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Abstract. In this work we introduce the notion of Subset Predicate
Encryption, a form of attribute-based encryption (ABE) in which a mes-
sage is encrypted with respect to a set s′ and the resulting ciphertext can
be decrypted by a key that is associated with a set s if and only if s ⊆ s′.
We formally define our primitive and identify several applications. We
also propose two new constructions based on standard assumptions in bi-
linear groups; the constructions have very efficient decryption algorithms
(consisting of one and two pairing computations, respectively) and small
keys: in both our schemes, private keys contain only two group elements.
We prove selective security of our constructions without random oracles.
We demonstrate the usefulness of Subset Predicate Encryption by de-
scribing several black-box transformations to more complex primitives,
such as identity-based encryption with wildcards and ciphertext-policy
ABE for DNF formulas over a small universe of attributes. All of the re-
sulting schemes are as efficient as the base Subset Predicate Encryption
scheme in terms of decryption and key generation.

1 Introduction

Attribute-Based Encryption (ABE), and more generically functional encryption,
introduces a new communication paradigm where the sender is allowed to spec-
ify a certain policy that the receiver must satisfy in order to read the data.
Since its introduction in [15], ABE has had a tremendous impact in the research
community and a plethora of different construction have been proposed, from
different assumption and with different security notions and functionalities. How-
ever, more effort is needed towards the adoption of ABE schemes on a large scale
as we only know a bunch of schemes that are efficient enough to be deployed
in practice. In this work we contribute to the understanding of efficiency trade-
offs in ABE (and weaker instances of functional encryption) by proposing a new
prospective for the construction of efficient schemes. With this aim in mind, we
introduce the notion of Subset Predicate Encryption (SPE). In a SPE scheme,
sets are defined over some finite universe of elements. A user with a secret key
for the set s can decrypt a ciphertext encrypted with the public key s′ if and
only if s defines a subset of s′. A SPE scheme must enforce that an adversary
knowing the key for some set s cannot derive a valid key for any set different



from s (e.g., by stripping off part of s from its original key). In particular, users
must not be allowed to combine different keys in a meaningful manner (e.g.,
to decrypt any ciphertext that no user could have decrypted individually). A
perhaps more natural way to look at SPE is as a generalization of broadcast
encryption (BE): In this perspective BE can be seen as a special case of SPE
where secret keys are associated with singleton subsets, i.e., |s| = 1. SPE opens
the possibility to efficiently enforce expressive access control policies in several
interesting scenarios, as described below.

Concise Access Control. An important aspect of SPE is that it enables ac-
cess control over data in a very concise fashion. For instance, let us consider a cor-
porate setting, where all users of the system encrypt all messages under the sets
corresponding to the attributes of the fields “{sender, receiver, department, current-
date}”. Deriving keys in a hierarchical fashion is straightforward, however our
system allows us to assign keys for more complex policies in a concise way. As an
example, we can generate a key for decrypting all messages exchanged on a cer-
tain day across multiple departments by simply deriving a key for current-date.
Furthermore, we can generate a key to read all the messages sent from and to
Alice with a single key for the set corresponding to the element Alice.

Pattern Matching. Imagine a scenario where each email is encrypted under
the set corresponding to the words of the subject (assuming a subject of a
fixed length). We could disclose the content of all emails containing a certain
word (buy, as an example) in the subject by simply creating a key for the set
corresponding to the element buy. It is important to note that the position of
the word must not be necessarily known in advance, since the decryption is
successful if the set encoded in the key matches any subset of the set encoded
in the ciphertext.

A blackbox instantiation of SPE from Identity Based Encryption seems not be
easily achievable: One could express the same functionality by encrypting the
same message for the powerset of a given identity, but it is easy to see that
the size of the ciphertext would grow exponentially in the length of the iden-
tity. While we conjecture that SPE is strictly more expressive than IBE, it is
not hard to show that SPE is implied by any generic ABE system. However,
due to the simplicity of our primitive, there is hope to create a SPE scheme
in a more efficient manner, without resorting to generic ABE solutions. In par-
ticular, we are interested in maximizing the efficiency of the system for the
end-users, both in terms of computation and in terms of storage. An efficient
decryption algorithm is an important feature of any encryption scheme as it al-
lows computationally-constrained devices to be integrated in the system: Since
decryption is arguably the most recurrent operation (a user typically encrypts
once for multiple receivers), its running time is fundamental for the scalability
of the system. Additionally, small private keys are convenient as they are often
stored in tamper-resistant memory, which in general is very costly. This can be
especially critical in small devices, such as sensors, for which low cost solutions
are often required.
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In this work, we focus on the improvement over these two aspects and we
present two cryptographic constructions for SPE with a very efficient decryption
algorithm and constant-size private keys. Perhaps surprisingly, our abstraction
turns out to subsume more complex primitives, such as ABE for DNF formulas
over a small universe of attributes, and we show how to generically instantiate
them from a SPE scheme. All of the resulting schemes inherit the efficiency of
our constructions.

1.1 Our Contributions

We formalize the notion of Subset Predicate Encryption and its security guar-
antees using standard game-based definitions. We provide two instantiations for
a SPE scheme from bilinear maps. Both of the schemes are proven secure in the
selective security model without random oracles. Our first construction offers an
extremely efficient decryption operation consisting of only a single pairing. More-
over, the secret keys are very compact as each key is composed of a group element
and an integer value. The security of this scheme relies on the hardness of the
Decisional q-Bilinear Diffie-Hellman Inversion assumption over bilinear groups.
Our second scheme has a slightly less efficient decryption procedure (where two
pairings are computed) but is based on the Decisional Bilinear Diffie-Hellman
assumption. In this scheme, each private key is as large as two group elements.

