
Language-Independent Synthesis of Firewall Policies

Chiara Bodei, Pierpaolo Degano, Letterio Galletta
Dipartimento di Informatica, Università di Pisa, Italy

{chiara,degano,galletta}@di.unipi.it

Riccardo Focardi, Mauro Tempesta, Lorenzo Veronese
DAIS, Università Ca’ Foscari Venezia, Italy

{focardi,tempesta}@unive.it, 852058@stud.unive.it

Abstract—Configuring and maintaining a firewall configura-
tion is notoriously hard. Policies are written in low-level,
platform-specific languages where firewall rules are inspected
and enforced along non trivial control flow paths. Further
difficulties arise from Network Address Translation (NAT),
since filters must be implemented with addresses translations
in mind. In this work, we study the problem of decompiling
a real firewall configuration into an abstract specification.
This abstract version throws the low-level details away by
exposing the meaning of the configuration, i.e., the allowed
connections with possible address translations. The generated
specification makes it easier for system administrators to check
if: (i) the intended security policy is actually implemented;
(ii) two configurations are equivalent; (iii) updates have the
desired effect on the firewall behavior. The peculiarity of our
approach is that is independent of the specific target firewall
system and language. This independence is obtained through
a generic intermediate language that provides the typical
features of real configuration languages and that separates
the specification of the rulesets, determining the destiny of
packets, from the specification of the platform-dependent steps
needed to elaborate packets. We present a tool that decompiles
real firewall configurations from different systems into this
intermediate language and uses the Z3 solver to synthesize
the abstract specification that succinctly represents the firewall
behavior and the NAT. Tests on real configurations show that
the tool is effective: it synthesizes complex policies in a matter
of minutes and, and it answers to specific queries in just a few
seconds. The tool can also point out policy differences before
and after configuration updates in a simple, tabular form.

1. Introduction

Firewalls are one of the standard mechanisms for pro-
tecting computer networks but, as any other security mech-
anism, they become useless when incorrectly configured.
Configuring a firewall may be a very difficult task also
for expert system administrators. In fact, a configuration is
typically composed of a large number of rules and it is
often hard to figure out what they imply in terms of firewall
behavior. In addition, configurations need to be modified ac-
cording to the updates of the desired security policies. Since
rules interact with each other, incautious modifications may
unexpectedly impact on the overall behavior of the firewall,

with possible severe consequences on the functionality and
the security of the network. When a network is protected
by more than one firewall the situation complicates further,
since the configurations of the various firewalls need to be
kept coherent: enabling or disabling a connection typically
requires to modify the configuration of all the firewalls that
are potentially traversed by the considered connection.

Firewall policy languages are varied and usually rather
complex, accounting for low-level system and network de-
tails and supporting non trivial control flow constructs, such
as jumps and gotos. The way firewall configurations are
enforced typically depends on how packets are processed by
the network stack of the operating system. Further difficul-
ties for network administrators come from Network Address
Translation (NAT), a pervasive component of IPv4 network-
ing that operates while packets traverse the firewall. In IPv4,
NAT is indispensable for performing port redirection and
translating addresses, e.g., when a single public address is
used for a whole private network.

Over the past few years, there has been a growing inter-
est in high level languages for programming the network as
a whole. The Software Defined Network (SDN) paradigm
decouples network control and forwarding functions, by
abstracting the underlying infrastructure from applications
and network services [1]. A unified, high level paradigm to
configure networks and firewalls is appealing and might, in
principle, make firewall configuration simpler and less error-
prone. However, SDN requires a suitable infrastructure and,
even if it seems to be spreading fast, it will take time before
“old” technology is dismissed in favor of it. In the years to
come, we still have to face a variety of firewall configuration
languages, including the ones running on legacy devices.

In this work, we study the problem of decompiling a
real firewall configuration into an abstract specification that
represents the set of the allowed connections. This abstract
version of the firewall policy throws away the low-level
details, e.g., the control flow, so exposing the meaning of the
configuration and making it easier for system administrators
to check whether or not the intended security policy is cor-
rectly implemented. Moreover, by comparing two abstract
specifications an administrator can detect the differences be-
tween actual configurations and can check that updates have
the desired effect on the firewall behavior. Decompilation
also opens the way to cross-platform re-compilation into a

92

2018 IEEE European Symposium on Security and Privacy

© 2018, Chiara Bodei. Under license to IEEE.
DOI 10.1109/EuroSP.2018.00015

different firewall system. This is particularly useful when
migrating to a different infrastructure or to a new network
configuration paradigm such as SDN.

