
that every node in the tree stores its index in the plaintext sequence, i.e., we
add an attribute index to each node t. We further assume that the index of the
message that is currently to be encrypted is the length of the order Γ . As we can
see, the only difference between Algorithm 1 and Algorithm 2 is the behavior
when the message to be inserted is equal to the message currently stored at t.
Then, the order Γ is considered so as to decide whether to traverse the tree
further to the left or right.

Algorithm 2 E(S, x, Γ ) where S = t,min,max and Γ = γ1, . . . , γk
1: if t = ⊥ then
2: t.m = x
3: t.index = k
4: t.c = min + bmax−min

2
c

5: if t.c = 0 then
6: rebalance the tree
7: end if
8: return t.c
9: end if

10: b← −1

11: if x = t.m then
12: b← γk > γt.index
13: end if
14: if b = 1 ∨ x > t.m then
15: E(t.right , t.c+ 1,max , x, Γ )
16: else
17: if b = 0 ∨ x < t.m then
18: E(t.left ,min, t.c− 1, x, Γ )
19: end if
20: end if



The encryption algorithm also nicely demonstrates that it does not matter
from which domain the ordering draws its elements. The only important prop-
erty of such an ordering is the relation of the single elements to each other, i.e.,
that (1) all elements of the order are distinct and (2) whether γi < γj or the
other way around. We do, hence, not require the shrinking function Γ↓i for this
construction: when encrypting an overall sequence of plaintexts with a prede-
termined randomized order Γ , it is sufficient to just cut the Γ to size i when
encrypting the i-th element. The reason is that the relative ordering of the first
i elements is not changed after shrinking, which suffices to let the algorithm
decide about where to branch.

7.1 Formal Guarantees

We argue in this section that the tree-based scheme presented in the previous
section is IND-FA-OCPA∗ secure. The reason for that is as follows: first, the
challenger can select a randomized order that is in common to both sequences
and give that chosen order to the encryption algorithm. Second, no matter which
of the two sequences is encrypted according to the order, the resulting ciphertexts
are equivalent in both cases. Hence, the adversary cannot do better than guessing
the bit, since the ciphertexts are independent of the underlying plaintexts.

Theorem 3. The OPE∗ scheme presented in Section 7 is IND-FA-OCPA∗ se-
cure.

Proof. Let A be an arbitrary adversary for the game in Definition 7. Let fur-
thermore X0 and X1 be the two plaintext sequences chosen by A. By definition,
those sequences share at least one common randomized order. Let Γ be one of
those common orders, selected uniformly at random from the universe of com-
mon randomized orders. When encrypting either X0 or X1, Algorithm 2 uses Γ
to decide where to branch. Hence, Algorithm 2’s decisions are independent of
the input plaintext sequence, and thus independent of the chosen bit b. Conse-
quently, all information that A receives from the challenger are independent of
b and he can thus, only guess what b is. This concludes the proof.

8 Conclusion

Order-preserving encryption (OPE) is an enabling technology to implement
database applications on encrypted data: the idea is that the ordering of ci-
phertexts matches the one of plaintexts so that inequalities on encrypted data
are efficiently computable. Unfortunately, recent works showed that various at-
tacks can be mounted by exploiting the inherent leakage of plaintext frequency.
Frequency-hiding OPE [11] (CCS 2015) is a stronger primitive that aims at
solving this problem by hiding the frequency of plaintexts.

We contribute to this line of work with the following results. First, we present
an attack against the construction presented in [11], identifying the correspond-
ing problem in the security proof. Second, we formulate a more general impos-
sibility result, proving that the security definition introduced in [11] cannot be



achieved by any OPE scheme. Third, to complete the picture and assess which
theoretical security is achievable at all, we make the definition in [11] more pre-
cise by giving the challenger more capabilities and augmenting the OPE model
so as to receive randomized orders as inputs which are used to break ties. We
finally show that the more precise version of the definition can be achieved by a
variant of the construction introduced in [11].

Despite this seemingly positive results, in the presence of the plethora of
empirical attacks against (FH-)OPE and its variants (e.g., ORE), we suggest to
not use any of those schemes for actual deployment since the security guarantees
achieved do not reflect practical requirements. We recommend to move away
from OPE in general, more towards other alternatives, even if there are none
that solve the problem so conveniently; at the price of low to no security.
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