
Transcompiling Firewalls

Chiara Bodei1, Pierpaolo Degano1, Riccardo Focardi2, Letterio Galletta1,3P(B),
and Mauro Tempesta2

1 Università di Pisa, Pisa, Italy
galletta@di.unipi.it

2 Università Ca’ Foscari, Venice, Italy
3 IMT School for Advanced Studies, Lucca, Italy

Abstract. Porting a policy from a firewall system to another is a diffi-
cult and error prone task. Indeed, network administrators have to know in
detail the policy meaning, as well as the internals of the firewall systems
and of their languages. Equally difficult is policy maintenance and refac-
toring, e.g., removing useless or redundant rules. In this paper, we present
a transcompiling pipeline that automatically tackles both problems: it
can be used to port a policy into an equivalent one, when the target fire-
wall language is different from the source one; when the two languages
coincide, transcompiling supports policy maintenance and refactoring.
Our transcompiler and its correctness are based on a formal intermedi-
ate firewall language that we endow with a formal semantics.

1 Introduction

Firewalls are one of the standard mechanisms for protecting computer networks.
Configuring and maintaining them is very difficult also for expert system admin-
istrators since firewall policy languages are varied and usually rather complex,
they account for low-level system and network details and support non trivial
control flow constructs. Additional difficulties come from the way in which pack-
ets are processed by the network stack of the operating system and further issues
are due to Network Address Translation (NAT), the mechanism for translating
addresses and performing port redirection while packets traverse the firewall.

A configuration is typically composed of a large number of rules and it is often
hard to figure out the overall firewall behavior. Also, firewall rules interact with
each other, e.g., some shadow others making them redundant or preventing them
to be triggered. Often administrators resort to policy refactoring to solve these
issues and to obtain minimal and clean configurations. Software Defined Network
(SDN) paradigm has recently been proposed for programming the network as a
whole at a high level, making network and firewall configuration simpler and less

Work partially supported by CINI Cybersecurity National Laboratory within the
project FilieraSicura: Securing the Supply Chain of Domestic Critical Infrastruc-
tures from Cyber Attacks (www.filierasicura.it) funded by CISCO Systems Inc. and
Leonardo SpA.

c© The Author(s) 2018
L. Bauer and R. Küsters (Eds.): POST 2018, LNCS 10804, pp. 303–324, 2018.
https://doi.org/10.1007/978-3-319-89722-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89722-6_13&domain=pdf
www.filierasicura.it

304 C. Bodei et al.

error prone. However, network administrators have still to face the porting of
firewall configurations from a variety of legacy devices into this new paradigm.

Both policy refactoring and porting are demanding operations because they
require system administrators to have a deep knowledge about the policy mean-
ing, as well as the internals of the firewall systems and of their languages. To
automatically solve these problems we propose here a transcompiling pipeline
composed of the following stages:

1. decompile the policy in the source language into an intermediate language;
2. extract the meaning of the policy as a set of non overlapping declarative rules

describing the accepted packets and their translations in logical terms;
3. compile the declarative rules into the target language.

Another key contribution of this paper is to formalize this pipeline and to prove
that it preserves the meaning of the original policy (Theorems 1, 2 and 3). The
core of our proposal is the intermediate language IFCL (Sect. 4), which offers
all the typical features of firewall languages such as NAT, jumps, invocations to
rulesets and stateful packet filtering. This language unveils the bipartite struc-
ture common to real firewall languages: the rulesets determining the destiny of
packets and the control flow in which the rules are applied. The relevant aspects
of IFCL are its independence from specific firewall systems and their languages,
and its formal semantics (Sect. 5). Remarkably, stage 1 provides real languages,
which usually have no formal semantics, with the one inherited by the decom-
pilation to IFCL. In this way the meaning of a policy is formally defined, so
allowing algorithmic manipulations that yield the rules of stage 2 (Sect. 6). These
rules represent minimal configurations in a declarative way, covering all accepted
packets and their transformations, with neither overlapping nor shadowing rules.
These two stages are implemented in a tool appearing in a companion paper [1]
and surveyed below, in the section on related work. The translation algorithm
of stage 3 (Sect. 7) distributes the rules determined in the previous stage on the
relevant points of the firewall where it decides the destiny of packets.

To show our transcompilation at work, we consider iptables [2] and pf [3]
(Sect. 2), since they have very different packet processing schemes making policy
porting hard. In particular, we apply the stages of our pipeline to port a policy
from iptables to pf (Sect. 3). For brevity, we do not include an example of
refactoring, which occurs when the source and the target languages coincide.

Related Work. Formal methods have been used to model firewalls and access
control, e.g., [4–6]. Below we restrict our attention to language-based approaches.

Transcompilation is a well-established technique to address the problem of
code refactoring, automatic parallelization and porting legacy code to a new
programming language. Recently, this technique has been largely used in the
field of web programming to implement high level languages into JavaScript,
see e.g., [7,8]. We tackle transcompilation in the area of firewall languages to
support porting and refactoring of policies.

To the best of our knowledge, the literature has no approaches to mechani-
cally porting firewall policies, while it has some to refactoring. The proposal in [9]

Transcompiling Firewalls 305

is similar to ours, in that it “cleans” rulesets, then analyzes them by an automatic
tool. It uses a formal semantics of iptables (without NAT) and a semantics-
preserving ruleset simplification. The tool FIREMAN [10] detects inconsistencies
and inefficiencies of firewall policies (without NAT). The Margrave policy ana-
lyzer [11] analyzes IOS firewalls, and is extensible to other languages. However
the analysis focuses on finding specific problems in policies rather then synthe-
sizing a high-level policy specification. Another tool for discovering anomalies
is Fang [12,13], which also synthesizes an abstract policy. Our approach differs
from the above proposals mainly because at the same time it (i) is language-
independent; (ii) defines a formal semantics of firewall behavior; (iii) gives a
declarative, concise and neat representation of such a behavior; (iv) supports
NAT; (v) generates policies in a target language.

Among the papers that formalize the semantics of firewall languages, we
mention [14,15] that specify abstract filtering policies to be then compiled into
the actual firewall systems. More generally, NetKat [16] proposes linguistic con-
structs for programming a network as a whole within the SDN paradigm. All
these approaches propose their own high level language with a formal semantics,
and then compile it to a specific target language (cf. our stage 3). Instead, IFCL

intermediates between real source and target languages. It thus takes from real
languages actions both for filtering/rewriting packets (notably NAT and MARK)
and for controlling the inspection flow, widely used in practice.