In the literature there are many tools and techniques for
the analysis of specific firewall systems. Our approach is
peculiar because of its independence of the specific target
firewall system and language. The core of our approach is
a generic intermediate language that incorporates all typical
features of firewall languages such as NAT, jumps, invoca-
tions to rulesets and stateful packet filtering. Interestingly,
the intermediate language uncovers the bipartite structure
common to real firewall languages: the first component
consists of the rulesets determining the destiny of packets,
the second one specifies the steps needed to elaborate pack-
ets and the order in which rulesets are applied. While the
format of the rules and the actions are largely shared by the
available firewall languages, apart from minor syntactic dif-
ferences, the second component is peculiar to each operating
system and each firewall tool and, intuitively, summarizes
the specific low-level behavior of a particular system.

We have developed a tool named FireWall Synthesizer
(FWS) that translates real configurations from different
firewall systems into the intermediate language and auto-
matically synthesizes an abstract firewall policy, in tabular
form. The intermediate language has been developed so to
make it relatively easy to compile real firewall configuration
languages into it. As a proof of concept, we have developed
compilers for the most used firewall tools in Linux and
Unix [2], [3], [4] and, partially, for Cisco IOS routers.
Interestingly, once a configuration has been translated into
the intermediate language, the synthesis can be performed
independently of the initial firewall language and system.
Therefore new firewall systems are easily supported by just
providing a compiler into the intermediate language.

The core of the synthesis is the automatic translation
of the firewall configuration from the intermediate language
into a first order logic predicate that determines which are
the packets accepted by the configuration in hand, with all
the possible translations. FWS uses the Z3 solver [5] to de-
rive the actual set of packets accepted and translated by the
firewall. The resulting abstract specification is more readable
than the standard rulesets, because each row in the generated
tables declaratively represents a set of accepted packets with
their possible translations. Moreover, rows are independent
from each other, while in real firewall configurations the
meaning of a rule depends on the others and on the firewall
control flow (cf. Section 3.4). Moreover, FWS is provided
with a query language that allows administrators to perform
specific queries about, e.g., which subnets, hosts and ports
are reachable from other hosts and subnets. Due to Z3, FWS
can also efficiently compute policy equivalence, implication
and difference. This makes it possible for an administrator
to easily observe the effect of adding, deleting or modifying
a rule in the actual firewall configuration.

Contributions. Our contributions can be summarized as
follows:

(i) we present FWS, a language-independent tool that,
given a real configuration, synthesizes an abstract
firewall specification. FWS can efficiently compute
policy equivalence, implication and difference and
can answer to specific queries about host reachabil-
ity. The tool is available for download at [6];

(ii) we introduce a new language for firewalls that
decomposes a configuration into rule sets and a
control diagram describing the packet processing
flow through the system. The language is the core
component of FWS that makes the tool language-
independent, but it is also of independent interest as
a generic firewall configuration language;

(iii) we provide a new characterization of a firewall
configuration with NAT in terms of a first order
logic predicate that determines which are the packets
accepted by the configuration in hand, with all the
possible translations. The formal characterization is,
by itself, insightful and provides a formal setting for
reasoning on firewall configurations;

(iv) we present results of experiments performed with
FWS on real firewall configurations. The tool syn-
thesizes complex policies in a matter of minutes
and, and it answers to specific queries just in a few
seconds. Policy implication and equivalence are also
checked very efficiently.

Related work. The literature has many proposals for simpli-
fying and analyzing firewall configurations. Some are based
on formal methods, others consist of ad hoc configuration
and analysis tools. Many works take a top-down approach,
proposing ways to specify abstract filtering policies that can
be possibly compiled into the actual firewall systems, e.g.,
[7], [8], [9], [10], [11], [12], [13]. There also exist several
tools for facilitating firewall management and detecting mis-
configurations, still following a top-down approach, such as
[14], [15], [16], [17], [18], [19], [20], [21], [22].

In this paper we take a dual, bottom-up approach: we
synthesize a specification from the actual firewall configura-
tion. Below, we revise papers that take a bottom-up approach
and adopt formal methods. To the best of our knowledge,
ours is the only one providing at the same time: (i) a
language for analysing multiple firewall systems; (ii) an
effective technique for synthesizing abstract policies; (iii) a
support for NAT; (iv) a formal characterization of firewall
behaviour.