We describe several generic black-box transformations that turn SPE into
more expressive primitives. Our first transformation turns any SPE into an
Identity-Based Encryption scheme with wildcards (WIBE), whereas our sec-
ond transformation yields an ABE scheme for formulas in their DNF over for a
small universe of attributes. A nice feature of these transformations is that the
resulting schemes maintain the same decryption algorithm and key sizes of the
base construction. Beyond being an interesting primitive on its own right, we
believe that the conceptual simplicity of SPE might help in the future design of
efficient WIBE and ABE schemes.

We summarize a comparison of our instantiations against the most efficient
known WIBE schemes in Table 1: Our transformation yields the first scheme with
constant-size keys and the decryption of our first construction is roughly 50%
faster than the best instantiation of [1]. The performance of the ABE schemes
derived generically from our instantiations of SPE are shown in Table 2. With
respect to the best known instance of ABE in terms of key-size [11], both of our
instantiations cut the size of the keys down to 50%. Furthermore the decryption
algorithm of our first construction computes only one pairing and one modular
exponentiation (while the second computes two pairings). This is unprecedented
in the context of ABE, where in the fastest known scheme [16] the amount of
modular exponentiations is linear in the size of the universe of attributes. This
means that our schemes have an arbitrarily more efficient decryption, depending
on the size of the universe of attributes. For a fair comparison we shall men-
tion that the aforementioned schemes are more expressive the ours and satisfy
stronger security notions.
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Table 1: Comparison amongst the most efficient wildcard IBE schemes in the
literature in terms of size of the public parameters (|pk|), size of the decryption
keys (|sk|), size of the ciphertexts (|c|), number of operations required for de-
crypting (Decrypt), and complexity assumptions. Here ω denotes the depth of
the hierarchy, P denotes the number of pairing operations and E the number of
modular exponentiations.

WIBE Scheme |pk| |sk| |c| Decrypt Assumption

BBG-WIBE [1] (ω + 4)G (ω + 2)G (ω + 2)G + GT 2P ω-BDHI
Waters-WIBE [1] (n+ 1)(ω + 3)G (ω + 1)G (n+ 1)ωG + GT (ω + 1)P DBDH
Construction 1 (2ω + 2)G1 + GT G2 + Zp (2ω + 1)G1 + GT 1P+1E q-BDHI
Construction 2 (2ω + 1)G1 + 2G2 G1 + G2 2ωG1 + G2 + GT 2P DBDH

Table 2: Comparison amongst the most efficient ABE schemes in the literature.
Here we additionally compare the schemes by the family of predicates supported
by the scheme (f), which can either be arbitrary Boolean formulas (Bool), zero
inner-product predicates (InnerProd), or formulas in their DNF. We denote the
number of disjunctive clauses in a DNF formula by γ.

ABE Scheme |pk| |sk| |c| Decrypt Assumption f

CP-ABE [11] (2U + 3)G1 + GT (2U + 4)G2 (2U + 2)G2 + GT 4P+4UE SXDH Bool
ZIPE [11] (2U + 4)G1 + GT 4G2 (2U + 2)G2 + GT 4P+2UE SXDH InnerProd

KP-ABE [16] (U + 1)G + GT 2UG + U2G (U + 1)G + GT 2P+2UE U-BDHE Bool
Construction 1 (U + 2)G1 + GT G2 + Zp γ((U + 1)G1 + GT ) 1P+1E q-BDHI DNF
Construction 2 (U + 1)G1 + 2G2 G1 + G2 γ(2UG1 + G2 + GT ) 2P DBDH DNF

2 Related Work

Identity-Based Encryption was first proposed by Shamir [22], and the first ef-
ficient realization was presented in the seminal work of Boneh and Franklin
[8], where they suggested the usage of bilinear maps for cryptographic purposes.
Canetti et. al [10] introduced the first construction that was provably secure
without random oracles: the authors defined a slightly weaker security model
(selective security) where the attacker is required to commit to the challenge
identity prior to the beginning of the experiment. In the same settings, Boneh
and Boyen [5] showed two efficient and practical schemes in the standard model.
The first scheme with full security was presented by Boneh and Boyen [6] and
later Waters [24] constructed a more efficient variant with an elegant security
proof. Several other schemes have followed, such as [9]. It is worth mention-
ing that the notion of IBE has also been extended to support a hierarchical
key-derivation structure [13,7].

Attribute-Based Encryption was envisioned by Sahai and Waters [21] as a
generalization of IBE, where keys and ciphertext are generated under sets of
attributes and it is possible to encode arbitrary access formulas. The concept
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of ABE was refined by Goyal et al. in [15], where the authors proposed two
complementary notions: (i) Key-Policy ABE (KP-ABE) allows one to encode
sets of attributes in ciphertexts and embed access formulas in users’ secret keys,
whereas in (ii) Ciphertext Policy ABE (CP-ABE) formulas are attached to the
ciphertexts. Goyal et al. [15] described a selectively-secure construction of KP-
ABE that allows polices to be expressed by any monotonic formula. The first
efficient CP-ABE system was proposed by Bethencourt et al. [4] with a security
proof in the generic group model, while the first CP-ABE scheme in the standard
model is due to Waters [23]. In [14] Goyal et al. showed how to generically trans-
form a KP-ABE into a CP-ABE. Until recently, all of the known attribute-based
systems were proven secure only in the selective sense: a fully secure ABE was
first proposed by Lewko et al. [18], leveraging the dual system encryption tech-
nique. In light of this, several efficient and adaptively-secure ABE schemes were
recently proposed by Chen et al. [11] in the prime-order settings, constructed
on a novel framework based on clever predicate encodings. ABE was further
generalized as Predicate Encryption (PE) [17], where the ciphertext is required
to hide the set of attributes associated to it, in addition to the message.

