
Equivalence Properties by Typing
in Cryptographic Branching Protocols

Véronique Cortier1, Niklas Grimm2, Joseph Lallemand1(B),
and Matteo Maffei2

1 Université de Lorraine, CNRS, Inria, LORIA, Vandœuvre-lès-Nancy, France
joseph.lallemand@loria.fr
2 TU Wien, Vienna, Austria

Abstract. Recently, many tools have been proposed for automatically
analysing, in symbolic models, equivalence of security protocols. Equiv-
alence is a property needed to state privacy properties or game-based
properties like strong secrecy. Tools for a bounded number of sessions
can decide equivalence but typically suffer from efficiency issues. Tools
for an unbounded number of sessions like Tamarin or ProVerif prove a
stronger notion of equivalence (diff-equivalence) that does not properly
handle protocols with else branches.

Building upon a recent approach, we propose a type system for rea-
soning about branching protocols and dynamic keys. We prove our type
system to entail equivalence, for all the standard primitives. Our type
system has been implemented and shows a significant speedup compared
to the tools for a bounded number of sessions, and compares similarly
to ProVerif for an unbounded number of sessions. Moreover, we can also
prove security of protocols that require a mix of bounded and unbounded
number of sessions, which ProVerif cannot properly handle.

1 Introduction

Formal methods provide a rigorous and convenient framework for analysing secu-
rity protocols. In particular, mature push-button analysis tools have emerged
and have been successfully applied to many protocols from the literature in the
context of trace properties such as authentication or confidentiality. These tools
employ a variety of analysis techniques, such as model checking (e.g., Avispa [6]
and Scyther [31]), Horn clause resolution (e.g., ProVerif [13]), term rewriting
(e.g., Scyther [31] and Tamarin [38]), and type systems [7,12,16–21,34,36,37].

In the recent years, attention has been given also to equivalence properties,
which are crucial to model privacy properties such as vote privacy [8,33], unlik-
ability [5], or anonymity [9]. For example, consider an authentication protocol
Ppass embedded in a biometric passport. Ppass preserves anonymity of pass-
port holders if an attacker cannot distinguish an execution with Alice from an
execution with Bob. This can be expressed by the equivalence Ppass(Alice) ≈t

Ppass(Bob). Equivalence is also used to express properties closer to cryptographic
games like strong secrecy.
c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 160–187, 2018.
https://doi.org/10.1007/978-3-319-89722-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89722-6_7&domain=pdf

Equivalence Properties by Typing in Cryptographic Branching Protocols 161

Two main classes of tools have been developed for equivalence. First, in the
case of an unbounded number of sessions (when the protocol is executed arbitrar-
ily many times), equivalence is undecidable. Instead, the tools ProVerif [13,15]
and Tamarin [11,38] try to prove a stronger property, namely diff-equivalence,
that may be too strong e.g. in the context of voting. Tamarin covers a larger class
of protocols but may require some guidance from the user. Maude-NPA [35,40]
also proves diff-equivalence but may have non-termination issues. Another class
of tools aim at deciding equivalence, for bounded number of sessions. This is the
case in particular of SPEC [32], APTE [23], Akiss [22], and SatEquiv [26]. SPEC,
APTE, and Akiss suffer from efficiency issues and can typically not handle more
than 3–4 sessions. SatEquiv is much more efficient but is limited to symmetric
encryption and requires protocols to be well-typed, which often assumes some
additional tagging of the protocol.

Our Contribution. Following the approach of [28], we propose a novel technique
for proving equivalence properties for a bounded number of sessions as well as an
unbounded number of sessions (or a mix of both), based on typing. [28] proposes
a first type system that entails trace equivalence P ≈t Q, provided protocols
use fixed (long-term) keys, identical in P and Q. In this paper, we target a
larger class of protocols, that includes in particular key-exchange protocols and
protocols whose security relies on branching on the secret. This is the case e.g.
of the private authentication protocol [3], where agent B returns a true answer
to A, encrypted with A’s public key if A is one of his friends, and sends a decoy
message (encrypted with a dummy key) otherwise.

We devise a new type system for reasoning about keys. In particular, we
introduce bikeys to cover behaviours where keys in P differ from the keys in Q.
We design new typing rules to reason about protocols that may branch differently
(in P and Q), depending on the input. Following the approach of [28], our type
system collects sent messages into constraints that are required to be consistent.
Intuitively, the type system guarantees that any execution of P can be matched
by an execution of Q, while consistency imposes that the resulting sequences
of messages are indistinguishable for an attacker. We had to entirely revisit the
approach of [28] and prove a finer invariant in order to cope with the case where
keys are used as variables. Specifically, most of the rules for encryption, signature,
and decryption had to be adapted to accommodate the flexible usage of keys.
For messages, we had to modify the rules for keys and encryption, in order to
encrypt messages with keys of different type (bi-key type), instead of only fixed
keys. We show that our type system entails equivalence for the standard notion
of trace equivalence [24] and we devise a procedure for proving consistency. This
yields an efficient approach for proving equivalence of protocols for a bounded
and an unbounded number of sessions (or a combination of both).

We implemented a prototype of our type-checker that we evaluate on a set of
examples, that includes private authentication, the BAC protocol (of the biomet-
ric passport), as well as Helios together with the setup phase. Our tool requires a
light type annotation that specifies which keys and names are likely to be secret
or public and the form of the messages encrypted by a given key. This can be

162 V. Cortier et al.

easily inferred from the structure of the protocol. Our type-checker outperforms
even the most efficient existing tools for a bounded number of sessions by two
(for examples with few processes) to three (for examples with more processes)
orders of magnitude. Note however that these tools decide equivalence while
our type system is incomplete. In the case of an unbounded number of sessions,
on our examples, the performance is comparable to ProVerif, one of the most
popular tools. We consider in particular vote privacy in the Helios protocol, in
the case of a dishonest ballot board, with no revote (as the protocol is insecure
otherwise). ProVerif fails to handle this case as it cannot (faithfully) consider
a mix of bounded and unbounded number of sessions. Compared to [28], our
analysis includes the setup phase (where voters receive the election key), which
could not be considered before.

The technical details and proofs omitted due to space constraints are available
in the companion technical report [29].

2 High-Level Description

2.1 Background

Trace equivalence of two processes is a property that guarantees that an attacker
observing the execution of either of the two processes cannot decide which one it
is. Previous work [28] has shown how trace equivalence can be proved statically
using a type system combined with a constraint checking procedure. The type
system consists of typing rules of the form Γ � P ∼ Q → C, meaning that in
an environment Γ two processes P and Q are equivalent if the produced set of
constraints C, encoding the attacker observables, is consistent.

The typing environment Γ is a mapping from nonces, keys, and variables to
types. Nonces are assigned security labels with a confidentiality and an integrity
component, e.g. HL for high confidentiality and low integrity. Key types are of
the form keyl(T) where l is the security label of the key and T is the type of the
payload. Key types are crucial to convey typing information from one process to
another one. Normally, we cannot make any assumptions about values received
from the network – they might possibly originate from the attacker. If we however
successfully decrypt a message using a secret symmetric key, we know that the
result is of the key’s payload type. This is enforced on the sender side, whenever
outputting an encryption.

A core assumption of virtually any efficient static analysis for equivalence is
uniform execution, meaning that the two processes of interest always take the
same branch in a branching statement. For instance, this means that all decryp-
tions must always succeed or fail equally in the two processes. For this reason,
previous work introduced a restriction to allow only encryption and decryption
with keys whose equality could be statically proved.

2.2 Limitation

There are however protocols that require non-uniform execution for a proof of
trace equivalence, e.g., the private authentication protocol [3]. The protocol aims

Equivalence Properties by Typing in Cryptographic Branching Protocols 163

Γ (kb, kb) = keyHH(HL ∗ LL) initial message uses same key on both sides
Γ (ka, k) = keyHH(HL) authentication succeeded on the left, failed on the right
Γ (k, kc) = keyHH(HL) authentication succeeded on the right, failed on the left

Γ (ka, kc) = keyHH(HL) authentication succeeded on both sides
Γ (k, k) = keyHH(HL) authentication failed on both sides

Fig. 1. Key types for the private authentication protocol

at authenticating B to A, anonymously w.r.t. other agents. More specifically,
agent B may refuse to communicate with agent A but a third agent D should
not learn whether B declines communication with A or not. The protocol can be
informally described as follows, where pk(k) denotes the public key associated
to key k, and aenc(M, pk(k)) denotes the asymmetric encryption of message M
with this public key.