Some researchers focused on analyzing iptables:
Jeffrey et al. introduce in [23] a formal model of firewall pol-
icy, based on iptables, and investigate the properties of
reachability and cyclicity of firewall policy configurations.
The proposal by Diekmann et al. [24] has some similarities
with ours. In particular, the authors provide a “cleaned”
ruleset that an automatic tool can easily analyze, using a
formal semantics of iptables and a semantics-preserving
ruleset simplification (e.g., chain unfolding) with a treatment
of unknown match conditions, due to a ternary logic. They
give a semantics to a subset of iptables that includes
access control flow actions, but not packet modification such

93

as NAT. Our approach supports NAT and is based on a
generic language that can target languages different from
iptables. ITVal [25] is a tool that parses iptables
rules and can be queried to discover host reachability. The
tool is specific for iptables and does not aim at synthe-
sizing an abstract firewall specification.

Other proposals in the literature are more general and
target, in principle, various firewall systems. Below, we
discuss the main differences with respect to our work. A
model-driven approach is proposed in [26] to derive network
access-control policies from real firewall configuration. A
proof of concept is given only for iptables. Moreover,
compared to our proposal this paper does not address NAT.
In [27] the authors propose an algorithmic solution to detect
and correct specific anomalies on stateful firewalls. How-
ever, the proposed approach does not aim at synthesizing an
abstract specification, as we do. FIREMAN [28] is a tool that
detects inconsistencies and inefficiencies of firewall policies.
It does not support NAT though. In [29] the Margrave
policy analyzer is applied to the analysis of IOS firewalls.
The approach is rather general and extensible to other
languages, however the analysis focuses on finding specific
problems in policies rather then synthesizing a high-level
policy specification. A framework for the static analysis of
networks is proposed in [30]. It provides sophisticated in-
sights about network configurations but does not specifically
analyze real firewall configurations and, as for the previous
papers, there is no synthesis of high-level specifications.
Fang [31] is another tool for querying real policies in order
to discover anomalies. Authors state that it synthesizes an
abstract policy that resembles the one we propose here, but
the tool is unavailable and the paper does not describe the
tool internals, making any comparison with our approach
impossible.

Jayaraman et al. [32] propose an approach for vali-
dating network connectivity policies, implemented by the
tool SECGURU. They extract logical specifications from real
Cisco IOS routers and solve them in Z3. In our paper we
have extended their approach under two main aspects: (i)
we treat NAT, i.e., we deal with transformations happening
to packets while they are filtered. This is non trivial and will
be modeled through logical predicates on pairs of packets:
the original and the translated one; (ii) we perform our
analysis on a generic language that can be used to represent
various real configuration languages, by taking into account
the platform-depended packet processing flow. As a conse-
quence, we provide a common logical characterization that
fits any real languages modeled in our settings. More details
will be given in Section 4, in particular on our original
algorithms for generating abstract specifications.

Structure of the paper. In Section 2, we briefly survey
iptables and ipfw, two widespread firewall systems
that are supported by FWS. For lack of space we will not
describe the other supported firewall systems in the paper.
Section 3 illustrates how FWS works on a small yet realistic
case study. In particular we focus on how network admin-
istrators can exploit FWS to check firewall configurations

for host reachability, policy implication, equivalence and
difference. In Section 4, we present the internals of FWS
and how it exploits the Z3 solver to automatically synthesize
an abstract specification and to perform policy analysis.
In Section 5, we discuss the scalability of our approach
by illustrating tests on various real firewall policies. In
Section 6 we present our intermediate language and we
provide a logical characterization of all accepted packets
with possible translations. We conclude in Section 7.

2. Background

System administrators use firewalls to monitor the traffic
and to enforce a predetermined set of access control policies
among the various hosts and subnetworks (packet filtering).
System administrators can also use a firewall to connect a
network with private IPs to other (public IP) networks or to
the Internet and to perform connection redirections through
Network Address Translation (NAT).

Firewalls can be implemented either as specialized hard-
ware or as software tools running on general purpose oper-
ating systems. Independently from their actual implementa-
tions, the underlying idea is the same: they are characterized
by a set of rules that determine which packets reach the
protected network and how they are modified.