An ABE scheme with an efficient decryption algorithm was introduced by At-
trapadung et al. [3], where the authors presented an ABE system with constant-
size ciphertexts. As a result, the decryption algorithm requires a constant number
of pairings. In this perspective, Hohenberger and Waters [16] improved this re-
sult with a scheme that computes only two pairings in the decryption algorithm.
However, this comes at the cost of an increase in the size of the secret keys. A re-
vocation system with small keys was proposed by Lewko et al. [19], along with an
ABE system where the size of the secret keys grows linearly in the number of at-
tributes. Finally, it is worth mentioning that Okamoto and Takashima provided
an inner-product encryption scheme with constant-size keys [20] (later improved
in [11]). However, the generic transformation from inner-products to arbitrary
Boolean formulas introduces an overhead in the encoding of attributes exponen-
tial in the number of variables (see [17]), making this primitive less appealing
for practical purposes.

On a different line of research, Abdalla et al. [1] proposed the notion of
IBE with wildcards (WIBE): in this primitive, one is allowed to specify certain
positions of the identity associated to a ciphertext that are not required to match
with the secret key. A related notion was formalized and instantiated by Abdalla
et al. in [2], where one can include wildcards in the key generation phase. Both
of these works build on top of various Hierarchical IBE schemes and therefore
inherit the long size of the keys, typically linear in the depth of the hierarchy.

Hence, this work improves the state-of-the-art by presenting the most efficient
constructions in terms of key size and decryption operations supporting complex
functionalities (beyond the simple IBE). We stress that in this work we consider
only the notion of selective security.
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3 Preliminaries

We denote by λ ∈ N the security parameter and by poly(λ) any function that
is bounded by a polynomial in λ. We address any function that is negligible in
the security parameter with negl(λ). We say that an algorithm is ppt if it is
modelled as a probabilistic Turing machine whose running time is bounded by
some function poly(λ). Given a set S, we denote by x← S the sampling of and
element uniformly at random in S. For an arbitrary pair of binary strings (a, b)
of the same length `, we write a ⊆ b if for all i ∈ {1, . . . , `} such that ai = 1 then
bi = 1. Given a binary string a, we say that an index i ∈ a if ai = 1.

3.1 Bilinear Maps

Let G1 and G2 be two cyclic groups of large prime order p. Let g1 ∈ G1 and
g2 ∈ G2 be respective generators of G1 and G2. Let e : G1 × G2 be a function
that maps pairs of elements ∈ (G1,G2) to elements of some cyclic group GT of
order p. Throughout the following sections we write all of the group operations
mutiplicatively, with identity elements denoted by 1. We further require that:

– The map e and all the group operations in G2, G2, and GT are efficiently
computable.

– The map e is non degenerate, i.e., e(g1, g2) 6= 1.
– The map e is bilinear, i.e., ∀u ∈ G1,∀v ∈ G2,∀(a, b) ∈ Z2

p, e(u
a, vb) =

e(u, v)ab.

3.2 Complexity Assumptions

In the following we formally define the Decisional q-Bilinear Diffie-Hellman In-
version assumption and the Decisional Bilinear Diffie-Hellman assumption. Both
of the conjectures are widely used in pairing-based cryptographic constructions,
among the others we mention the work of Boneh and Boyen [5]. We must point
out that a sub-exponential attack is known for the former assumption [12], and
therefore the security parameter of any scheme based on such a conjecture must
be increased correspondingly. This, however, does not have a severe impact on
the efficiency of the constructions, as discussed in [5].

Definition 1 (q-Decision-BDHI Assumption). The q-Decision-BDHI as-
sumption holds in (G1,G2) if, for all ppt algorithms A, there exists a negligible
function negl such that∣∣∣∣Pr [1← A (g1, gx1 , g2, gx2 , . . . , gxq2 , e(g1, g2)1/x

)]
−

Pr
[
1← A

(
g1, g

x
1 , g2, g

x
2 , . . . , g

xq

2 , T
)] ∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random choice of the generators g1 ∈ G1

and g2 ∈ G2, the random choice of x ∈ Z∗p, the random choice of T ∈ GT , and
the random coins of A.
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Definition 2 (DBDH Assumption). The DBDH assumption holds in (G1,G2)
if, for all ppt algorithms A, there exists a negligible function negl such that∣∣∣∣Pr [1← A (g1, ga1 , gb1, gc1, g2, ga2 , gb2, gc2, e(g1, g2)abc

)]
−

Pr
[
1← A

(
g1, g

a
1 , g

b
1, g

c
1, g2, g

a
2 , g

b
2, g

c
2, e(g1, g2)z

)] ∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random choice of the generators g1 ∈ G1

and g2 ∈ G2, the random choice of (a, b, c, z) ∈ (Z∗p)4, and the random coins of
A.