A → B : aenc(〈Na, pk(ka)〉, pk(kb))

B → A :

{
aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

If B declines to communicate with A, he sends a decoy message
aenc(Nb, pk(k)) where pk(k) is a decoy key (no one knows the private key k).

2.3 Encrypting with Different Keys

Let Pa(ka, pk(kb)) model agent A willing to talk with B, and Pb(kb, pk(ka))
model agent B willing to talk with A (and declining requests from other agents).
We model the protocol as:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)
Pb(kb, pka) = new Nb. in(x).

let y = adec(x, kb) in let y1 = π1(y) in let y2 = π2(y) in
if y2 = pka then
out(aenc(〈y1, 〈Nb, pk(kb)〉〉, pka))

else out(aenc(Nb, pk(k)))

where adec(M,k) denotes asymmetric decryption of message M with private
key k. We model anonymity as the following equivalence, intuitively stating that
an attacker should not be able to tell whether B accepts requests from the agent
A or C:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

We now show how we can type the protocol in order to show trace equiva-
lence. The initiator Pa is trivially executing uniformly, since it does not contain
any branching operations. We hence focus on typing the responder Pb.

The beginning of the responder protocol can be typed using standard tech-
niques. Then however, we perform the test y2 = pk(ka) on the left side and

164 V. Cortier et al.

y2 = pk(kc) on the right side. Since we cannot statically determine the result
of the two equality checks – and thus guarantee uniform execution – we have
to typecheck the four possible combinations of then and else branches. This
means we have to typecheck outputs of encryptions that use different keys on
the left and the right side.

To deal with this we do not assign types to single keys, but rather to pairs of
keys (k, k′) – which we call bikeys – where k is the key used in the left process
and k′ is the key used in the right process. The key types used for typing are
presented in Fig. 1.

As an example, we consider the combination of the then branch on the
left with the else branch on the right. This combination occurs when A is
successfully authenticated on the left side, while being rejected on the right side.
We then have to typecheck B’s positive answer together with the decoy message:
Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : LL. For this we need the
type for the bikey (ka, k).

2.4 Decrypting Non-uniformly

When decrypting a ciphertext that was potentially generated using two different
keys on the left and the right side, we have to take all possibilities into account.
Consider the following extension of the process Pa where agent A decrypts B’s
message.

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z).
let z′ = adec(z, ka) in out(1)
else out(0)

In the decryption, there are the following possible cases:

– The message is a valid encryption supplied by the attacker (using the public
key pk(ka)), so we check the then branch on both sides with Γ (z′) = LL.

– The message is not a valid encryption supplied by the attacker so we check
the else branch on both sides.

– The message is a valid response from B. The keys used on the left and the
right are then one of the four possible combinations (ka, k), (ka, kc), (k, kc)
and (k, k).

• In the first two cases the decryption will succeed on the left and fail on
the right. We hence check the then branch on the left with Γ (z′) = HL
with the else branch on the right. If the type Γ (ka, k) were different from
Γ (ka, kc), we would check this combination twice, using the two different
payload types.

• In the remaining two cases the decryption will fail on both sides. We hence
would have to check the two else branches (which however we already
did).

While checking the then branch together with the else branch, we have to
check Γ � 1 ∼ 0 : LL, which rightly fails, as the protocol does not guarantee
trace equivalence.

Equivalence Properties by Typing in Cryptographic Branching Protocols 165

3 Model

In symbolic models, security protocols are typically modelled as processes of a
process algebra, such as the applied pi-calculus [2]. We present here a calculus
used in [28] and inspired from the calculus underlying the ProVerif tool [14]. This
section is mostly an excerpt of [28], recalled here for the sake of completeness,
and illustrated with the private authentication protocol.

3.1 Terms

Messages are modelled as terms. We assume an infinite set of names N for nonces,
further partitioned into the set FN of free nonces (created by the attacker) and
the set BN of bound nonces (created by the protocol parties), an infinite set of
names K for keys similarly split into FK and BK, and an infinite set of variables
V. Cryptographic primitives are modelled through a signature F , that is, a set
of function symbols, given with their arity (i.e. the number of arguments). Here,
we consider the following signature:

Fc = {pk, vk, enc, aenc, sign, 〈·, ·〉, h}

that models respectively public and verification key, symmetric and asymmetric
encryption, concatenation and hash. The companion primitives (symmetric and
asymmetric decryption, signature check, and projections) are represented by the
following signature:

Fd = {dec, adec, checksign, π1, π2}

We also consider a set C of (public) constants (used as agent names for instance).
Given a signature F , a set of names N , and a set of variables V, the set of terms
T (F ,V,N) is the set inductively defined by applying functions to variables in V
and names in N . We denote by names(t) (resp. vars(t)) the set of names (resp.
variables) occurring in t. A term is ground if it does not contain variables.

We consider the set T (Fc ∪ Fd ∪ C,V,N ∪ K) of cryptographic terms, simply
called terms. Messages are terms with constructors from T (Fc ∪ C,V,N ∪ K).
We assume the set of variables to be split into two subsets V = X 	 AX where
X are variables used in processes while AX are variables used to store messages.
An attacker term is a term from T (Fc ∪ Fd ∪ C,AX ,FN ∪ FK). In particular,
an attacker term cannot use nonces and keys created by the protocol’s parties.

A substitution σ = {M1/x1, . . . ,Mk/xk} is a mapping from variables
x1, . . . , xk ∈ V to messages M1, . . . ,Mk. We let dom(σ) = {x1, . . . , xk}. We
say that σ is ground if all messages M1, . . . ,Mk are ground. We let names(σ) =⋃

1≤i≤k names(Mi). The application of a substitution σ to a term t is denoted
tσ and is defined as usual.

166 V. Cortier et al.

The evaluation of a term t, denoted t ↓, corresponds to the bottom-up appli-
cation of the cryptographic primitives and is recursively defined as follows.

u ↓ = u if u ∈ N ∪ V ∪ K ∪ C
pk(t) ↓ = pk(t ↓) if t ↓∈ K
vk(t) ↓ = vk(t ↓) if t ↓∈ K
h(t) ↓ = h(t ↓) if t ↓�= ⊥

〈t1, t2〉 ↓ = 〈t1 ↓, t2 ↓〉 if t1 ↓�= ⊥ and t2 ↓�= ⊥
enc(t1, t2) ↓ = enc(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓∈ K

sign(t1, t2) ↓ = sign(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓∈ K
aenc(t1, t2) ↓ = aenc(t1 ↓, t2 ↓) if t1 ↓�= ⊥ and t2 ↓= pk(k)

for some k ∈ K

π1(t) ↓ = t1 if t ↓= 〈t1, t2〉
π2(t) ↓ = t2 if t ↓= 〈t1, t2〉

dec(t1, t2) ↓ = t3 if t1 ↓= enc(t3, t4) and t4 = t2 ↓
adec(t1, t2) ↓ = t3 if t1 ↓= aenc(t3, pk(t4)) and t4 = t2 ↓

checksign(t1, t2) ↓ = t3 if t1 ↓= sign(t3, t4) and t2 ↓= vk(t4)
t ↓ = ⊥ otherwise

Note that the evaluation of term t succeeds only if the underlying keys are atomic
and always returns a message or ⊥. For example we have π1(〈a, b〉) ↓= a, while
dec(enc(a, 〈b, b〉), 〈b, b〉) ↓= ⊥, because the key is non atomic. We write t =↓ t′

if t ↓= t′ ↓.

d ::= dec(x, t) | adec(x, t) | checksign(x, t′) | π1(x) | π2(x)

where x ∈ X , t ∈ K ∪ X , t′ ∈ {vk(k)|k ∈ K} ∪ X .