Our companion paper [1] describes the design of an automated tool and its
application to real cases. The tool implements the first two stages of our pipeline
and supports system administrators in the verification of some properties of a
given firewall policy. In particular, the user can ask queries to check implication,
equivalence and difference of policies, and reachability among hosts. The tool
uses the same syntax of Sect. 4 but only sketches how to obtain the declarative
representation of a given policy, while here we fully formalize the process and
prove it correct (Sect. 6.2). In detail, the present paper partially overlaps with [1]
on Sect. 4, where the language is presented, and on Sect. 6.2, where the logical
characterization is introduced. Besides the technical details and theorems, which
support the semantics and the correctness of the whole approach missing in [1],
here we also address the issue of compiling the declarative firewall representation
to a target language, enabling transcompilation (cf. Sects. 3 and 7).

2 Background

Usually, system administrators classify networks into security domains. Through
firewalls they monitor the traffic and enforce a predetermined set of access control
policies (packet filtering), possibly performing some network address translation.

Firewalls are implemented either as proprietary, special devices, or as soft-
ware tools running on general purpose operating systems. Independently of their
actual implementations, they are usually characterized by a set of rules that
determine which packets reach the different subnetworks and hosts, and how
they are modified or translated. We briefly review iptables [2] and pf [3] that
are two of the most used firewall tools in Linux and Unix.

306 C. Bodei et al.

iptables. It is the default in Linux distributions, and operates on top of Netfil-
ter, the standard framework for packets processing of the Linux kernel [2]. This
tool is based on the notions of tables and chains. Intuitively, a table is a collec-
tion of ordered lists of policy rules called chains. The most commonly used tables
are: filter for packet filtering; nat for network address translation; mangle for
packet alteration. There are five built-in chains that are inspected at specific
moments of the packet life cycle [17]: PreRouting, when the packet reaches the
host; Forward, when the packet is routed through the host; PostRouting, right
before the packet leaves the host; Input, when the packet is routed to the host;
Output, when the packet is generated by the host. Moreover, users can define
additional chains, besides the built-in ones.

Each rule specifies a condition and a target. If the packet matches the con-
dition then it is processed according to the specified target. The most common
targets are: ACCEPT and DROP, to accept and discard packets; DNAT/SNAT,
to perform destination/source NAT; MARK to mark a packet with a numeric
identifier which can be used in the conditions of other rules, even placed in dif-
ferent chains; RETURN, to stop examining the current chain and resume the
processing of a previous chain. When the target is a user-defined chain, two
“jumping” modes are available: call and goto. They differ when a RETURN is
executed or the end of the chain is reached: the evaluation resumes from the rule
following the last matched call. Built-in chains have a user-configurable default
policy (ACCEPT or DROP): if the evaluation reaches the end of a built-in chain
without matches, its default policy is applied.

pf. This is the standard firewall of OpenBSD [3] and is included in macOS since
version 10.7. Similarly to iptables, each rule consists of a predicate which is
used to select packets and an action that specifies how to process the packets
satisfying the predicate. The most frequently used actions are pass and block to
accept and reject packets, rdr and nat to perform destination and source NAT.
Packet marking is supported also by pf: if a rule containing the tag keyword
is applied, the packet is marked with the specified identifier and then processed
according to the rule’s action.

Differently from other firewalls, the action taken on a packet is determined
by the last matched rule, unless otherwise specified. pf has a single ruleset that
is inspected both when the packet enters and exits the host. When a packet
enters the host, DNAT rules are examined first and filtering is performed after
the address translation. Similarly when a packet leaves the host: first its source
address is translated by the relevant SNAT rules, and then the resulting packet
is possibly filtered. Notice also that packets belonging to established connections
are accepted by default, thus bypassing the filters.

3 Porting a Policy: An Example

Consider the simple, yet realistic network of Fig. 1, where the IP addresses
10.0.0.0/8 identify the private LAN; 54.230.203.0/24 identify servers and produc-
tion machines in the demilitarized zone DMZ that also hosts the HTTPS server

Transcompiling Firewalls 307

Fig. 1. A network.

Table 1. Declarative representation of the configuration in Fig. 2.

with address 54.230.203.47. The firewall has three interfaces: eth0 connected to
the LAN with IP 10.0.0.1, eth1 connected to the DMZ with IP 54.230.203.1 and
ext connected to the Internet with public IP 23.1.8.15.

The iptables configuration in Fig. 2 enforces the following policy on the
traffic: (i) hosts from the Internet can connect to the HTTPS server; (ii) LAN

hosts can freely connect to any host in the DMZ; (iii) LAN hosts can connect
to the Internet over HTTP and HTTPS (with source NAT). Now, suppose the
system administrator has to migrate the firewall configuration of Fig. 2 from
iptables to pf. Performing this porting by hand is complex and error prone
because the administrator has to write the pf configuration from scratch and
test that it is equivalent to the original one. Furthermore, this requires a deep
understanding of the policy meaning, as well as of both iptables and pf and
of their configuration languages. We apply below the stages of our pipeline to
solve this problem, guaranteeing by construction that the firewall semantics is
preserved. The next sections detail the following intuitive description.

First we extract the meaning of the iptables configuration represented by a
table, in our case Table 1 (stages 1 and 2). For instance, its second row says that
the packets of a new connection with source address in the range 10.0.0.0/8 (i.e.,
from the LAN) can reach the hosts in the range 54.230.203.0/24 (the DMZ), with
no NAT, regardless of the protocol and the port. The last row says that packets of
an already established connection are always allowed. Note that each row in the
table declaratively describes a set of packets accepted by the firewall, and their
network translation. Actually, Table 1 is a clean, refactored policy automatically
generated by the tool of [1]. Indeed, each row is disjoint from the others, so they
need not to be ordered and none of the typical firewall anomalies arises, like

308 C. Bodei et al.

Fig. 2. Firewall configuration in iptables.

Fig. 3. The policy in Fig. 2 ported in pf.

shadowing, rule overlapping, etc. According to stage 3, we compile the refactored
policy in pf, in two steps. First, the rows are translated in a sequence of IFCL

rules that are then compiled in pf. The result is in Fig. 3 and was computed
with a proof-of-concept extension of [1] based on the theory presented in Sect. 7.

4 The Intermediate Firewall Configuration Language

We now present our intermediate firewall configuration language (IFCL). It is
parametric w.r.t. the notion of state and the steps performed to elaborate pack-
ets. For generality, we do not detail the format of network packets. In the follow-
ing we only use sa(p) and da(p) to denote the source and destination addresses
of a given packet p; additionally, tag(p) returns the tag m associated with p. An
address a consists of an IP address ip(a) and possibly a port port(a). An address
range n is a pair consisting of a set of IP addresses and a set of ports, denoted
IP(n):port(n). An address a is in the range n (written a ∈ n) if ip(a) ∈ ip(n)

Transcompiling Firewalls 309

and port(a) ∈ port(n), when port(a) is defined, e.g., for ICMP packets we only
check if the IP address is in the range.