4 Subset Predicate Encryption

In this section, we formally introduce the concept of Subset Predicate Encryption.
Our definition is very close to the standard Identity-Based Encryption, except
that we do not necessarily require the string associated with the secret key to
match the string embedded in the ciphertext. In fact, we allow anybody who
owns a key for a string that matches any subset of the string of the ciphertext,
to decrypt the latter.

Definition 3 (Subset Predicate Encryption). A Subset Predicate Encryp-
tion (SPE) scheme consists of four ppt algorithms Setup, KeyGen, Encrypt, and
Decrypt such that:

(pk,msk) ← Setup(1λ, 1n). The setup algorithm takes as input the security pa-
rameter 1λ and a length parameter n. It outputs public parameters pk and the
master secret key msk.

sks ← KeyGen(msk, pk, s). The key-derivation algorithm takes as input the master
secret key msk, public parameters pk, and a string s ∈ {0, 1}n. It outputs a private
key sks. We assume that s can be recovered from sks.

c← Encrypt(pk,m, s). The encryption algorithm takes as input public parameters
pk, a message m, and a string s ∈ {0, 1}n. It outputs a ciphertext c. We assume
that s can be recovered from c.

m← Decrypt(sks, pk, c). The decryption algorithm takes as input the private key
sks, the public parameters pk, and a ciphertext c. It outputs a message m or a
designated failure symbol ⊥.

Our notion of correctness for SPE is defined as follows:

Definition 4 (Correctness). Correctness requires that for all security param-
eters λ, all n, all (pk,msk) output by Setup(1λ, 1n), all s′ ∈ {0, 1}n, all s such
that s ⊆ s′, all sks output by KeyGen(msk, pk, s), all m, and all c output by
Encrypt(pk,m, s′), we have Decrypt(sks, pk, c) = m.

Security. In the following, we define the security model for SPE schemes.
Informally, the adversary should be unable to learn anything about the content
of a ciphertext associated with some set s∗ even if it has obtained secret keys
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corresponding to arbitrary sets s1, . . . , sq, so long as none of those satisfies si ⊆
s∗. Our definition corresponds to “selective” security, whereby the attacker is
required to commit to the s∗ that he wants to be challenged on before seeing the
public parameters of the scheme. Alternatively one could consider the stronger
“adaptive” notion, where the challenge set is revealed by the adversary only in
the challenge phase.

Consider the following experiment parameterized by λ:

1. The attacker specifies a universe of elements {0, 1}n (i.e., a bound n on the
size of the universe) and a challenge set s∗ ∈ {0, 1}n.

2. Setup(1λ, 1n) is run to obtain (pk,msk), and the adversary is given pk.
3. The adversary is allowed to query for private keys for arbitrary sets s1, . . . , sq

such that for all i ∈ {1, . . . q} it holds that si 6⊆ s∗.
4. The adversary outputs a message pair (m0,m1) with |m0| = |m1|. A uni-

form bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encrypt(pk,mb, s
∗) is

computed and given to the adversary.
5. The adversary may continue to request private keys for arbitrary sets, subject

to the same restriction as before.
6. Finally, the adversary outputs a guess b′ for b.

The advantage of the adversary in this experiment is defined as |Pr[b′ = b]− 1
2 |.

Definition 5 (Selective Security). A SPE scheme is selectively secure if the
advantage of any ppt adversary in the above experiment is negligible.

4.1 Generic Instantiations

Before presenting our schemes we first describe some potential approaches to
instantiate Subset Predicate Encryption and we show their drawbacks.

SPE from PE. One can instantiate SPE from any predicate encryption for
inner products as follows: Given a universe of n attributes, keys for a set s
are associated with the binary vector (s1, . . . , sn). A ciphertext for a set s′ is
encrypted under the vector (s′1 ⊕ 1, . . . , s′n ⊕ 1). The inner product of the two
vectors is 0 if and only if s ⊆ s′, therefore correctness and security follow. This
instantiation however, inherently generates ciphertexts and secret keys that grow
linearly with the size of the universe of elements.

SPE from WIBE. We observe that if we encode a set s in a ciphertext as a
string where the 1s are substituted with the wildcard symbol, then an IBE with
wildcards supports the same functionality as a SPE. Given the current state-of-
the-art for WIBE schemes, this approach suffers from the same drawbacks as
described above.

SPE from Fuzzy IBE. It is an easy exercise to instantiate SPE from the
Fuzzy Identity-Based Encryption of Sahai and Waters [21]: Setting the degree d
of the polynomial associated with the secret key to be equal to the number of
components of the key itself, one can ensure that the decryptor needs to use all of
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the components of the secret key in order to decrypt a ciphertext. It follows that
a key associated with a string s can decrypt any ciphertext encrypted under any
s′ such that s ⊆ s′. However the decryption algorithm requires to interpolate the
polynomial in the exponent, which incurs in one pairing operation per element
associated with the secret key. Additionally, the size of the key grows linearly
with the number of elements associated with it, which is, in the average case,
linear in the security parameter. Our observation is that our primitive does
not require the flexibility of a Fuzzy IBE scheme, and therefore we can hope
to achieve better performance at the cost of sacrificing the malleability in the
manipulation of the secret keys.

5 Our Constructions

In this section we present our two instantiations from bilinear maps.

5.1 First Scheme

In the following we describe our first construction, inspired by second scheme
presented in [5]. The key difference is that our ciphertexts is composed by disjoint
components, each corresponding to an element of the public parameters. This
additional flexibility allows one to choose an arbitrary subset of elements in the
decryption phase.