Processes:

P, Q ::= 0 | new n.P | out(M).P | in(x).P | (P | Q) | !P
| let x = d in P else Q | if M = N then P else Q

where n ∈ BN ∪ BK, x ∈ X , and M, N are messages.

Destructors used in processes:

Fig. 2. Syntax for processes.

3.2 Processes

Security protocols describe how messages should be exchanged between partic-
ipants. We model them through a process algebra, whose syntax is displayed
in Fig. 2. We identify processes up to α-renaming, i.e., avoiding substitution of
bound names and variables, which are defined as usual. Furthermore, we assume
that all bound names, keys, and variables in the process are distinct.

Equivalence Properties by Typing in Cryptographic Branching Protocols 167

A configuration of the system is a tuple (P;φ;σ) where:

– P is a multiset of processes that represents the current active processes;
– φ is a substitution with dom(φ) ⊆ AX and for any x ∈ dom(φ), φ(x) (also

denoted xφ) is a message that only contains variables in dom(σ). φ represents
the terms that have been sent;

– σ is a ground substitution.

The semantics of processes is given through a transition relation α−−→, defined
in Fig. 3 (τ denotes a silent action). The relation w−−→∗ is defined as the reflexive
transitive closure of α−−→, where w is the concatenation of all actions. We also
write equality up to silent actions =τ .

Intuitively, process new n.P creates a fresh nonce or key, and behaves like
P . Process out(M).P emits M and behaves like P , provided that the evalua-
tion of M is successful. The corresponding message is stored in the frame φ,
corresponding to the attacker knowledge. A process may input any message
that an attacker can forge (rule In) from her knowledge φ, using a recipe R
to compute a new message from φ. Note that all names are initially assumed
to be secret. Process P | Q corresponds to the parallel composition of P and
Q. Process let x = d in P else Q behaves like P in which x is replaced
by d if d can be successfully evaluated and behaves like Q otherwise. Process
if M = N then P else Q behaves like P if M and N correspond to two equal
messages and behaves like Q otherwise. The replicated process !P behaves as an
unbounded number of copies of P .

A trace of a process P is any possible sequence of transitions in the presence
of an attacker that may read, forge, and send messages. Formally, the set of
traces trace(P) is defined as follows.

trace(P) = {(w, φ, σ)|({P}; ∅; ∅) w−−→∗ (P;φ;σ)}

Example 1. Consider the private authentication protocol (PA) presented in
Sect. 2. The process Pb(kb, pk(ka)) corresponding to responder B answering a
request from A has already been defined in Sect. 2.3. The process Pa(ka, pk(kb))
corresponding A willing to talk to B is:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)

Altogether, a session between A and B is represented by the process:

Pa(ka, pk(kb)) | Pb(kb, pk(ka))

where ka, kb ∈ BK, which models that the attacker initially does not know ka, kb.

168 V. Cortier et al.

({P1 | P2} ∪ P;φ;σ) τ−−→ ({P1, P2} ∪ P;φ;σ) PAR

({0} ∪ P;φ;σ) τ−−→ (P;φ;σ) ZERO

({new n.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEW

({new k.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEWKEY

({out(t).P} ∪ P;φ;σ)
new axn.out(axn)−−−−−−−−−−−−→({P} ∪ P;φ ∪ {t/axn};σ) OUT

if tσ is a ground term, (tσ) ↓�= ⊥, axn ∈ AX and n = |φ| + 1

({in(x).P} ∪ P;φ;σ)
in(R)−−−−→({P} ∪ P;φ;σ ∪ {(Rφσ) ↓ /x}) IN

if R is an attacker term such that vars(R) ⊆ dom(φ),
and(Rφσ) ↓�= ⊥

({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ ∪ {(dσ) ↓ /x}) LET-IN

if dσ is ground and (dσ) ↓�= ⊥
({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) LET-ELSE

if dσ is ground and (dσ) ↓= ⊥, i.e. d fails
({if M = N then P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) IF-THEN

if M , N are messages such that Mσ, Nσ are ground,
(Mσ) ↓�= ⊥, (Nσ) ↓�= ⊥, and Mσ = Nσ

({if M = N then P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) IF-ELSE

if M , N are messages such that Mσ, Nσ are ground
and (Mσ) ↓= ⊥ or (Nσ) ↓= ⊥ or Mσ �= Nσ

({!P} ∪ P;φ;σ) τ−−→ ({P, !P} ∪ P;φ;σ) REPL

Fig. 3. Semantics

An example of a trace describing an “honest” execution, where the attacker
does not interfere with the intended run of the protocol, can be written as (tr, φ)
where

tr =τ new x1.out(x1).in(x1).new x2.out(x2).in(x2)

and

φ = {x1 �→ aenc(〈Na, pk(ka)〉, pk(kb)), x2 �→ aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka))}.

The trace tr describes A outputting the first message of the protocol, which is
stored in φ(x1). The attacker then simply forwards φ(x1) to B. B then performs
several silent actions (decrypting the message, comparing its content to pk(ka)),
and outputs a response, which is stored in φ(x2) and forwarded to A by the
attacker.

l ::= LL | HL | HH
KT ::= keyl(T) | eqkeyl(T) | seskeyl,a(T) with a ∈ {1, ∞}
T ::= l | T ∗ T | T ∨ T | �τ l,a

n ; τ l′,a
m � with a ∈ {1, ∞}

| KT | pkey(KT) | vkey(KT) | (T)T | {T}T

Fig. 4. Types for terms

Equivalence Properties by Typing in Cryptographic Branching Protocols 169

3.3 Equivalence

When processes evolve, sent messages are stored in a substitution φ while the
values of variables are stored in σ. A frame is simply a substitution ψ where
dom(ψ) ⊆ AX . It represents the knowledge of an attacker. In what follows, we
will typically consider φσ.

Intuitively, two sequences of messages are indistinguishable to an attacker
if he cannot perform any test that could distinguish them. This is typically
modelled as static equivalence [2]. Here, we consider of variant of [2] where the
attacker is also given the ability to observe when the evaluation of a term fails,
as defined for example in [25].

Definition 1 (Static Equivalence). Two ground frames φ and φ′ are stati-
cally equivalent if and only if they have the same domain, and for all attacker
terms R,S with variables in dom(φ) = dom(φ′), we have

(Rφ =↓ Sφ) ⇐⇒ (Rφ′ =↓ Sφ′)

Then two processes P and Q are in equivalence if no matter how the adversary
interacts with P , a similar interaction may happen with Q, with equivalent
resulting frames.

Definition 2 (Trace Equivalence). Let P , Q be two processes. We write P �t

Q if for all (s, φ, σ) ∈ trace(P), there exists (s′, φ′, σ′) ∈ trace(Q) such that
s =τ s′ and φσ and φ′σ′ are statically equivalent. We say that P and Q are
trace equivalent, and we write P ≈t Q, if P �t Q and Q �t P .

Note that this definition already includes the attacker’s behaviour, since pro-
cesses may input any message forged by the attacker.

Example 2. As explained in Sect. 2, anonymity is modelled as an equivalence
property. Intuitively, an attacker should not be able to know which agents are
executing the protocol. In the case of protocol PA, presented in Example 1, the
anonymity property can be modelled by the following equivalence:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

4 A Type System for Dynamic Keys

Types. In our type system we give types to pairs of messages – one from the
left process and one from the right one. We store the types of nonces, variables,
and keys in a typing environment Γ . While we store a type for a single nonce
or variable occurring in both processes, we assign a potentially different type to
every different combination of keys (k, k′) used in the left and right process – so
called bikeys. This is an important non-standard feature that enables us to type
protocols using different encryption and decryption keys.