For lack of space, in the rest of the paper we will only
consider the iptables and ipfw firewall systems that are
two of the most used firewall tools in Linux and Unix. Also,
their very different packet processing schemes make it hard
understanding if an iptables policy filters as an ipfw
one with no mechanical tool (see Section 3).

iptables. It is one of the most used tools for packet
filtering as it is the default one in Linux distributions. It
operates on top of Netfilter, the standard framework for
packets processing implemented in the Linux kernel [33].

The basic notions of iptables are tables and chains.
Intuitively, a table is a collection of ordered lists of policy
rules called chains. The most commonly used tables are:
filter for packet filtering; nat for network address trans-
lation; mangle for packet alteration. There are five built-in
chains that are inspected at specific moments of the packet
life cycle [34]: PreRouting, when the packet reaches the
host; Forward, when the packet is routed through the host;
PostRouting, when the packet is about to leave the host;
Input, when the packet is routed to the host; Output,
when the packet is generated by the host. Tables do not
necessarily contain all the predefined chains and further
user-defined chains can be added.

Each rule specifies a condition and a target. If the packet
matches the condition then it is processed according to
the specified target, which can be a built-in target or a
user-defined chain. The most commonly used targets are:
ACCEPT, to accept the packet; DROP, to discard the packet;
RETURN, to stop examining the current chain and resume
the processing of a previous chain; DNAT, to perform desti-
nation NAT, i.e., a translation of the destination address;
SNAT, to perform source NAT, i.e., a translation of the

94

source address. When the target is a user-defined chain, two
“jumping” modes are available: call and goto. The difference
between the two arises when a RETURN is executed or the
end of the chain is reached: the evaluation resumes from the
rule following the last matched call. Built-in chains have
a user-configurable default policy (ACCEPT or DROP): if
the evaluation reaches the end of a built-in chain without
matches, its default policy is applied.

ipfw. It is the standard firewall for FreeBSD [3]. In fil-
tering a packet, rules are inspected sequentially until the
first match occurs and the corresponding action is taken,
similarly to iptables. The packet is dropped if there is
no matching rule. The sequential order of inspection can be
altered by rules containing skipto, call and return;
in particular, skipto behaves as a goto in iptables,
but it is only possible to jump to a rule that follows the
current one. Another difference is that the targets of these
actions are rules instead of rulesets. In ipfw there is a single
ruleset that is inspected twice, when the packet enters the
firewall and when it exits. It is possible to specify when a
certain rule should be applied using the keywords in and
out. Packets that belong to established connections, e.g.,
in connection-oriented protocols, can be accepted by using
a check-state rule.

3. The FWS Tool at Work

This section illustrates how the FWS tool can be used
to analyze and manage real firewall configurations. We
consider a small yet realistic scenario and we show how
FWS supports system administrators in reasoning on and
managing a firewall, spotting mistakes and refactoring the
configuration so to fix them. In particular, we show how the
following behavioral properties can be checked:

• Reachability, i.e., whether or not a certain address is
reachable from another one, possibly through NAT;

• Policy implication and equivalence, i.e., if the pack-
ets accepted by one configuration are at least/exactly
the same accepted by another configuration;

• Policy difference, i.e., what packets are accepted
by one configuration and denied by another con-
figuration. This feature is particularly useful when
maintaining a policy to check how updates affect
the firewall behavior.

• Related rules, i.e., which configuration rules affect
the processing of the packets identified by a user-
provided query.

In Section 3.1 we describe the case study. We then provide
two firewall configurations in iptables (Section 3.2) and
ipfw (Section 3.3), and we apply FWS to decompile the
actual configurations in a tabular, human-readable format
and check whether they meet the requirements stated in
Section 3.1. Finally, in Section 3.4 we show how FWS can
help administrators in maintaining a firewall configuration.

FWS, together with all the examples of this section, is
available for download at [6].

Net

10.0.1.0/24

10.0.2.0/24

10.0.1.15
HTTPS

10.0.2.15
SSH

172.16.0.254
ext10.0.1.1

eth0

10.0.2.1
eth1

Figure 1: A case study of a firewall with three interfaces.