Construction 1. Our first construction consists of the following algorithms.

Setup(1λ, 1n): To generate the SPE system given a bilinear group pair (G1,G2),
with respective generators (g1, g2), the setup algorithm selects a random gener-
ator h ∈ G2 and it computes v = e(g1, h). Then it samples a random x0 ∈ Z∗p
and a random vector (x1, . . . , xn) ∈ (Z∗p)n and sets X0 = gx0

1 and for all
i ∈ {1, . . . , n} : Xi = gxi1 . The public parameters pk and the master secret
key are given by

pk = (g1, X0, X1, . . . , Xn, v) ∈ Gn+2
1 ×GT

msk = (x0, x1, . . . , xn, h) ∈ (Z∗p)n+1 ×G2

KeyGen(msk, pk, s): To generate the private key associated with the set s, the
key generation algorithm picks a random κ ∈ Zp such that

∑
i∈s xi + κx0 6= 0

mod p and computes K = h
1∑

i∈s xi+κx0 . The private key is defined as

sks = (κ,K) ∈ Zp ×G2

c← Encrypt(pk,m, s): The encryption of a message m ∈ GT for a given set s is
done by picking a random ρ ∈ Z∗p and returning the following ciphertext

c = (m · vρ, Xρ
0 ,∀i∈s : Xρ

i ) ∈ GT ×G|s|+1
1
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m ← Decrypt(sks, pk, c). To decrypt a ciphertext c = (A,B,C1, . . . , C`), for
some positive integer ` ≤ n, using the private key sks = (κ,K), return

A

e
(
Bκ
∏
i∈s Ci,K

)
To check that the system is consistent it is enough to observe that, for a valid
private key sks and a valid ciphertext encoded under a string s′ such that s ⊆ s′,
there always exists an element Ci for all i ∈ s, thus we have

A

e
(
Bκ
∏
i∈s Ci,K

) =
A

e
(

(Xρ
0 )κg

ρ·
∑
i∈s xi

1 , h
1∑

i∈s xi+κx0

)
=

m · vρ

e
(
g
ρ·(κx0+

∑
i∈s xi)

1 , h
1∑

i∈s xi+κx0

)
=
m · e(g1, h)ρ

e(g1, h)ρ

= m

Here we elaborate the formal guarantees of our construction. The security proof
is non-trivial as our reduction is required to include in the challenge ciphertext
each group element separately (as opposed to their product), this arises subtle
issues in the generation of the secret key that we address in the following.

Theorem 1. Assume that the q-Decision-BDHI assumption holds in groups
(G1,G2) of size p. Then Construction 1 is a selectively-secure SPE scheme.

Proof. Assume towards contradiction that there exists an adversary A that has
advantage ε(λ) in attacking the SPE system, for some non negligible function
ε(λ). Then we can construct the following reduction R against the q-Decision-
BDHI assumption in (G1,G2).
The reduction R takes as input a tuple

(
g1, g

α
1 , g2, g

α
2 , . . . , g

αq

2 , T
)
, where T is

either e(g1, g2)1/α or a random element of GT . The algorithm R interacts with
A in the selective-security game as follows:

Preparation: The reduction R samples a vector (w0, . . . , wq−1) ∈ (Z∗p)q, let

f(α) = w0

q−1∏
j=1

(α+ wj) =

q−1∑
j=0

cjα
j

for some coefficients cj where c0 6= 0. The algorithm sets h =
∏q−1
j=1

(
gα

j

2

)cj
=

g
f(α)
2 . The variable w0 ensures that h is a uniformly distributed generator of G2.

Note that we can assume that h 6= 1 otherwise it must have been the case that
there exists a j ∈ {1 . . . q − 1} such that wj = −α and thus the algorithm can
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efficiently output a solution to the decisional problem. We observe that for all

j ∈ {1 . . . q−1} it is easy for R to compute the tuple
(
wj , h

1
α+wj

)
by considering

f(α)

(α+ wj)
=

q−2∑
j=0

djα
j

and setting h
1

α+wj = g
f(α)

(α+wj)

2 =
∏q−2
j=0

(
ga

j

2

)dj
. Additionally, the reduction R

computes

Th = T c0 ·
q−1∏
j=1

e
(
g1, g

cjα
j−1

2

)
It is easy to see that whenever T is uniformly distributed in GT then so is Th,
whereas whenever T = e(g1, g2)1/α then Th = e(g1, h)1/α.

Initialization: The experiment begins with A outputting bound n on the uni-
verse of elements and a challenge set s∗ ∈ {0, 1}n.

Setup: To generate the public parameters, the algorithm R proceeds by uni-

formly sampling for all i ∈ s∗ an element ai ∈ Z∗p and setting Xi = gxi1 = g−ai·α1 .
For all i ∈ s∗ the reduction picks a pair (ai, bi) ∈ (Z∗p)2 and sets Xi = gxi1 =

g
−ai·(α+bi)
1 . The public parameters provided to the adversary are

(g1, X0 = gα1 , X1, . . . , Xn, v = e(g, h))

where h is defined as specified above. We remark that h is a uniformly distributed
element in GT . Since all of the other elements of the public parameters are
uniformly distributed over G1 to the view of the adversary, we can conclude that
the public parameters are correctly distributed according to our construction.