The types for messages are defined in Fig. 4 and explained below. Selected
subtyping rules are given in Fig. 5. We assume three security labels HH, HL and LL,

170 V. Cortier et al.

eqkeyl(T) <: keyl(T)
(SEQKEY)

seskeyl,a(T) <: eqkeyl(T)
(SSESKEY)

keyl(T) <: l
(SKEY)

T <: eqkeyl(T ′)
pkey(T) <: LL

(SPUBKEY)
T <: eqkeyl(T ′)
vkey(T) <: LL

(SVKEY)

T <: T ′

(T)T ′′ <: (T ′)T ′′
(SENC)

T <: T ′

{T}T ′′ <: {T ′}T ′′
(SAENC)

Fig. 5. Selected subtyping rules

ranged over by l, whose first (resp. second) component denotes the confidentiality
(resp. integrity) level. Intuitively, values of high confidentiality may never be
output to the network in plain, and values of high integrity are guaranteed
not to originate from the attacker. Pair types T ∗ T ′ describe the type of their
components and the type T ∨ T ′ is given to messages that can have type T or
type T ′.

The type τ l,a
n describes nonces and constants of security level l: the label a

ranges over {∞, 1}, denoting whether the nonce is bound within a replication or
not (constants are always typed with a = 1). We assume a different identifier n
for each constant and restriction in the process. The type τ l,1

n is populated by a
single name, (i.e., n describes a constant or a non-replicated nonce) and τ l,∞

n is
a special type, that is instantiated to τ l,1

nj
in the jth replication of the process.

Type �τ l,a
n ; τ l′,a

m � is a refinement type that restricts the set of possible values of
a message to values of type τ l,a

n on the left and type τ l′,a
m on the right. For a

refinement type �τ l,a
n ; τ l,a

n � with equal types on both sides we write τ l,a
n .

Keys can have three different types ranged over by KT , ordered by a subtyping
relation (SEqKey, SSesKey): seskeyl,a(T) <: eqkeyl(T) <: keyl(T). For all
three types, l denotes the security label (SKey) of the key and T is the type of
the payload that can be encrypted or signed with these keys. This allows us to
transfer typing information from one process to another one: e.g. when encrypting,
we check that the payload type is respected, so that we can be sure to get a value
of the payload type upon decryption. The three different types encode different
relations between the left and the right component of a bikey (k, k′). While type
keyl(T) can be given to bikeys with different components k �= k′, type eqkeyl(T)
ensures that the keys are equal on both sides in the specific typed instruction.
Type seskeyl,a(T) additionally guarantees that the key is always the same on the
left and the right throughout the whole process. We allow for dynamic generation
of keys of type seskeyl,a(T) and use a label a to denote whether the key is generated
under replication or not – just like for nonce types.

For a key of type T , we use types pkey(T) and vkey(T) for the correspond-
ing public key and verification key, and types (T ′)T and {T ′}T for symmetric
and asymmetric encryptions of messages of type T ′ with this key. Public keys
and verification keys can be treated as LL if the corresponding keys are equal
(SPubkey, SVkey) and subtyping on encryptions is directly induced by sub-
typing of the payload types (SEnc, SAenc) (Fig. 6).

Equivalence Properties by Typing in Cryptographic Branching Protocols 171

Γ (n) = τ l,a
n Γ (m) = τ l,a

m l ∈ {HH, HL}
Γ � n ∼ m : l → ∅ (TNONCE)

Γ (n) = τ LL,a
n

Γ � n ∼ n : LL → ∅ (TNONCEL)

Γ (x) = T

Γ � x ∼ x : T → ∅ (TVAR)
Γ � M ∼ N : T ′ → c T ′ <: T

Γ � M ∼ N : T → c
(TSUB)

Γ � M ∼ N : T → c Γ � M ′ ∼ N ′ : T ′ → c′

Γ � 〈M, M ′〉 ∼ 〈N, N ′〉 : T ∗ T ′ → c ∪ c′ (TPAIR)

M, N well formed

Γ � M ∼ N : HL → ∅ (THIGH)

Γ (k, k′) = T

Γ � k ∼ k′ : T → ∅ (TKEY)
k ∈ keys(Γ) ∪ FK

Γ � pk(k) ∼ pk(k) : LL → ∅ (TPUBKEYL)

Γ � M ∼ N : T → ∅ ∃T ′, l.T <: keyl(T ′)
Γ � pk(M) ∼ pk(N) : pkey(T) → ∅ (TPUBKEY)

Γ � M ∼ N : T → c Γ � M ′ ∼ N ′ : T ′ → c′

T ′ = LL ∨ (∃T ′′, T ′′′, l.T ′ = pkey(T ′′) ∧ T ′′ <: keyl(T ′′′))
Γ � aenc(M, M ′) ∼ aenc(N, N ′) : {T}T ′ → c ∪ c′ (TAENC)

Γ � M ∼ N : {T}pkey(T ′) → c T ′ <: keyHH(T)

Γ � M ∼ N : LL → c ∪ {M ∼ N} (TAENCH)

Γ � M ∼ N : {LL}T → c (T = pkey(T ′) ∧ T ′ <: eqkeyl(T ′′)) or T = LL

Γ � M ∼ N : LL → c
(TAENCL)

Fig. 6. Selected rules for messages

Constraints. When typing messages, we generate constraints of the form
(M ∼ N), meaning that the attacker may see M and N in the left and right
process, respectively, and these two messages are thus required to be indistin-
guishable.

Due to space reasons we only present a few selected rules that are character-
istic of the typing of branching protocols. The omitted rules are similar in spirit
to the presented ones or are standard rules for equivalence typing [28].

4.1 Typing Messages

The typing judgement for messages is of the form Γ � M ∼ N : T → c which
reads as follows: under the environment Γ , M and N are of type T and either this
is a high confidentiality type (i.e., M and N are not disclosed to the attacker) or
M and N are indistinguishable for the attacker assuming the set of constraints
c is consistent.

Confidential nonces can be given their label from the typing environment
in rule TNonce. Since their label prevents them from being released in clear,
the attacker cannot observe them and we do not need to add constraints for

172 V. Cortier et al.

them. They can however be output in encrypted form and will then appear in
the constraints of the encryption. Public nonces (labeled as LL) can be typed if
they are equal on both sides (rule TNonceL). These are standard rules, as well
as the rules TVar, TSub, TPair and THigh [28].

A non-standard rule that is crucial for the typing of branching protocols is
rule TKey. As the typing environment contains types for bikeys (k, k′) this rule
allows us to type two potentially different keys with their type from the environ-
ment. With the standard rule TPubKeyL we can only type a public key of the
same keys on both sides, while rule TPubKey allows us to type different public
keys pk(M), pk(N), provided we can show that there exists a valid key type for
the terms M and N . This highlights another important technical contribution
of this work, as compared to existing type systems for equivalence: we do not
only support a fixed set of keys, but also allow for the usage of keys in variables,
that have been received from the network.

To show that a message is of type {T}T ′ – a message of type T encrypted
asymmetrically with a key of type T ′, we have to show that the corresponding
terms have exactly these types in rule TAenc. The generated constraints are
simply propagated. In addition we need to show that T ′ is a valid type for a
public key, or LL, which models untrusted keys received from the network. Note,
that this rule allows us to encrypt messages with different keys in the two pro-
cesses. For encryptions with honest keys (label HH) we can use rule TAenc to
give type LL to the messages, if we can show that the payload type is respected.
In this case we add the entire encryptions to the constraints, since the attacker
can check different encryptions for equality, even if he cannot obtain the plain-
text. Rule TAencL allows us to give type LL to encryptions even if we do not
respect the payload type, or if the key is corrupted. However, we then have to
type the plaintexts with type LL since we cannot guarantee their confidential-
ity. Additionally, we have to ensure that the same key is used in both processes,
because the attacker might possess the corresponding private keys and test which
decryption succeeds. Since we already add constraints for giving type LL to the
plaintext, we do not need to add any additional constraints.

4.2 Typing Processes

From now on, we assume that processes assign a type to freshly generated nonces
and keys. That is, new n.P is now of the form new n : T. P . This requires a (very
light) type annotation from the user. The typing judgement for processes is of
the form Γ � P ∼ Q → C and can be interpreted as follows: If two processes
P and Q can be typed in Γ and if the generated constraint set C is consistent,
then P and Q are trace equivalent. We present selected rules in Fig. 7.