Firewalls modify packets, e.g., through network address translations. We
write p[da �→ a] and p[sa �→ a] to denote a packet identical to p, except for
the destination address da and source address sa, which is equal to a, respec-
tively. Similarly, p[tag �→ m] denotes the packet with a modified tag m.

Here we consider stateful firewalls that keep track of the state s of network
connections and use this information to process a packet. Any existing network
connection can be described by several protocol-specific properties, e.g., source
and destination addresses or ports, and by the translations to apply. In this way,
filtering and translation decisions are not only based on administrator-defined
rules, but also on the information built by previous packets belonging to the
same connection. We omit a precise definition of a state, but we assume that
it tracks at least the source and destination ranges, NAT operations and the
state of the connection, i.e., established or not. When receiving a packet p one
may check whether it matches the state s or not. We left unspecified the match
between a packet and the state because it depends on the actual shape of the
state. When the match succeeds, we write p �s α, where α describes the actions
to be carried on p; otherwise we write p ��s.

A firewall rule is made of two parts: a predicate φ expressing criteria over
packets, and an action t, called target, defining the “destiny” of matching packets.
Here we consider a core set of actions included in most of the real firewalls. These
actions not only determine whether or not a packet passes across the firewall,
but also control the flow in which the rules are applied. They are the following:

ACCEPT a packet passes
DROP a packet is discarded
CALL(R) invoke the ruleset R (see below)
GOTO(R) jump to the ruleset R
RETURN exit from the current ruleset
NAT(nd, ns) network translation
MARK(m) marking with tag m
CHECK-STATE(X) examine the state

The targets CALL() and RETURN implement a procedure-like behavior; GOTO() is sim-
ilar to unconditional jumps. In the NAT action nd and ns are address ranges used
to translate the destination and source address of a packet, respectively; in the
following we use the symbol � to denote an identity translation, e.g., n : � means
that the address is translated according to n, whereas the port is kept unchanged.
The MARK action marks a packet with a tag m. The argument X ∈ {←,→,↔} of
the CHECK-STATE action denotes the fields of the packets that are rewritten accord-
ing to the information from the state. More precisely, → rewrites the destination
address, ← the source one and ↔ both. Formally:

Definition 1 (Firewall rule). A firewall rule r is a pair (φ, t) where φ is a
logical formula over a packet, and t is the target action of the rule.

310 C. Bodei et al.

A packet p matches a rule r with target t whenever φ holds.

Definition 2 (Rule match). Given a rule r = (φ, t) we say that p matches r
with target t, denoted p |=r t, iff φ(p). We write p �|=r when p does not match r.

We can now define how a packet is processed given a possibly empty list of
rules (denoted with ε), hereafter called ruleset. Similarly to real implementations
of firewalls, we inspect the rules in the list, one after the other, until we find
a matching one, which establishes the destiny (or target) of the packet. For
sanity, we assume that no GOTO(R) and CALL(R) occur in the ruleset R, so avoiding
self-loops. We also assume that rulesets may have a default target denoted by
td ∈ {ACCEPT, DROP}, which accepts or drops according to the will of the system
administrator.

Definition 3 (Ruleset match). Given a ruleset R = [r1, . . . , rn], we say that
p matches the i-th rule with target t, denoted p |=R (t, i), iff

i ≤ n . ri = (φ, t) ∧ p |=ri
t ∧ ∀j < i . p �|=rj

.

We also write p �|=R if p matches no rules in R, formally if ∀r ∈ R . p �|=r. After-
words, we will omit the index i when immaterial, and we simply write p |=R t.

In our model we do not explicitly specify the steps performed by the kernel of
the operating system to process a single packet passing through the host. We
represent this algorithm through a control diagram, i.e., a graph where nodes
represent different processing steps and the arcs determine the sequence of steps.
The arcs are labeled with a predicate describing the requirements a packet has
to meet in order to pass to the next processing phase. Therefore, they are not
finite state auomata. We assume that control diagrams are deterministic, i.e.,
that every pair of arcs leaving the same node has mutually exclusive predicates.
For generality, we let these predicates abstract, since they depend on the specific
firewall.

Definition 4 (Control diagram). Let Ψ be a set of predicates over packets.
A control diagram C is a tuple (Q,A, qi, qf), where

– Q is the set of nodes;
– A ⊆ Q×Ψ ×Q is the set of arcs, such that whenever (q, ψ, q′), (q, ψ′, q′′) ∈ A

and q′ �= q′′ then ¬(ψ ∧ ψ′);
– qi,qf ∈ Q are special nodes denoting the start and the end of elaboration.

The firewall filters and possibly translates a given packet by traversing a control
diagram accordingly to the following transition function.

Definition 5 (Transition function). Let (Q,A, qi, qf) be a control diagram
and let p be a packet. The transition function δ : Q × Packet �→ Q is defined as

δ(q, p) = q′ iff ∃(q, ψ, q′) ∈ A. ψ(p) holds.

We can now define a firewall in IFCL.

Definition 6 (Firewall). A firewall F is a triple (C, ρ, c), where C is a control
diagram; ρ is a set of rulesets; and c : Q �→ ρ is the correspondence mapping
from the nodes of C to the actual rulesets.

Transcompiling Firewalls 311

Fig. 4. The control diagram of iptables

4.1 Decompiling Two Real Languages into IFCL

Here we encode the two de facto standard Unix firewalls iptables and pf as
triples (C, ρ, c) of our framework (stage 1). An immediate fallout is a formal
semantics for both iptables and pf defined in terms of that of IFCL (see Sect. 5).

Modelling iptables. Let L be the set of local addresses of a host; and let ψ1

and ψ2 predicates over packets defined as follows:

ψ1(p) = sa(p) ∈ L ψ2(p) = da(p) ∈ L.

Figure 4 shows the control diagram C of iptables, where unlabeled arcs carry
the label “true.” It also implicitly defines the transition function according to
Definition 5. In iptables there are twelve built-in chains, each of which corre-
spond to a single ruleset. So we can define the set ρp ⊆ ρ of primitive rulesets
as the one made of Rman

Inp , Rnat
Inp , Rfil

Inp, Rman
Out , Rnat

Out, Rfil
Out, Rman

Pre , Rnat
Pre, Rman

For ,
Rfil

For, Rman
Post and Rnat

Post, where the superscript represents the chain name and
the subscript the table name. Note that the set ρ \ρp contains the user-defined
chains.