Phase 1: The adversary can issue up to q − 1 private key queries for some sets
sj under the constraint that for all j ∈ {1, . . . , q − 1} it holds that sj 6⊆ s∗. The

algorithm R responds to each query j as follows: let
(
wj , h

1
α+wj

)
the j-th pair

constructed in the preparation phase, the reduction computes an r ∈ Zp that
satisfies (

r −
∑
i∈sj

ai

)
(α+ wj) = −α

∑
i∈sj

ai −
∑

i∈sj∩s∗
aibi + αr

Expanding the equation we obtain

r =
∑
i∈sj

ai −
∑
i∈sj∩s∗ aibi

wj

Note that the unknown α cancels out of the equation and the algorithm can
evaluate the expression. The secret key for the set sj is set to be

sksj =

(
r, h

1
(α+wj)(r−

∑
i∈sj ai)

)
.
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We note that the key is functional, as

h
1

(α+wj)(r−
∑
i∈sj ai) = h

1
−α

∑
i∈sj ai−

∑
i∈sj∩s∗ aibi+αr = h

1∑
i∈sj xi+αr

it allows the adversary to decrypt the ciphertexts that he is intended to. To argue
about the correct distribution of the key it is enough to observe that the value wj
is sampled uniformly at random from Z∗p, therefore whenever

∑
i∈sj∩s∗ aibi 6= 0

then r is a uniformly distributed element of Zp. First we point out that the
set sj ∩ s∗ is never empty due to the non-triviality of the game, i.e., sj 6⊆ s∗,
secondly we observe that the expression

∑
i∈sj∩s∗ aibi can return at most 2n

different results, due to the total number of elements’ combinations. Therefore
by choosing a large enough size of p, e.g. 22·n, we ensure that the probability
of
∑
i∈sj∩s∗ aibi returning 0 is negligible in the security parameter (recall that

for all i ∈ {1, . . . , n} it holds that ai and bi are elements uniformly distributed
in Z∗p). For completeness, we note that this procedure will fail to produce a
private key for an s ⊆ s∗ since in that case we obtain r =

∑
i∈sj ai and therefore

h
1

(α+wj)(r−
∑
i∈sj ai) = h

1
(α+wj)·0 .

Challenge: The adversary outputs two messages (m0,m1) ∈ G2
T . The reduction

R samples a random b ∈ {0, 1} and a random z ∈ Z∗p and hands over to the
attacker the challenge ciphertext

c∗ =
(
mb · T zh , gz1 ,∀i∈s∗ : g−aiz1

)
Consider ρ = z/α. We shall note that whenever Th = e(g1, h)1/α then c∗ is a
valid ciphertext as

mb · T zh = mb · e(g1, h)z/α = mb · vρ

gz1 =
(
X

1/α
0

)z
= Xρ

0

∀i∈s∗ : g−aiz1 =
(
X

1/α
i

)z
= Xρ

i

On the other hand, whenever Th is uniform in GT , then the message mb is hidden
from the view of the adversary in an information theoretic sense.

Phase 2: The adversary can issue additional private key queries for a total of at
most q − 1. The reduction answer as specified in Phase 1.

Guess: The adversary outputs a guess b′ and the reduction returns b = b′ to
the challenger.

As argued above, when the input tuple contains a T = (g1, g2)1/α, then the
view of the adversary perfectly resembles the inputs that he is expecting in
the standard experiment for SPE security. It follows that the advantage of the
adversary is, as assumed, greater than some non negligible ε(λ). On the other
hand, when the input tuple contains a T uniformly distributed in GT , then the
view of the adversary contains no information about the secret bit b. Thus in
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this case A cannot do better than guessing. It follows that∣∣∣∣Pr [1← R (g1, gx1 , g2, gx2 , . . . , gxq2 , e(g1, g2)1/x
)]
−

Pr
[
1← R

(
g1, g

x
1 , g2, g

x
2 , . . . , g

xq

2 , T
)] ∣∣∣∣ ≥

|1/2 + ε(λ)− 1/2| = ε(λ)

This represents a contradiction to the q-Decision-BDHI assumption and it con-
cludes our proof. ut

5.2 Second Scheme

Our second scheme can be seen as a descendant of the celebrated IBE of Wa-
ters [24]. On a very high-level, our main observation is that the scheme satisfies
our notion of security if the group elements of the ciphertext are not multiplied
together. This change, together with our different notion of security, forces us to
develop a different proof strategy.

Construction 2. Our second construction consists of the following algorithms.

Setup(1λ, 1n): To generate the SPE system given a bilinear group pair (G1,G2)
with respective generators (g1, g2), the setup algorithm selects a random α ∈ Z∗p
and sets h = gα2 . Then it samples a random vector (x1, . . . , xn) ∈ (Z∗p)n and sets
for all i ∈ {1, . . . , n} : Xi = gxi1 . The public parameters pk and the master secret
key msk are given by

pk = (g1, X1, . . . , Xn, g2, h) ∈ Gn+1
1 ×G2

2

msk = gα1 ∈ G1

KeyGen(msk, pk, s): To generate the private key associated with the set s, the
key generation algorithm picks a random r ∈ Zp and defines the private key as

sks =

(
gα1

(∏
i∈s

Xi

)r
, gr2

)
∈ G1 ×G2

c← Encrypt(pk,m, s): The encryption of a message m ∈ GT for a given set s is
done by picking a random ρ ∈ Z∗p and returning the following ciphertext

c = (m · e(g1, h)ρ, gρ2 ,∀i∈s : Xρ
i ) ∈ GT ×G2 ×G|s|1

m ← Decrypt(sks, pk, c). To decrypt a ciphertext c = (A,B,C1, . . . , C`), for
some positive integer ` ≤ n, using the private key sks = (K,R), return