Rule POut states that we can output messages to the network if we can
type them with type LL, i.e., they are indistinguishable to the attacker, pro-
vided that the generated set c of constraints is consistent. The constraints
of c are then added to all constraints in the constraint set C. We define
C∪∀c′ := {(c ∪ c′, Γ) | (c, Γ) ∈ C}. This rule, as well as the rules PZero, PIn,
PNew, PPar, and PLet, are standard rules [28].

Equivalence Properties by Typing in Cryptographic Branching Protocols 173

Γ � P ∼ Q → C Γ � M ∼ N : LL → c

Γ � out(M).P ∼ out(N).Q → C∪∀c
(POUT)

Γ � � Γ does not contain union types

Γ � 0 ∼ 0 → (∅, Γ)
(PZERO)

Γ, x : LL � P ∼ Q → C

Γ � in(x).P ∼ in(x).Q → C
(PIN)

Γ, n : τ l,a
n � P ∼ Q → C

Γ � new n : τ l,a
n .P ∼ new n : τ l,a

n .Q → C
(PNEW)

Γ, (k, k) : seskeyl,a(T) � P ∼ Q → C

Γ � new k : seskeyl,a(T).P ∼ new k : seskeyl,a(T).Q → C
(PNEWKEY)

Γ � P ∼ Q → C Γ � P ′ ∼ Q′ → C′

Γ � P | P ′ ∼ Q | Q′ → C∪×C′ (PPAR)

Γ �d t ∼ t′ : T Γ, x : T � P ∼ Q → C Γ � P ′ ∼ Q′ → C′

Γ � let x = t in P else P ′ ∼ let x = t′
in Q else Q′ → C ∪ C′ (PLET)

(PLETADECSAME)
Γ (y) = LL Γ (k, k) <: keyHH(T)

Γ, x : T � P ∼ Q → C Γ, x : LL � P ∼ Q → C′ Γ � P ′ ∼ Q′ → C′′

(∀T ′.∀k′ �= k. Γ (k, k′) <: keyHH(T ′) ⇒ Γ, x : T ′ � P ∼ Q′ → Ck′)
(∀T ′.∀k′ �= k. Γ (k′, k) <: keyHH(T ′) ⇒ Γ, x : T ′ � P ′ ∼ Q → C′

k′)
Γ � let x = adec(y, k) in P else P ′ ∼ let x = adec(y, k) in Q else Q′

→ C ∪ C′ ∪ C′′ ∪ (
⋃

k′
Ck′) ∪ (

⋃

k′
C′

k′)

Γ � P ∼ Q → C1

Γ � P ∼ Q′ → C2 Γ � P ′ ∼ Q → C3 Γ � P ′ ∼ Q′ → C4

Γ � if M = M ′
then P else P ′ ∼ if N = N ′

then Q else Q′

→ C1 ∪ C2 ∪ C3 ∪ C4

(PIFALL)

Fig. 7. Selected rules for processes

Rule PNewKey allows us to generate new session keys at runtime, which
models security protocols more faithfully. It also allows us to generate infinitely
many keys, by introducing new keys under replication.

Rule PLetAdecSame treats asymmetric decryptions where we use the same
fixed honest key (label HH) for decryptions in both processes. Standard type sys-
tems for equivalence have a simplifying (and restrictive) invariant that guaran-
tees that encryptions are always performed using the same keys in both pro-
cesses and hence guarantee that both processes always take the same branch in
decryption (compare rule PLet). In our system however, we allow encryptions
with potentially different keys, which requires cross-case validation in order to
retain soundness. Still, the number of possible combinations of encryption keys
is limited by the assignments in the typing environment Γ . To cover all the
possibilities, we type the following combinations of continuation processes:

174 V. Cortier et al.

Γ (k, k) <: keyLL(T) Γ (x) = LL

Γ �d adec(x, k) ∼ adec(x, k) : LL
(DADECL)

Γ (y) = seskeyHH,a(T) Γ (x) = LL

Γ �d adec(x, y) ∼ adec(x, y) : T ∨ LL
(DADECH’)

(Γ (y) = seskeyLL,a(T) ∨ Γ (y) = LL) Γ (x) = LL

Γ �d adec(x, y) ∼ adec(x, y) : LL
(DADECL’)

Γ (k, k) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))

Γ �d adec(x, k) ∼ adec(x, k) : T
(DADECT)

Γ (y) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))

Γ �d adec(x, y) ∼ adec(x, y) : T
(DADECT’)

Fig. 8. Selected destructor rules

– Both then branches: In this case we know that key k was used for encryption
on both sides. Because of Γ (k, k) = keyHH(T), we know that in this case the
payload type is T and we type the continuation with Γ, x : T .
Because the message may also originate from the attacker (who also has access
to the public key), we have to type the two then branches also with Γ, x : LL.

– Both else branches: If decryption fails on both sides, we type the two else
branches without introducing any new variables.

– Left then, right else: The encryption may have been created with key k on
the left side and another key k′ on the right side. Hence, for each k′ �= k, such
that Γ (k, k′) maps to a key type with label HH and payload type T ′, we have
to typecheck the left then branch and the right else branch with Γ, x : T ′.

– Left else, right then: This case is analogous to the previous one.

The generated set of constraints is simply the union of all generated constraints
for the subprocesses. Rule PIfAll lets us typecheck any conditional by simply
checking the four possible branch combinations. In contrast to the other rules
for conditionals that we present in a companion technical report, this rule does
not require any other preconditions or checks on the terms M,M ′, N,N ′.

Destructor Rules. The rule PLet requires that a destructor application succeeds
or fails equally in the two processes. To ensure this property, it relies on addi-
tional rules for destructors. We present selected rules in Fig. 8. Rule DAdecL

is a standard rule that states that a decryption of a variable of type LL with an
untrusted key (label LL) yields a result of type LL. Decryption with a trusted
(label HH) session key gives us a value of the key’s payload type or type LL in
case the encryption was created by the attacker using the public key. Here it
is important that the key is of type seskeyHH,a(T), since this guarantees that
the key is never used in combination with a different key and hence decryption
will always equally succeed or fail in both processes. Rule DAdecL’ is similar to

Equivalence Properties by Typing in Cryptographic Branching Protocols 175

* =
〈y1, 〈Nb, pk(kb)〉〉, Nb well formed

Γ � 〈y1, 〈Nb, pk(kb)〉〉 ∼ Nb : HL → ∅ THIGH

∗

Γ (ka, k) = keyHH(HL)

Γ � ka ∼ k : keyHH(HL) → ∅ TKEY

Γ � pk(ka) ∼ pk(k) : pkey(keyHH(HL)) → ∅ TPUBKEY

Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : {HL}pkey(keyHH(HL)) → ∅ TAENC

Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : LL → C
TAENCH

where C = {aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k))}.

Fig. 9. Type derivation for the response to A and the decoy message

rule DAdecL except it uses a variable for decryption instead of a fixed key. Rule
DAdecT treats the case in which we know that the variable x is an asymmetric
encryption of a specific type. If the type of the key used for decryption matches
the key type used for encryption, we know the exact type of the result of a suc-
cessful decryption. DAdecT’ is similar to DAdecT, with a variable as key. In
a companion technical report we present similar rules for symmetric decryption
and verification of signatures.

4.3 Typing the Private Authentication Protocol

We now show how our type system can be applied to type the Private Authen-
tication protocol presented in Sect. 2.3, by showing the most interesting parts of
the derivation. We type the protocol using the initial environment Γ presented
in Fig. 1.

We focus on the responder process Pb and start with the asymmetric decryp-
tion. As we use the same key kb in both processes, we apply rule PLetAdec-

Same. We have Γ (x) = LL by rule PIn and Γ (kb, kb) = keyHH(HH, LL). We do
not have any other entry using key kb in Γ . We hence typecheck the two then
branches once with Γ, y : (HH ∗ LL) and once with Γ, y : LL, as well as the two
else branches (which are just 0 in this case).