The mapping function c : Q �→ ρ is defined as follows:

c(qi) = R c(qf) = R c(Prem) = Rman
Pre

c(Pren) = Rnat
Pre c(Inpm) = Rman

Inp c(Fwdf) = Rfil
For

c(Inpn) = Rnat
Inp c(Inpf) = Rfil

Inp c(Outm) = Rman
Out

c(Outn) = Rnat
Out c(Outf) = Rfil

Out c(Fwdm) = Rman
For

c(Fwdf) = Rfil
For c(Postm) = Rman

Post c(Postn) = Rnat
Post

where R is an empty ruleset with ACCEPT as default policy.
Finally, note that the action CALL() implements the built in target JUMP().

Modelling pf. Differently from iptables, pf has a single ruleset and the rule
applied to a packet is the last one matched, apart from the case of the so-called
quick rules: as soon as one of these rules matches the packet, its action is applied
and the remaining part of the ruleset is skipped.

Figure 5 shows the control diagram Cpf for pf that also defines the transition
function. The nodes Inpn and Inpf represent the procedure executed when an

312 C. Bodei et al.

Fig. 5. The control diagram of pf

IP packet reaches the host from the net. Dually, Outn and Outf are for when the
packet leaves the host. The predicates ψ1 and ψ2 are those defined for iptables.
Given the pf ruleset Rpf we include the following rulesets in ρpf :

– Rdnat contains the rule (state == 1, CHECK-STATE(→)) as the first one, followed
by all the rules rdr of Rpf;

– Rsnat contains the rule (state == 1, CHECK-STATE(←)) as the first one, followed
by all the rules nat of Rpf;

– Rfinp contains the rule (state == 1, ACCEPT) followed by all the quick filtering
rules of Rpf without modifier out, and finally the rule (true, GOTO(Rfinpr));

– Rfinpr contains all the no quick filtering rules of Rpf without modifier out,
in reverse order;

– Rfout contains the rule (state == 1, ACCEPT) followed by all the quick filtering
rules of Rpf without modifier in, and (true, GOTO(Rfoutr)) as last rule;

– Rfoutr includes all the no quick filtering rules of Rpf without modifier in in
reverse order.

Given the ruleset R with the only rule for ACCEPT as default policy, the mapping
function cpf is defined as follows:

cpf (qi) = R cpf (Inpn) = Rdnat cpf (Outn) = Rsnat

cpf (qf) = R cpf (Inpf) = Rfinp cpf (Outf) = Rfout

5 Formal Semantics

Now, we formally define the semantics of a firewall through two transition sys-
tems operating in a master-slave fashion. The master has a labeled transition

relation of the form s
p,p′
−−→ s′. The intuition is that the state s of a firewall

changes to s′ when a new packet p reaches the host and becomes p′.
The configurations of the slave transition system are triples (q, s, p) where:

(i) q ∈ Q is a control diagram node; (ii) s is the state of the firewall; (iv) p is
the packet. A transition (q, s, p) → (q′, s, p′) describes how a firewall in a state s
deals with a packet p and possibly transforms it in p′, according to the control
diagram C. Recall that the state records established connections and other kinds
of information that are updated after the transition.

Transcompiling Firewalls 313

In the slave transition relation, we use the following predicate, which
describes an algorithm that runs a ruleset R on a packet p in the state s

p, s |=S
R (t, p′)

This predicate searches for a rule in R matching the packet p through p |=R (t, i).
If it finds a match with target t, t is applied to p to obtain a new packet p′.

Recall that actions CALL(R), RETURN and GOTO(R) are similar to procedure calls,
returns and jumps in imperative programming languages. To correctly deal with
them, our predicate p, s |=S

R (t, p′) uses a stack S to implement a behavior similar
to the one of procedure calls. We will denote with ε the empty stack and with ·
the concatenation of elements on the stack. This stack is also used to detect and
prevent loops in ruleset invocation, as it is the case in real firewalls.

In the stack S we overline a ruleset R to indicate that it was pushed by
a GOTO() action and it has to be skipped when returning. Indeed, we use the
following pop� function in the semantics of the RETURN action:

pop∗(ε) = ε pop∗(R · S) = (R,S) pop∗(R · S) = pop∗(S)

In case there is a non-overlined ruleset on the top of S, it behaves as a standard
pop operation; otherwise it extracts the first non-overlined ruleset. When S is
empty, we assume that pop∗ returns ε to signal the error.

Furthermore, in the definition of p, s |=S
R (t, p′) we use the notation Rk to

indicate the ruleset [rk, ..., rn] (k ∈ [1, n]) resulting from dropping the first k − 1
rules from the given ruleset R = [r1, ..., rn].

We also assume the function establ that, taken an action α from the state,
a packet p and the fields X ∈ {←,→,↔} to rewrite, returns a possibly changed
packet p′, e.g., in case of an established connection. Also this function depends
on the specific firewall we are modeling, and so it is left unspecified.

Finally, we assume as given a function nat(p, s, dn, sn) that returns the packet
p translated under the corresponding NAT operation in the state s. The argument
dn is used to modify the destination range of p, i.e., destination NAT (DNAT),
while sn is used to modify the source range, i.e., source NAT (DNAT). Recall
that a range of the form � : � is interpreted as the identity translation, whereas
one of the form a : � modifies only the address. Also this function is left abstract.

Table 2 shows the rules defining p, s |=S
R (t, p′). The first inference rule deals

with the case when the packet p matches a rule that says ACCEPT or DROP; in this case
the ruleset execution stops returning the found action and leaving p unmodified.
When a packet p matches a rule with action CHECK-STATE, we query the state s:
if p belongs to an established connection, we return ACCEPT and a p′ obtained
rewriting p. If p belongs to no existent connection the packet is matched against
the remaining rules in the ruleset. When a packet p matches a NAT rule, we return
ACCEPT and the packet resulting by the invocation of the function nat. There are
two cases if a packet p matches a GOTO(). If the ruleset R′ is not already in the
stack, we push the current ruleset R onto the stack overlined to record that this
ruleset dictated a GOTO(). Otherwise, if R′ is in the stack, we detect a loop and
discard p. The case when a packet p matches a rule with action CALL() is similar,

314 C. Bodei et al.

Table 2. The predicate p, s |=S
R (t, p′).

except that the ruleset pushed on the stack is not overlined. When a packet p
matches a rule with action RETURN, we pop the stack and match p against the
top of the stack. Finally, when no rule matches, an implicit return occurs: we
continue from the top of the stack, if non empty. The MARK rule simply changes
the tag of the matching packet to the value m. If none of the above applies, we
return the default action td of the current ruleset.