A ·
e
(∏

i∈s Ci, R
)

e(K,B)

13



To check that the system is correct we observe, as before, that

A ·
e
(∏

i∈s Ci, R
)

e(K,B)
= m · e(g1, h)ρ ·

e
(∏

i∈sX
ρ
i , g

r
2

)
e
(
gα1
(∏

i∈s g
xi
1

)r
, gρ2
)

= m · e(g1, g2)αρ ·
e
(∏

i∈sX
ρ
i , g

r
2

)
e(gα1 , g

ρ
2)e
((∏

i∈s g
xi
1

)r
, gρ2
)

= m · e(g1, g2)αρ ·
e
(∏

i∈sXi, g2
)rρ

e(g1, g2)αρe
(∏

i∈sXi, g2
)rρ

= m

The construction above is a secure SPE scheme if the DBDH assumption holds.

Theorem 2. Assume that the DBDH assumption holds in groups (G1,G2) of
size p. Then Construction 2 is a selectively-secure SPE scheme.

Proof. Assume towards contradiction that there exists an adversary A that has
advantage ε(λ) in attacking the SPE system, for some non negligible function
ε(λ). Then we can construct the following reduction R against the DBDH as-
sumption in (G1,G2).
The reduction R takes as input a tuple (g1, A1, B1, C1, g2, A2, B2, C2, Z), where
Z is either e(g1, g2)abc or a random element of GT . The algorithm R interacts
with A in the selective-security game as follows:

Initialization: The experiment begins with A outputting bound n on the uni-
verse of elements and a challenge set s∗ ∈ {0, 1}n.

Setup: To generate the public parameters, the algorithm R proceeds by uni-
formly sampling for all i ∈ s∗ an pair of elements yi ∈ Z∗p and setting Xi = gyi1 .
For all i ∈ s∗ the reduction picks a pair (yi, wi) ∈ (Z∗p)2 and sets Xi = Awi1 gyi1 =

ga·wi+yi1 . The public parameters provided to the adversary are

(A1, X1, . . . , Xn, g2, B2)

Since all of the elements of the public parameters are uniformly distributed over
the corresponding group to the view of the adversary, we can conclude that the
public parameters are correctly distributed according to our construction.

Phase 1: The adversary can issue up to q−1, for some polynomial bound q, pri-
vate key queries for some sets sj under the constraint that for all j ∈ {1, . . . , q−1}
it holds that sj 6⊆ s∗. The algorithm R responds to each query j as follows: the
reduction samples an r ∈ Zp and sets

sksj =

B −
∑
i∈sj yi∑
i∈sj wi

1 ·

(∏
i∈sj

X ′i

)r
, B

−1∑
i∈sj wi

2 · gr2


We observe that
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sksj =

gb·−
∑
i∈sj yi∑
i∈sj wi

+r(
∑
i∈sj awi+yi)

1 , g
r− b∑

i∈sj wi
2


=

gab+b·
(
−
∑
i∈sj yi∑
i∈sj wi

−a
)
+r(

∑
i∈sj awi+yi)

1 , g
r− b∑

i∈sj wi
2


=

(
g
ab− b∑

i∈sj wi
·(
∑
i∈sj yi+a·

∑
i∈sj wi)+r(

∑
i∈sj awi+yi)

1 , g
r− b∑

i∈sj wi
2

)

=

gab+(
∑
i∈sj awi+yi)

(
r− b∑

i∈sj wi

)
1 , g

r− b∑
i∈sj wi

2



=

gab1 ·
(∏
i∈sj

Xi

)(r− b∑
i∈sj wi

)
, g
r− b∑

i∈sj wi
2


which gives us a functional and correctly distributed key, as r is uniformly dis-
tributed over Z∗p. For completeness we note that the procedure fails whenever∑
i∈sj wi = 0, which happens only in case the queried set sj is a subset of the

challenge set s∗, except with negligible probability (for a large enough p).

Challenge: The adversary outputs two messages (m0,m1) ∈ G2
T . The reduction

R samples a random b ∈ {0, 1} and hands over to the attacker the challenge
ciphertext

c∗ = (mb · Z,C2,∀i∈s∗ : Cyi1 )

We shall note that whenever Z = e(g1, h)abc then c∗ is a valid ciphertext as

mb · Z = mb · e(g1, g2)abc = mb · e(A1, B2)c

C2 = gc2
∀i∈s∗ : Cyi1 = (gyi1 )c = Xc

i

On the other hand, whenever Z is uniform in GT , then the message mb is
hidden from the view of the adversary in an information theoretic sense.

Phase 2: The adversary can issue additional private key queries for a total of at
most q − 1. The reduction answer as specified in Phase 1.

Guess: The adversary outputs a guess b′ and the reduction returns b = b′ to
the challenger.