Typing the let expressions is straightforward using rule PLet. In the con-
ditional we check y2 = pk(ka) in the left process and y2 = pk(kc) in the right
process. Since we cannot guarantee which branches are taken or even if the same
branch is taken in the two processes, we use rule PIfAll to typecheck all four
possible combinations of branches. We now focus on the case where A is success-
fully authenticated in the left process and is rejected in the right process. We
then have to typecheck B’s positive answer together with the decoy message:
Γ � aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nc, pk(k)) : LL.

Figure 9 presents the type derivation for this example. We apply rule TAenc

to give type LL to the two terms, adding the two encryptions to the constraint set.
Using rule TAencH we can show that the encryptions are well-typed with type
{HL}pkey(keyHH(HL)). The type of the payload is trivially shown with rule THigh.

176 V. Cortier et al.

To type the public key, we use rule TPubKey followed by rule TKey, which
looks up the type for the bikey (ka, k) in the typing environment Γ .

5 Consistency

Our type system collects constraints that intuitively correspond to (symbolic)
messages that the attacker may see (or deduce). Therefore, two processes are in
trace equivalence only if the collected constraints are in static equivalence for
any plausible instantiation.

However, checking static equivalence of symbolic frames for any instantia-
tion corresponding to a real execution may be as hard as checking trace equiva-
lence [24]. Conversely, checking static equivalence for any instantiation may be
too strong and may prevent proving equivalence of processes. Instead, we use
again the typing information gathered by our type system and we consider only
instantiations that comply with the type. Actually, we even restrict our attention
to instantiations where variables of type LL are only replaced by deducible terms.
This last part is a key ingredient for considering processes with dynamic keys.
Hence, we define a constraint to be consistent if the corresponding two frames
are in static equivalence for any instantiation that can be typed and produces
constraints that are included in the original constraint.

Formally, we first introduce the following ingredients:

– and denote the frames that are composed of the left and the right
terms of the constraints respectively (in the same order).

– φΓ
LL denotes the frame that is composed of all low confidentiality nonces and

keys in Γ , as well as all public encryption keys and verification keys in Γ .
This intuitively corresponds to the initial knowledge of the attacker.

– Two ground substitutions σ, σ′ are well-typed in Γ with constraint cσ if they
preserve the types for variables in Γ , i.e., for all x, Γ � σ(x) ∼ σ′(x) : Γ (x) →
cx, and cσ =

⋃
x∈dom(Γ) cx.

The instantiation of a constraint is defined as expected. If c is a set of constraints,
and σ, σ′ are two substitutions, let �c�σ,σ′ be the instantiation of c by σ on the
left and σ′ on the right, that is, �c�σ,σ′ = {Mσ ∼ Nσ′ | M ∼ N ∈ c}.

Definition 3 (Consistency). A set of constraints c is consistent in an envi-
ronment Γ if for all substitutions σ, σ′ well-typed in Γ with a constraint cσ such
that cσ ⊆ �c�σ,σ′ , the frames φΓ

LL∪ (c)σ and φΓ
LL∪ (c)σ′ are statically equiva-

lent. We say that (c, Γ) is consistent if c is consistent in Γ and that a constraint
set C is consistent in Γ if each element (c, Γ) ∈ C is consistent.

Compared to [28], we now require cσ ⊆ �c�σ,σ′ . This means that instead of
considering any (well typed) instantiations, we only consider instantiations that
use fragments of the constraints. For example, this now imposes that low vari-
ables are instantiated by terms deducible from the constraint. This refinement
of consistency provides a tighter definition and is needed for non fixed keys, as
explained in the next section.

Equivalence Properties by Typing in Cryptographic Branching Protocols 177

6 Soundness

In this section, we provide our main results. First, soundness of our type system:
whenever two processes can be typed with consistent constraints, then they are
in trace equivalence. Then we show how to automatically prove consistency.
Finally, we explain how to lift these two first results from finite processes to
processes with replication. But first, we discuss why we cannot directly apply
the results from [28] developed for processes with long term keys.

6.1 Example

Consider the following example, typical for a key-exchange protocol: Alice
receives some key and uses it to encrypt, e.g. a nonce. Here, we consider a
semi-honest session, where an honest agent A is receiving a key from a dishon-
est agent D. Such sessions are typically considered in combination with honest
sessions.

C → A : aenc(〈k,C〉, pk(A))
A → C : aenc(n, k)

The process modelling the role of Alice is as follows.

PA = in(x). let x′ = adec(x, kA) in let y = π1(x′) in let z = π2(x′) in
if z = C then new n. out(enc(n, y))

When type-checking PA ∼ PA (as part as a more general process with honest
sessions), we would collect the constraint enc(n, y) ∼ enc(n, y) where y comes
from the adversary and is therefore a low variable (that is, of type LL). The app-
roach of [28] consisted in opening messages as much as possible. In this example,
this would yield the constraint y ∼ y which typically renders the constraint
inconsistent, as exemplified below.

When typechecking the private authentication protocol, we obtain con-
straints containing aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) (as seen
in Fig. 9), where y1 has type HL. Assume now that the constraint also contains
y ∼ y for some variable y of type LL and consider the following instantiations
of y and y1: σ(y1) = σ′(y1) = a for some constant a and σ(y) = σ′(y) =
aenc(Nb, pk(k)). Note that such an instantiation complies with the type since
Γ � σ(y) ∼ σ′(y) : LL → c for some constraint c. The instantiated constraint
would then contain

{aenc(〈a, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)),
aenc(Nb, pk(k)) ∼ aenc(Nb, pk(k))}

and the corresponding frames are not statically equivalent, which makes the
constraint inconsistent for the consistency definition of [28].

Therefore, our first idea consists in proving that we only collect constraints
that are saturated w.r.t. deduction: any deducible subterm can already be con-
structed from the terms of the constraint. Second, we show that for any exe-
cution, low variables are instantiated by terms deducible from the constraints.

178 V. Cortier et al.

This guarantees that our new notion of consistency is sound. The two results are
reflected in the next section.

6.2 Soundness

Our type system, together with consistency, implies trace equivalence.
Theorem 1 (Typing implies trace equivalence). For all P , Q, and C, for
all Γ containing only keys, if Γ � P ∼ Q → C and C is consistent, then P ≈t Q.

Example 3. We can typecheck PA, that is

Γ � Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ∼ Pa(ka, pk(kb)) | Pb(kb, pk(kc)) → CPA

where Γ has been defined in Fig. 1 and assuming that nonce Na of process Pa

has been annotated with type τ HH,1
Na

and nonce Nb of Pb has been annotated
with type τ HH,1

Nb
. The constraint set CPA can be proved to be consistent using the

procedure presented in the next section. Therefore, we can conclude that

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

which shows anonymity of the private authentication protocol.

The first key ingredient in the proof of Theorem 1 is the fact that any well-
typed low term is deducible from the constraint generated when typing it.
Lemma 1 (Low terms are recipes on their constraints). For all ground
messages M , N , for all Γ , c, if Γ � M ∼ N : LL → c then there exists an
attacker recipe R without destructors such that M = R((c) ∪ φΓ

LL) and N =
R((c) ∪ φΓ

LL).
The second key ingredient is a finer invariant on protocol executions: for

any typable pair of processes P,Q, any execution of P can be mimicked by
an execution of Q such that low variables are instantiated by well-typed terms
constructible from the constraint.

Lemma 2. For all processes P , Q, for all φ, σ, for all multisets of processes
P, constraint sets C, sequences s of actions, for all Γ containing only keys, if
Γ � P ∼ Q → C, C is consistent, and ({P}, ∅, ∅) s−→∗ (P, φ, σ), then there
exist a sequence s′ of actions, a multiset Q, a frame φ′, a substitution σ′, an
environment Γ ′, a constraint c such that:

– ({Q}, ∅, ∅) s′
−−→∗ (Q, φ′, σ′), with s =τ s′

– Γ ′ � φσ ∼ φ′σ′ : LL → c, and for all x ∈ dom(σ) ∩ dom(σ′), there exists cx

such that Γ ′ � σ(x) ∼ σ(x) : Γ ′(x) → cx and cx ⊆ c.

Note that this finer invariant guarantees that we can restrict our attention
to the instantiations considered for defining consistency.