We can now define the slave transition relation as follows.

c(q) = R p, s |=ε
R (ACCEPT, p′) δ(q, p′) = q′

(q, s, p) → (q′, s, p′)

The rule describes how we process the packet p when the firewall is in the
elaboration step represented by the node q with a state s. We match p against
the ruleset R associated with q and if p is accepted as p′, we continue considering
the next step of the firewall execution represented by the node q′.

Finally, we define the master transition relation that transforms states and
packets as follows (as usual, below →+ stands for the transitive closure of →):

(qi, s, p) →+ (qf , s, p′)

s
p,p′
−−→ s � (p, p′)

This rule says that when the firewall is in the state s and receives a packet p,
it elaborates p starting from the initial node qi of its control diagram. If this
elaboration succeeds, i.e., it reaches the node qf accepts p as p′, we update the
state s by storing information about p, its translation p′ and the connection they
belong to, through the function �, left unspecified for the sake of generality.

Transcompiling Firewalls 315

Example 1. Suppose to have the user-defined chains below
Chain CB

(φ1, DROP)
(φ2, CALL(u1))
(φ3, ACCEPT)

Chain u1

(φ11, ACCEPT)
(φ12, CALL(u2))
(φ13, DROP)

Chain u2

(φ21, ACCEPT)
(φ22, RETURN)
(φ23, DROP)

and that the condition ¬φ1 ∧ φ2 ∧ φ11 holds for a packet p. Then, the semantic
rules (a), (b) and (c) are applied in order:

(a)
p |=CB

(CALL(u1), i) u1 �∈ S p, s |=CB3 ·ε
u1 (ACCEPT, p)

p, s |=ε
CB

(ACCEPT, p)

(b)
p |=u1 (ACCEPT, 1)

p, s |=CB3 ·ε
u1 (ACCEPT, p)

(c)
c(q) = CB p, s |=ε

CB
(ACCEPT, p) δ(q, p) = q′

(q, s, p) → (q′, s, p)

6 From Operational to Declarative Descriptions

We now extract the meaning of a firewall written in our intermediate language by
transforming it in a declarative, logical presentation that preserves the semantics
(stage 2). This transformation is done in three steps: (i) generate an unfolded fire-
wall with a single ruleset for each node of the control diagram; (ii)transform the
unfolded firewall in a first-order formula; (iii)determine a model for the obtained
formula, through a SAT solver (the procedure for this step is described in [1]
and is omitted here). The correctness of stage 2 follows from Theorem 1, which
guarantees that the unfolded firewall is semantically equivalent to the original
one, and from Theorem 2, which ensures that the derived formula characterizes
exactly the accepted packets and their translations.

6.1 Unfolding Chains

Our intermediate language can deal with involved control flows, by using the tar-
gets GOTO(), CALL() and RETURN (see Example 1). The following unfolding operation
[[]] rewrites a ruleset into an equivalent one with no control flow rules.

Hereafter, let r;R be a non empty ruleset consisting of a rule r followed by
a possibly empty ruleset R; and let R1@R2 be the concatenation of R1 and R2.

The unfolding of a ruleset R is defined as follows:

[[R]] = [[R]]true
{R}

[[ε]]fI = ε

[[(φ, t);R]]fI = (f ∧ φ, t); [[R]]fI if t �∈ {GOTO(R’), CALL(R’), RETURN}
[[(φ, RETURN);R]]fI = [[R]]f∧¬φ

I

[[(φ, CALL(R’));R]]fI =

{
[[R′]]f∧φ

I∪{R′}@[[R]]fI if R′ /∈ I

(f ∧ φ, DROP); [[R]]fI otherwise

316 C. Bodei et al.

[[(φ, GOTO(R’));R]]fI =

{
[[R′]]f∧φ

I∪{R′}@[[R]]f∧¬φ
I if R′ /∈ I

(f ∧ φ, DROP); [[R]]f∧¬φ
I otherwise

The auxiliary procedure [[R]]fI recursively inspects the ruleset R. The formula f
accumulates conjuncts of the predicate φ; the set I records the rulesets traversed
by the procedure and helps detecting loops. If a rule does not affect control flow,
we just substitute the conjunction f ∧ φ for φ, and continue to analyze the rest
of the ruleset with the recursive call [[R]]fI .

In the case of a return rule (φ, RETURN) we generate no new rule, and we continue
to recursively analyze the rest of the ruleset, by updating f with the negation of
φ. For the rule (φ, CALL(R’)) we have two cases: if the callee ruleset R′ is not in I,
we replace the rule with the unfolding of R′ with f ∧φ as predicate, and append
{R′} to the traversed rulesets. If R′ is already in I, i.e., we have a loop, we replace
the rule with a DROP, with f ∧φ as predicate. In both cases, we continue unfolding
the rest of the ruleset. We deal with the rule (φ, GOTO(R’)) as the previous one,
except that the rest of the ruleset has f ∧ ¬φ as predicate.

Example 2. Back to Example 1, unfolding the chain CB gives the following rules:

[[CB]] = (φ1, DROP);
(φ2 ∧ φ11, ACCEPT);
(φ2 ∧ φ12 ∧ φ21, ACCEPT);
(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23, DROP);
(φ2 ∧ φ13, DROP);
(φ3, ACCEPT);
ε

We just illustrate the first three steps:

[[CB]] =[[(φ1, DROP);CB2]]true
{CB} = (φ1, DROP); [[(φ2, CALL(u1));CB3]]true

{CB}

=[[u1]]
true∧φ2
{CB}∪{u1}@[[CB3]]true

{CB}

Note that our transformation does not change the set of accepted packets, e.g.,
all packets satisfying ¬φ1 ∧ φ2 ∧ φ11 are still accepted by the unfolded ruleset.

An unfolded firewall is obtained by repeatedly rewriting the rulesets associated
with the nodes of its control diagram, using the procedure above. Formally,

Definition 7 (Unfolded firewall). Given a firewall F = (C, ρ, c), its unfolded
version [[F]] is (C, ρ′, c′) where ∀q ∈ C. c′(q) = [[c(q)]] and ρ′ = {[[c(q)]] | q ∈ C}.

We now prove that a firewall F and its unfolded version [[F]] are semantically
equivalent, i.e., they perform the same action over a given packet p in a state s,
and reach the same state s′. Formally, the following theorem holds:

Transcompiling Firewalls 317

Table 3. Translation of rulesets into logical predicates.