As argued above, when the input tuple contains a Z = (g1, g2)abc, then the
view of the adversary perfectly resembles the inputs that he is expecting in
the standard experiment for SPE security. It follows that the advantage of the
adversary is, as assumed, greater than some non negligible ε(λ). On the other
hand, when the input tuple contains a Z uniformly distributed in GT , then the

15



view of the adversary contains no information about the secret bit b. Thus in
this case A cannot do better than guessing. It follows that∣∣∣∣Pr [1← A (g1, ga1 , gb1, gc1, g2, ga2 , gb2, gc2, e(g1, g2)abc

)]
−

Pr
[
1← A

(
g1, g

a
1 , g

b
1, g

c
1, g2, g

a
2 , g

b
2, g

c
2, e(g1, g2)z

)] ∣∣∣∣ ≥
|1/2 + ε(λ)− 1/2| = ε(λ)

This represents a contradiction to the DBDH assumption and it concludes our
proof. ut

Large Universe Construction. We note that we can extend our second
construction to support elements that were not considered in the setup phase,
assuming the existence of a random oracle. Assume that all parties have access
to the function H : {0, 1}∗ → G1, we can remove the group elements from the
public parameters and substitute them with the description of H. This extension
yields a scheme with constant-size public parameters for an exponentially-large
universe of elements.

6 Generic Transformations

In the following we describe some black-box transformations from SPE to well
known cryptographic primitives.

Identity Based Encryption. As an easy warm up we show how to deploy
SPE in order to achieve standard Identity Based Encryption (IBE). Although
not surprising, this will guide us through the subsequent transformations. We
first initialize the system by running the Setup algorithm with a length parameter
of 2 · n and the corresponding security parameter λ. The KeyGen algorithm, on
input ID ∈ {0, 1}n, generates s ∈ {0, 1}2·n by setting, for all i ∈ {1, . . . , 2 · n}:

si =

{
1− IDi/2 if i = 0

ID(i+1)/2 if i = 1
(mod 2)

Then the standard KeyGen algorithm is executed on s and the corresponding
output is returned. The same modification is applied to the Encrypt algorithm.

To better visualize this transformation one can imagine the Setup algorithm
to return two arrays of elements (x01, . . . , x

0
n) and (x11, . . . , x

1
n). The identities ID

in the set {0, 1}n index the binary choice of each element xIDii between the two
arrays. It is important to note that all of the valid sets contain the same amount
of elements, i.e. n many, and that any two sets differ in at least one position.
This implies that no valid identity is a subset of any other and the security of
the IBE scheme follows from the security of the underlying SPE.

Identity Based Encryption with Wildcards. Here show how to modify
our primitive in a black-box fashion to handle wildcards in both the cipher-
texts and the keys: this allows us to specify certain positions of the identity

16



encoded in the ciphertext (in the key, respectively) that are not required to
match the key (the ciphertext, respectively) for the decryption to be successful.
IBE schemes that allow for wildcards in the ciphertexts are known in the lit-
erature as WIBE [1], whereas schemes that support wildcards in the keys are
called Wicked IBE [2]. We stress that, as opposed to the original proposals, our
generic transformation does not support a hierarchical structure of identities,
since it is not clear how to delegate keys in the general settings. In the following
we describe how to modify the Encrypt and the KeyGen algorithms to handle
wildcards. We denote the wildcard with the distinguished symbol ∗.

We first initialize the system by running the Setup algorithm with a param-
eter of 2 · n and the corresponding security parameter λ. The Encrypt algorithm
is modified to take as input ID ∈ {0, 1, ∗}n and generate s ∈ {0, 1}2·n as follows:

si =


1− IDi/2 if IDi/2 ∈ {0, 1} ∧ i = 0

ID(i+1)/2 if ID(i+1)/2 ∈ {0, 1} ∧ i = 1

1 if IDi/2 = ∗ ∧ i = 0

1 if ID(i+1)/2 = ∗ ∧ i = 1

(mod 2)

for all i ∈ {1, . . . , 2 · n}. As before, if we consider Setup to output two vectors
(x01, . . . , x

0
n) and (x11, . . . , x

1
n), then the identities ID ∈ {0, 1, ∗}n represent the

binary choice over the elements of the two vectors except when si = ∗, in which
case both x0i and x1i are included in the set. We observe that the decryption is
successful whenever one owns a key that encodes a subset of s, which matches
the policy enforced by the WIBE scheme. Therefore the security of the SPE
carries over.

We can encode wildcards in the decryption keys applying a similar modifica-
tion to the KeyGen algorithm, that differs in assigning si = 0, as opposed to 1,
whenever the corresponding bit of ID is ∗. We note that the two modifications
are not mutually exclusive and can coexist for a hybrid of the two approaches.

Ciphertext Policy Attribute Based Encryption. Perhaps the most in-
teresting feature of our primitive is that it can be used to obtain a Ciphertext-
Policy Attribute Based Encryption (CP-ABE) scheme for a small universe of
attributes. The transformation is as follows. Fix a universe of attributes U of
size n, we uniquely assign to each attribute a ∈ U an index i ∈ {1, . . . , n}. The
private key associated with a set of attributes A will be the key associated with
the set U\A. Specifically, we construct the private key for A by executing KeyGen
on input sA, where

sAi =

{
0 if ai ∈ A

1 if ai 6∈ A

To encrypt a message m using a DNF formula C1 ∨ · · · ∨ Ct, where each Cj
represents a conjunction over some subset of the attributes, the sender processes
each of the t clauses independently. For the ith clause Cj , the sender encrypts
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the message running Encrypt on input sCj , where

s
Cj
i =

{
0 if ai ∈ Cj
1 if ai 6∈ Cj

The algorithm returns the concatenation of the ciphertexts corresponding to
each clause. To decrypt, the receiver finds some clause Cj that is satisfied by his
attributes A. Note that this means Cj ⊆ A, or equivalently U\A ⊆ U\Cj . Thus,
the receiver will be able to decrypt the ciphertext corresponding to that clause
if and only if its key is associated with a set s such that s ⊆ sCj .
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