As a by-product, we obtain a finer type system for equivalence, even for
processes with long term keys (as in [28]). For example, we can now prove equiv-
alence of processes where some agent signs a low message that comes from the
adversary. In such a case, we collect sign(x, k) ∼ sign(x, k) in the constraint,
where x has type LL, which we can now prove to be consistent (depending on
how x is used in the rest of the constraint).

Equivalence Properties by Typing in Cryptographic Branching Protocols 179

6.3 Procedure for Consistency

We devise a procedure check const(C) for checking consistency of a con-
straint C, depicted in Fig. 10. Compared to [28], the procedure is actually simpli-
fied. Thanks to Lemmas 1 and 2, there is no need to open constraints anymore.
The rest is very similar and works as follows:

– First, variables of refined type �τ l,1
m ; τ l′,1

n � are replaced by m on the left-hand-
side of the constraint and n on the right-hand-side.

– Second, we check that terms have the same shape (encryption, signature,
hash) on the left and on the right and that asymmetric encryption and hashes
cannot be reconstructed by the adversary (that is, they contain some fresh
nonce).

– The most important step consists in checking that the terms on the left satisfy
the same equalities than the ones on the right. Whenever two left terms M
and N are unifiable, their corresponding right terms M ′ and N ′ should be
equal after applying a similar instantiation.

For constraint sets without infinite nonce types, check const entails consis-
tency.

Theorem 2. Let C be a set of constraints such that

∀(c, Γ) ∈ C. ∀l, l′,m, p. Γ (x) �= �τ l,∞
m ; τ l′,∞

p �.

If check const(C) = true, then C is consistent.

Example 4. Continuing Example 3, typechecking the PA protocol yields the set
CPA of constraint sets. CPA contains in particular the set

{aenc(〈Na, pk(ka)〉, pk(kb)) ∼ aenc(〈Na, pk(ka)〉, pk(kb)),
aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k))}

where variable y1 has type HL (we also have the same constraint but where
y1 has type LL). The other constraint sets of CPA are similar and correspond
to the various cases (else branch of Pa with then branch of Pb, etc.). The
procedure check const returns true since no two terms can be unified, which
proves consistency. Similarly, the other constraints generated for PA can be
proved to be consistent applying check const.

6.4 From Finite to Replicated Processes

The previous results apply to processes without replication only. In the spirit
of [28], we lift our results to replicated processes. We proceed in two steps.

1. Whenever Γ � P ∼ Q → C, we show that:
[Γ]1∪· · ·∪ [Γ]n � [P]1| . . . |[P]n ∼ [Q]1| . . . |[Q]n → [C]1∪× · · · ∪×[C]n,
where [Γ]i is intuitively a copy of Γ , where variables x have been replaced
by xi, and nonces or keys n of infinite type τ l,∞

n (or seskeyl,∞(T)) have been
replaced by ni. The copies [P]i, [Q]i, and [C]i are defined similarly.

180 V. Cortier et al.

Fig. 10. Procedure for checking consistency.

Equivalence Properties by Typing in Cryptographic Branching Protocols 181

2. We cannot directly check consistency of infinitely many constraints of the
form [C]1∪× · · · ∪×[C]n. Instead, we show that it is sufficient to check con-
sistency of two copies [C]1∪×[C]2 only. The reason why we need two copies
(and not just one) is to detect when messages from different sessions may
become equal.

Formally, we can prove trace equivalence of replicated processes.

Theorem 3. Consider P , Q, P ′, Q′, C, C ′, such that P , Q and P ′, Q′ do
not share any variable. Consider Γ , containing only keys and nonces with finite
types.

Assume that P and Q only bind nonces and keys with infinite nonce types, i.e.
using new m : τ l,∞

m and new k : seskeyl,∞(T) for some label l and type T ; while
P ′ and Q′ only bind nonces and keys with finite types, i.e. using new m : τ l,1

m

and new k : seskeyl,1(T).
Let us abbreviate by new n the sequence of declarations of each nonce m ∈

dom(Γ) and session key k such that Γ (k, k) = seskeyl,1(T) for some l, T . If

– Γ � P ∼ Q → C,
– Γ � P ′ ∼ Q′ → C ′,
– check const([C]1∪×[C]2∪×[C ′]1) = true,

then new n. ((!P) | P ′) ≈t new n. ((!Q) | Q′).

Interestingly, Theorem 3 allows to consider a mix of finite and replicated pro-
cesses.

7 Experimental Results

We implemented our typechecker as well as our procedure for consistency in a
prototype tool TypeEq. We adapted the original prototype of [28] to implement
additional cases corresponding to the new typing rules. This also required to
design new heuristics w.r.t. the order in which typing rules should be applied.
Of course, we also had to support for the new bikey types, and for arbitrary terms
as keys. This represented a change of about 40% of the code of the software. We
ran our experiments on a single Intel Xeon E5-2687Wv3 3.10 GHz core, with
378 GB of RAM (shared with the 19 other cores). Actually, our own prototype
does not require a large amount of RAM. However, some of the other tools we
consider use more than 64 GB of RAM on some examples (at which point we
stopped the experiment). More precise figures about our tool are provided in the
table of Fig. 11. The corresponding files can be found at [27].

We tested TypeEq on two symmetric key protocols that include a handshake
on the key (Yahalom-Lowe and Needham-Schroeder symmetric key protocols).
In both cases, we prove key usability of the exchanged key. Intuitively, we show
that an attacker cannot distinguish between two encryptions of public constants:
P.out(enc(a, k)) ≈t P.out(enc(b, k)). We also consider one standard asymmet-
ric key protocol (Needham-Schroeder-Lowe protocol), showing strong secrecy of
the exchanged nonce.

182 V. Cortier et al.

Helios [4] is a well known voting protocol. We show ballot privacy, in the
presence of a dishonest board, assuming that voters do not revote (otherwise
the protocol is subject to a copy attack [39], a variant of [30]). We consider a
more precise model than the previous Helios models which assume that voters
initially know the election public key. Here, we model the fact that voters actu-
ally receive the (signed) freshly generated election public key from the network.
The BAC protocol is one of the protocols embedded in the biometric passport [1].
We show anonymity of the passport holder P (A) ≈t P (B). Actually, the only
data that distinguish P (A) from P (B) are the private keys. Therefore we con-
sider an additional step where the passport sends the identity of the agent to
the reader, encrypted with the exchanged key. Finally, we consider the private
authentication protocol, as described in this paper.

7.1 Bounded Number of Sessions

We first compare TypeEq with the tools for a bounded number of sessions.
Namely, we consider Akiss [22], APTE [23] as well as its optimised variant
with partial order reduction APTE-POR [10], SPEC [32], and SatEquiv [26].
We step by step increase the number of sessions until we reach a “complete”
scenario where each role is instantiated by A talking to B, A talking to C, B
talking to A, and B talking to C, where A,B are honest while C is dishonest.

Fig. 11. Experimental results for the bounded case

Equivalence Properties by Typing in Cryptographic Branching Protocols 183

This yields 14 sessions for symmetric-key protocols with two agents and one
server, and 8 sessions for a protocol with two agents. In some cases, we further
increase the number of sessions (replicating identical scenarios) to better com-
pare tools performance. The results of our experiments are reported in Fig. 11.
Note that SatEquiv fails to cover several cases because it does not handle asym-
metric encryption nor else branches.

7.2 Unbounded Number of Sessions

We then compare TypeEq with Proverif. As shown in Fig. 12, the performances
are similar except that ProVerif cannot prove Helios. The reason lies in the
fact that Helios is actually subject to a copy attack if voters revote and ProVerif
cannot properly handle processes that are executed only once. Similarly, Tamarin
cannot properly handle the else branch of Helios (which models that the ballot
box rejects duplicated ballots). Tamarin fails to prove that the underlying check
either succeeds or fails on both sides.