Theorem 1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and

[[F]] its unfolding. Let s
p,p′
−−→X s′ be a step of the master transition system

performed by the firewall X ∈ {F , [[F]]}. Then, it holds

s
p,p′
−−→F s′ ⇐⇒ s

p,p′
−−→[[F]] s′.

6.2 Logical Characterization of Firewalls

We construct a logical predicate that characterizes all the packets accepted by
an unfolded ruleset, together with the relevant translations.

To deal with NAT, we define an auxiliary function tr that computes the set of
packets resulting from all possible translations of a given packet p. The parameter
X ∈ {←,→,↔} specifies if the translation applies to source, destination or both
addresses, respectively, similarly to CHECK-STATE(X).

tr(p, dn, sn,↔) � {p[da �→ ad, sa �→ as] | ad ∈ dn, as ∈ sn}
tr(p, dn, sn,→) � {p[da �→ ad] | ad ∈ dn}
tr(p, dn, sn,←) � {p[sa �→ as] | as ∈ sn}

Furthermore, we model the default policy of a ruleset R with the predicate dp,
true when the policy is ACCEPT, false otherwise.

Given an unfolded ruleset R, we build the predicate PR(p, p̃) that holds when
the packet p is accepted as p̃ by R. Its definition is in Table 3 that induces on
the rules in R. Intuitively, the empty ruleset applies the default policy dp(R)
and does not transform the packet, encoded by the constraint p = p̃. The rule
(φ, ACCEPT) considers two cases: when φ(p) holds and the packet is accepted as it is;
when instead ¬φ(p) holds, p is accepted as p̃ only if the continuation R accepts it.
The rule (φ, DROP) accepts p only if the continuation does and φ(p) does not hold.
The rule (φ, NAT(dn, sn)) is like an (φ, ACCEPT): the difference is when φ(p) holds,
and it gives p̃ by applying to p the NAT translations tr(p, dn, sn,↔). Finally,
(φ, CHECK-STATE(X)) is like a NAT that applies all possible translations of kind X
(written as tr(p, ∗:∗, ∗:∗,X)). The idea is that, since we abstract away from the
actual established connections, we over-approximate the state by considering

318 C. Bodei et al.

any possible translations. At run-time, only the connections corresponding to
the actual state will be possible. The rule (φ, MARK(m)) is like a NAT, but when
φ(p) holds it requires that the continuation accepts p tagged by m as p̃.

Example 3. The predicate of the unfolded ruleset in Example 2 when
dp(CB) = F is

P[[CB]] (p, p̃) = ¬φ1 ∧ (
(φ2 ∧ φ11 ∧ p = p̃) ∨ (¬(φ2 ∧ φ11) ∧ (
(φ2 ∧ φ12 ∧ φ21 ∧ p = p̃) ∨ (¬(φ2 ∧ φ12 ∧ φ21) ∧ (
¬(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23) ∧ (
¬(φ2 ∧ φ13) ∧ (
(φ3 ∧ p = p̃) ∨ (¬φ3 ∧ (
F ∧ p = p̃)))))))))

Note that if ¬φ1 ∧ φ2 ∧ φ11 holds then the formula trivially holds and therefore
the formula accepts the packet as the semantics does.

As a further example, consider the case in which φ2, φ12, φ22, φ23, φ3 hold for
a packet p, while all the other φ’s does not. Then, p is accepted as it is: the
rule (φ23, DROP) is not evaluated since φ22 holds and the RETURN is performed (cf.
Example 1). Indeed, the predicate P[[CB]](p, p) evaluates to:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (T ∧ (T ∨ (F ∧ F)))))))) = T

Instead, if φ13 holds too, the packet is rejected as expected:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (F ∧ (T ∨ (F ∧ F)))))))) = F

The predicate in Table 3 is semantically correct, because if a packet p is accepted
by a ruleset R as p′, then PR(p, p′) holds, and vice versa. Formally,

Lemma 1. Given a ruleset R we have that

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s.p, s |=ε
R (ACCEPT, p′)

We eventually define the predicate associated with a whole firewall as follows.

Definition 8. Let F = (C, ρ, c) be a firewall with control diagram C = (Q,A,
qi, qf). The predicate associated with F is defined as

PF (p, p̃) � P∅
qi(p, p̃) where

PI
qf (p, p̃) � p = p̃ PI

q (p, p̃) � ∃p′.Pc(q)(p, p′) ∧

⎛
⎜⎜⎝

∨
(q,ψ,q′)∈A

q′ /∈I

ψ(p′) ∧ PI∪{q}
q′ (p′, p̃)

⎞
⎟⎟⎠

for all q ∈ Q such that q �= qf , and where Pc(q) is the predicate constructed from
the ruleset associated with the node q of the control diagram.

Transcompiling Firewalls 319

Intuitively, in the final node qf we accept p as it is. In all the other nodes, p is
accepted as p̃ if and only if there is a path starting from p in the control diagram
that obtains p̃ through intermediate transformations. More precisely, we look for
an intermediate packet p′, provided that (i) p is accepted as p′ by the ruleset
c(q) of node q; (ii) p′ satisfies one of the predicates ψ labeling the branches of
the control diagram; and (iii) p′ is accepted as p̃ in the reached node q′. Note
that we ignore paths with loops, because firewalls have mechanisms to detect
and discard a packet when its elaboration loops. To this aim, our predicate uses
the set I for recording the nodes already traversed.

We conclude this section by establishing the correspondence between the log-
ical formulation and the operational semantics of a firewall. Formally, F accepts
the packet p as p̃ if the predicate PF (p, p̃) is satisfied, and vice versa:

Theorem 2 (Correctness of the logical characterization). Given a fire-
wall F = (C, ρ, c) and its corresponding predicate PF we have that

1. s
p,p′
−−→ s � (p, p′) =⇒ PF (p, p′)

2. ∀p, p′. PF (p, p′) =⇒ ∃s.s
p,p′
−−→ s � (p, p′)

Recall that the logical characterization abstracts away the notion of state, and
thus PF (p, p′) holds if and only if there exists a state s in which p is accepted as p′.
In particular, if the predicate holds for a packet p that belongs to an established
connection, p will be accepted only if the relevant state is reached at runtime.
This is the usual interpretation of firewall rules for established connections.

7 Policy Generation

The declarative specification extracted from a firewall policy (cf. Table 1) can be
mapped to a firewall FS whose control diagram has just one node. The ruleset RS

associated with this node only contains ACCEPT and NAT rules, each corresponding
to a line of the declarative specification. In Sect. 3 we showed that each line is
disjoint from the others. Hence, the ordering of rules in RS is irrelevant.

Here we compile FS into an equivalent firewall FC . First, we introduce an
algorithm that computes the basic rulesets of FC . Then, we map these rulesets
to the nodes of the control diagram of a real system. Finally, we prove the
correctness of the compilation.

For simplicity, we produce a firewall that automatically accepts all the packets
that belong to established connections with the appropriate translations. We
claim this is not a limitation, since it is the default behavior of some real firewall
systems (e.g., pf) and it is quite odd to drop packets, once the initial connection
has been established. Moreover, this is consistent with the over-approximation
on the firewall state done in Sect. 6.2.

320 C. Bodei et al.

Algorithm 1. Generation of the rulesets Rdnat, Rfil, Rsnat, Rmark from RS

1: Rdnat = Rfil = Rsnat = Rmark = ε
2: for r in RS do
3: if r = (φ, ACCEPT) then
4: add r to Rfil

5: else if r = (φ, NAT(dn, sn)) then
6: generate fresh tag m
7: add (φ ∧ tag(p) = •, MARK(m)) to Rmark

8: add (tag(p) = m, NAT(dn, �)) to Rdnat

9: add (tag(p) = m, NAT(�, sn)) to Rsnat

10: end if
11: end for
12: add (tag(p) �= •, ACCEPT) and (true, DROP) to Rfil

13: prepend Rmark to Rdnat, Rfil and Rsnat

7.1 Compiling a Firewall Specification

Our algorithm takes as input the ruleset RS derived from a synthesized spec-
ification and yields the rulesets Rfil, Rdnat, Rsnat (with default ACCEPT policy)
containing filtering, DNAT and SNAT rules. This separation reflects that all the
real systems we have analyzed impose constraints on where NAT rules can be
placed, e.g., in iptables, DNAT is allowed only in rulesets Rnat

Pre and Rnat
Out, while

SNAT only in Rnat
Inp and Rnat

Post.
Intuitively, Algorithm 1 produces rules that assign different tags to packets

that must be processed by different NAT rules (lines 6 and 7). Each NAT rule is
split in a DNAT (line 8) and an SNAT (line 9), where the predicate φ becomes a
check on the tag of the packet. Filtering rules are left unchanged (line 4). Packets
subject to NAT are accepted in Rfil while the others are dropped (line 12). We
prepend Rmark to all rulesets making sure that packets are always marked,
independently of which ruleset will be processed first (line 13). We use • to
denote the empty tag used when a packet has never been tagged.

Recall that the @ operator combines rulesets in sequence. Note that Rfil

drops by default and shadows any ruleset appended to it. In practice, the only
interesting rulesets are R = {Rε, Rfil, Rdnat, Rsnat, Rdnat @Rfil, Rsnat @Rfil}
where Rε is the empty ruleset with default ACCEPT policy. Since here we do not
discuss ipfw [18] and other firewalls with a minimal control diagram, we neither
use Rdnat @Rfil nor Rsnat @Rfil.

We now introduce the notion of compiled firewall.

Definition 9 (Compiled firewall). A firewall FC = (C, ρ, c) with control dia-
gram C = (Q,A, qi, qf) is a compiled firewall if

– c(qi) = c(qf) = Rε

– c(q) ∈ R for every q ∈ Q \ {qi, qf}
– every path π from qi to qf in the control diagram C traverses a node q such

that c(q) ∈ {Rfil, Rdnat @Rfil, Rsnat @Rfil}

Transcompiling Firewalls 321

Intuitively, the above definition requires that only rulesets in R are associated
with the nodes in the control diagram and that all paths pass at least one through
a node with the filtering ruleset.

Example 4. Now we map the rulesets to the nodes of the control diagrams of
the real systems presented in Sect. 4.1. For iptables we have:

c(Pren) = Rdnat c(Outn) = Rdnat c(Inpn) = Rsnat c(Postn) = Rsnat

c(Fwdf) = Rfil c(Inpf) = Rfil c(Outf) = Rfil

while the remaining nodes get the empty ruleset Rε. For pf we have:

c(Inpn) = Rdnat c(Outn) = Rsnat c(Inpf) = Rfil c(Outf) = Rfil

7.2 Correctness of the Compiled Firewall

We start by showing that a compiled firewall FC accepts the same packets as
FS , possibly with a different translation.

Lemma 2. Let FC be a compiled firewall. Given a packet p, we have that

∃p′.PFS
(p, p′) ⇔ ∃p′′.PFC

(p, p′′).

Let be T = {id, dnat, snat, nat} the set of translations possibly applied to a
packet while it traverses a firewall. The first, id, represents the identity, dnat
and snat are for DNAT and SNAT, while nat represents both DNAT and SNAT.
Also, let (T , <) be the partial order such that id < dnat, id < snat, dnat < nat
and snat < nat. Finally, given a packet p and a firewall F , let πF (p) be the path
in the control diagram of F along which p is processed. Note that there exists a
unique path for each packet because the control diagram is deterministic.

The following function computes the translation capability of a path π, i.e.,
which translations can be performed on packets processed along π.

Definition 10 (Translation capability). Let π = 〈q1, . . . , qn〉 be a path on the
control diagram of a compiled firewall F = (C, ρ, c). The translation capability
of π is

tc(π) = lub

(⋃
qi∈π

γ(c(qi))

)

where lub is the least upper bound of a set T ⊆ T w.r.t. < and γ is defined as

γ(R) = {id} for R ∈ {Rε, Rfil}
γ(Rt) = {t} for t ∈ {dnat, snat}

γ(R1 @R2) = γ(R1) ∪ γ(R2)

322 C. Bodei et al.

We write p ≈ p′ to denote that p′ = p[tag �→ m] for some marking m. In addition,
let tβ be a function that, given a packet p and its translation p′, computes a
packet p′′ where only the translation β ∈ T is applied to p, defined as:

tid(p, p′) = p tdnat(p, p′) = p[da �→ da(p′)]
tnat(p, p′) = p′ tsnat(p, p′) = p[sa �→ sa(p′)]

The following theorem describes the relationship between a compiled firewall FC

and the firewall FS . Intuitively, FS accepts a packet p as p′ if and only if FC

accepts a packet p as p′′ where p′ and p′′ only differ on marking and NAT. More
specifically, p′′ is derived from p by applying all the translations available on the
path πFC

(p) in the control diagram of FC , along which p is processed.

Theorem 3. Let p, p′ be two packets such that p is accepted by both FS and FC .
Moreover, let p′′ ≈ tβ(p, p′) where β = tc(πFC

(p)). We have that

PFS
(p, p′) ⇔ PFC

(p, p′′).