Protocols ProVerif TypeEq
Helios x 0.005s

Needham-Schroeder (sym) 0.23s 0.016s
Needham-Schroeder-Lowe 0.08s 0.008s

Yahalom-Lowe 0.48s 0.020s
Private Authentication 0.034s 0.008s

BAC 0.038s 0.005s

Fig. 12. Experimental results for an unbounded number of sessions

8 Conclusion and Discussion

We devise a new type system to reason about keys in the context of equivalence
properties. Our new type system significantly enhances the preliminary work
of [28], covering a larger class of protocols that includes key-exchange proto-
cols, protocols with setup phases, as well as protocols that branch differently
depending on the decryption key.

Our type system requires a light type annotation that can be directly inferred
from the structure of the messages. As future work, we plan to develop an auto-
matic type inference system. In our case study, the only intricate case is the
Helios protocol where the user has to write a refined type that corresponds to
an over-approximation of any encrypted message. We plan to explore whether
such types could be inferred automatically.

We also plan to study how to add phases to our framework, in order to cover
more properties (such as unlinkability). This would require to generalize our type
system to account for the fact that the type of a key may depend on the phase
in which it is used.

184 V. Cortier et al.

Another limitation of our type system is that it does not address pro-
cesses with too dissimilar structure. While our type system goes beyond diff-
equivalence, e.g. allowing else branches to be matched with then branches, we
cannot prove equivalence of processes where traces of P are dynamically mapped
to traces of Q, depending on the attacker’s behaviour. Such cases occur for exam-
ple when proving unlinkability of the biometric passport. We plan to explore how
to enrich our type system with additional rules that could cover such cases, tak-
ing advantage of the modularity of the type system.

Conversely, the fact that our type system discards processes that are in equiv-
alence shows that our type system proves something stronger than trace equiv-
alence. Indeed, processes P and Q have to follow some form of uniformity. We
could exploit this to prove stronger properties like oblivious execution, prob-
ably further restricting our typing rules, in order to prove e.g. the absence of
side-channels of a certain form.

Acknowledgments. This work has been partially supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research (grant
agreements No. 645865-SPOOC and No. 771527-BROWSEC).

References

1. Machine readable travel document. Technical report 9303. International Civil Avi-
ation Organization (2008)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2001), pp. 104–115. ACM (2001)

3. Abadi, M., Fournet, C.: Private authentication. Theoret. Comput. Sci. 322(3),
427–476 (2004)

4. Adida, B.: Helios: web-based open-audit voting. In: 17th Conference on Security
Symposium, SS 2008, pp. 335–348 (2008)

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: 2nd IEEE Computer Security Foun-
dations Symposium (CSF 2010). IEEE Computer Society Press (2010)

6. Armando, A., et al.: The AVISPA Tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

7. Backes, M., Catalin, H., Maffei, M.: Union, intersection and refinement types and
reasoning about type disjointness for secure protocol implementations. J. Comput.
Secur. 22(2), 301–353 (2014)

8. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: 21st IEEE Computer Security Foun-
dations Symposium, CSF 2008, pp. 195–209. IEEE Computer Society (2008)

9. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy, SP 2008, pp. 202–215. IEEE Computer Soci-
ety (2008)

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27

Equivalence Properties by Typing in Cryptographic Branching Protocols 185

10. Baelde, D., Delaune, S., Hirschi, L.: Partial order reduction for security proto-
cols. In: Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR 2015). LIPIcs, vol. 42, pp. 497–510. Leibniz-Zentrum für Informatik
(2015)

11. Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equiv-
alence. In: 22nd ACM SIGSAC Conference on Computer and Communications
Security (ACM CCS 2015), pp. 1144–1155. ACM, October 2015

12. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–
8:45 (2011)

13. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop (CSFW 2014), pp. 82–96.
IEEE Computer Society, June 2001

14. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

15. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Logic Algebraic Program. 75(1), 3–51 (2008)

16. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-aware authorization
policies for statically typed cryptographic protocols. In: 24th IEEE Computer Secu-
rity Foundations Symposium, CSF 2011, pp. 83–98. IEEE Computer Society (2011)

17. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Logical foundations of secure
resource management in protocol implementations. In: Basin, D., Mitchell, J.C.
(eds.) POST 2013. LNCS, vol. 7796, pp. 105–125. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36830-1 6

18. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Affine refinement types for
secure distributed programming. ACM Trans. Program. Lang. Syst. 37(4), 11:1–
11:66 (2015)

19. Bugliesi, M., Focardi, R., Maffei, M.: Authenticity by tagging and typing. In: 2004
ACM Workshop on Formal Methods in Security Engineering, FMSE 2004, pp.
1–12. ACM (2004)

20. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed analyses of authentication
protocols. In: 18th IEEE Workshop on Computer Security Foundations, CSFW
2005, pp. 112–125. IEEE Computer Society (2005)

21. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic types for authentication. J. Comput.
Secur. 15(6), 563–617 (2007)

22. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence proper-
ties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
108–127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-
2 6

23. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 50

24. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theoret. Comput. Sci. 492, 1–39 (2013)

25. Cheval, V., Cortier, V., Plet, A.: Lengths may break privacy – or how to check
for equivalences with length. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 708–723. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 50

26. Cortier, V., Delaune, S., Dallon, A.: SAT-Equiv: an efficient tool for equivalence
properties. In: Proceedings of the 30th IEEE Computer Security Foundations Sym-
posium (CSF 2017). IEEE Computer Society Press, August 2017

https://doi.org/10.1007/978-3-642-36830-1_6
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/978-3-642-39799-8_50
https://doi.org/10.1007/978-3-642-39799-8_50

186 V. Cortier et al.

27. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: TypeEq. https://members.loria.
fr/JLallemand/files/typing

28. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: A type system for privacy
properties. In: 24th ACM Conference on Computer and Communications Security
(CCS 2017), pp. 409–423. ACM (2017)

29. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: Equivalence properties by typ-
ing in cryptographic branching protocols. Research report, Université de Lorraine,
CNRS, Inria, LORIA; TU Wien, February 2018. https://hal.archives-ouvertes.fr/
hal-01715957

30. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

31. Cremers, C.J.F.: The Scyther tool: verification, falsification, and analysis of secu-
rity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 38

32. Dawson, J., Tiu, A.: Automating open bisimulation checking for the spi-calculus.
In: IEEE Computer Security Foundations Symposium (CSF 2010) (2010)

33. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

34. Eigner, F., Maffei, M.: Differential privacy by typing in security protocols. In: 26th
IEEE Computer Security Foundations Symposium, CSF 2013, pp. 272–286. IEEE
Computer Society (2013)

35. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoret. Comput. Sci.
367(1–2), 162–202 (2006)

36. Focardi, R., Maffei, M.: Types for security protocols. In: Formal Models and Tech-
niques for Analyzing Security Protocols, Cryptology and Information Security
Series, chap. 7, vol. 5, pp. 143–181. IOS Press (2011)

37. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. J. Comput.
Secur. 11(4), 451–519 (2003)

38. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

39. Roenne, P.: Private communication (2016)
40. Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: A formal definition of pro-

tocol indistinguishability and its verification using Maude-NPA. In: Mauw, S.,
Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 162–177. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11851-2 11

https://members.loria.fr/JLallemand/files/typing
https://members.loria.fr/JLallemand/files/typing
https://hal.archives-ouvertes.fr/hal-01715957
https://hal.archives-ouvertes.fr/hal-01715957
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-11851-2_11

Equivalence Properties by Typing in Cryptographic Branching Protocols 187

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Equivalence Properties by Typing in Cryptographic Branching Protocols
	1 Introduction
	2 High-Level Description
	2.1 Background
	2.2 Limitation
	2.3 Encrypting with Different Keys
	2.4 Decrypting Non-uniformly

	3 Model
	3.1 Terms
	3.2 Processes
	3.3 Equivalence

	4 A Type System for Dynamic Keys
	4.1 Typing Messages
	4.2 Typing Processes
	4.3 Typing the Private Authentication Protocol

	5 Consistency
	6 Soundness
	6.1 Example
	6.2 Soundness
	6.3 Procedure for Consistency
	6.4 From Finite to Replicated Processes

	7 Experimental Results
	7.1 Bounded Number of Sessions
	7.2 Unbounded Number of Sessions

	8 Conclusion and Discussion
	References