Example 5. Consider again Example 4. Any path π in iptables has tc(π) =
nat, which implies p′ ≈ p′′, i.e., FC behaves exactly as FS . Interestingly, paths
π1 = 〈qi, Inpn, Inpf , qo〉 and π2 = 〈qi,Outn,Outf , qo〉 in pf have tc(π) equal to
dnat and snat, respectively. In fact, pf cannot perform snat and dnat on packets
directed to and generated from the host, respectively.

8 Conclusions

We have proposed a transcompling pipeline for firewall languages, made of three
stages. Its core is IFCL, an intermediate language equipped here with a formal
semantics. It has the typical actions of real configuration languages, and it keeps
them apart from the way the firewall applies them, represented by a control
diagram. In stage 1, a real firewall policy language can be encoded in IFCL by
simply instantiating the state and the control diagram. As a by-product, we give
a formal semantics to the source language, which usually has none. In stage 2,
we have built a logical predicate that describes the flow of packets accepted by
the firewall together with their possible translations. From that, we have synthe-
sized a declarative firewall specification, in the form of a table that succinctly
represents the firewall behavior. This table is the basis for supporting policy
analysis, like policy implication and comparison, as described in our companion
paper [1]. The declarative specification is the input of stage 3, which compiles
it to a real target language. To illustrate, we have applied these stages on two
among the most used firewall systems in Linux and Unix: iptables and pf.
We have selected these two systems because they exhibit very different packet
processing schemes, making the porting of configurations very challenging. All
the stages above have been proved to preserve the semantics of the original pol-
icy, so guaranteeing that our transcompilation is correct. As a matter of fact,
we have proposed a way to mechanically implement policy refactoring, when

Transcompiling Firewalls 323

the source and the target languages coincide. This is because the declarative
specification has no anomalies, e.g., rule overlapping or shadowing, so helping
the system administrator also in policy maintenance. At the same time, we have
put forward a manner to mechanically port policies from one firewall system
to another, when their languages differ. We point out that, even though [1]
intuitively presents and implements the first two stages of our transcompiling
pipeline, the overlap with this paper is only on Sects. 4 and 6.2. Indeed, the the-
ory, the semantics, the compilation of stage 3 and the proofs of the correctness
of the whole transcompilation are original material.

As a future work, we intend to further experiment on our proposal by encod-
ing more languages, e.g., from specialized firewall devices, like commercial Cisco
IOS, or within the SDN paradigm. We plan to include a (more refined) policy
generator of stage 3 in the existing tool [1] that implements the stages 1 and 2,
and can deal with configurations made of hundreds of rules. Also testing and
improving the performance of our transcompiler, as well as providing it with a
friendly interface would make it more appealing to network administrators. For
example, readability can be improved by automatically grouping rules and by
adding comments that explain the meaning of refactored configurations. Finally,
it would be very interesting to extend our approach to deal with networks with
more than one firewall. The idea would be to combine the synthesized specifica-
tions based on network topology and routing.

References

1. Bodei, C., Degano, P., Focardi, R., Galletta, L., Tempesta, M., Veronese, L.:
Language-independent synthesis of firewall policies. In: Proceedings of the 3rd
IEEE European Symposium on Security and Privacy (2018)

2. The Netfilter Project. https://www.netfilter.org/
3. Packet Filter (PF). https://www.openbsd.org/faq/pf/
4. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to

specify and deploy a network security policy. In: Dimitrakos, T., Martinelli, F.
(eds.) Formal Aspects in Security and Trust. IFIP, vol. 173, pp. 203–218. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24098-5 15

5. Gouda, M., Liu, A.: Structured firewall design. Comput. Netw. 51(4), 1106–1120
(2007)

6. Foley, S.N., Neville, U.: A firewall algebra for openstack. In: 2015 IEEE Conference
on Communications and Network Security, CNS 2015, pp. 541–549 (2015)

7. Babel: The compiler for writing next generation JavaScript. https://babeljs.io
8. Runtime converter. http://www.runtimeconverter.com
9. Diekmann, C., Michaelis, J., Haslbeck, M.P.L., Carle, G.: Verified iptables firewall

analysis. In: Proceedings of the 15th IFIP Networking Conference, Vienna, Austria,
17–19 May 2016, pp. 252–260 (2016)

10. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., Mohapatra, P.: FIREMAN: a toolkit
for firewall modeling and analysis. In: IEEE Symposium on Security and Privacy
(S&P 2006), May 2006, Berkeley, California, USA, pp. 199–213 (2006)

11. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: Uncovering the Secrets of System Administra-
tion: Proceedings of the 24th Large Installation System Administration Conference,
LISA 2010, San Jose, CA, USA, 7–12 November 2010 (2010)

https://www.netfilter.org/
https://www.openbsd.org/faq/pf/
https://doi.org/10.1007/0-387-24098-5_15
https://babeljs.io
http://www.runtimeconverter.com

324 C. Bodei et al.

12. Mayer, A.J., Wool, A., Ziskind, E.: Fang: a firewall analysis engine. In: 2000 IEEE
Symposium on Security and Privacy, Berkeley, California, USA, 14–17 May 2000,
pp. 177–187 (2000)

13. Mayer, A.J., Wool, A., Ziskind, E.: Offline firewall analysis. Int. J. Inf. Secur. 5(3),
125–144 (2006)

14. Adão, P., Bozzato, C., Rossi, G.D., Focardi, R., Luccio, F.L.: Mignis: a semantic
based tool for firewall configuration. In: IEEE 27th Computer Security Foundations
Symposium, CSF 2014, pp. 351–365 (2014)

15. Bartal, Y., Mayer, A.J., Nissim, K., Wool, A.: Firmato: a novel firewall manage-
ment toolkit. ACM Trans. Comput. Syst. 22(4), 381–420 (2004)

16. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2014). ACM (2014)

17. The Netfilter Project: Traversing of tables and chains. http://www.iptables.info/
en/structure-of-iptables.html

18. The IPFW Firewall. https://www.freebsd.org/doc/handbook/firewalls-ipfw.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.iptables.info/en/structure-of-iptables.html
http://www.iptables.info/en/structure-of-iptables.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
http://creativecommons.org/licenses/by/4.0/

	Transcompiling Firewalls
	1 Introduction
	2 Background
	3 Porting a Policy: An Example
	4 The Intermediate Firewall Configuration Language
	4.1 Decompiling Two Real Languages into IFCL

	5 Formal Semantics
	6 From Operational to Declarative Descriptions
	6.1 Unfolding Chains
	6.2 Logical Characterization of Firewalls

	7 Policy Generation
	7.1 Compiling a Firewall Specification
	7.2 Correctness of the Compiled Firewall

	8 Conclusions
	References