3.1. Case Study

As running example, we consider the typical network
setup of a small company shown in Figure 1. The internal
network consists of two subnetworks:

• network 10.0.1.0/24 contains servers and production
machines, including a HTTPS server (10.0.1.15) that
runs the company website on port 443;

• network 10.0.2.0/24 contains the machines of the
employees, including the computer of the system
administrator (10.0.2.15) where a SSH service is
running on port 22.

The firewall has three network interfaces: eth0 con-
nected to 10.0.1.0/24 with IP 10.0.1.1, eth1 connected
to 10.0.2.0/24 with IP 10.0.2.1 and ext connected to the
Internet with public IP 172.16.0.254.

Requirements. We want to enforce the following require-
ments on the internal and external traffic:

1) internal networks can freely communicate;
2) connections to the public IP on ports 443 and 22

are translated (DNAT) to 10.0.1.15 and 10.0.2.15,
respectively. This condition permits external hosts
to access the website by connecting to the public IP
address 172.16.0.254 at port 443, that is redirected
to the corresponding internal host; similarly for
accessing the SSH server;

3) connections from the internal hosts to the Internet
are allowed only towards HTTP and HTTPS web
servers, i.e., with destination ports 80 and 443,
respectively;

4) source addresses of connections from the internal
hosts to the Internet are translated (SNAT) to the
external IP address of the firewall. This allows hosts
with private IPs to access the Internet;

5) the firewall can connect to any other host.

Below, we encode the requirements above as queries that
are checked by FWS. To save space, the specific encodings
are detailed along their presentation.

95

NAT rules

*nat
Default policy ACCEPT in nat chains
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

Requirement 2: Redirect incoming SSH and HTTPS connections to hosts 10.0.2.15 and 10.0.1.15 (DNAT)
-A PREROUTING -p tcp -d 172.16.0.254 --dport 22 -j DNAT --to 10.0.2.15
-A PREROUTING -p tcp -d 172.16.0.254 --dport 443 -j DNAT --to 10.0.1.15
Requirement 4: Connections towards the Internet exit with source address 172.16.0.254 (SNAT)
-A POSTROUTING -s 10.0.0.0/16 ! -d 10.0.0.0/16 -j SNAT --to 172.16.0.254

COMMIT

Filtering rules

*filter
Default ACCEPT in output (Requirement 5), DROP in the other chains
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]

Allow established packets
-A FORWARD -m state --state ESTABLISHED -j ACCEPT
-A INPUT -m state --state ESTABLISHED -j ACCEPT
Requirement 1: Allow arbitrary traffic between internal networks
-A FORWARD -s 10.0.0.0/16 -d 10.0.0.0/16 -j ACCEPT
Requirement 3: Allow HTTP/HTTPS outgoing traffic
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 80 -j ACCEPT
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 443 -j ACCEPT
Requirement 2: Allow SSH/HTTPS incoming traffic to the corresponding hosts
-A FORWARD -p tcp -d 10.0.2.15 --dport 22 -j ACCEPT
-A FORWARD -p tcp -d 10.0.1.15 --dport 443 -j ACCEPT

COMMIT

Figure 2: Example policy of Section 3.1 in iptables.

3.2. Compliant Configuration in iptables

We provide a configuration in iptables for the ex-
ample of Section 3.1. Then, we use FWS to decompile and
analyze the configuration and check if it complies with the
requirements 1-5 of Section 3.1.

Configuring the firewall with iptables. Figure 2 shows
the policy for our example in the iptables-save format,
i.e., the standard format used to store iptables rules in
a configuration file.

The first sequence of commands delimited by *nat
and COMMIT keywords sets the default policies of all nat
chains to ACCEPT, inserts into the nat PREROUTING
chain the rules for redirecting the incoming connections to
the internal servers (requirement 2) and adds to the nat
POSTROUTING chain the rule for SNAT (requirement 4).

The subsequent block from lines *filter to COMMIT
specifies a default DROP policy for the INPUT and
FORWARD chains and a default ACCEPT policy for the
OUTPUT chain, letting the firewall communicate with any
host (requirement 5). The first two filtering rules allow
the packets belonging to connections flagged as established
to go through and towards the firewall, i.e., whenever a
new connection is allowed any further packet belonging
to the same connection will also be allowed. This is not
explicitly required by the policy but is necessary to ensure
functionality of connection-oriented protocols. Then, we

have ACCEPT rules corresponding to the requirements 1,
3 and 2, respectively. Notice that requirement 2 has also
rules in the nat table above.

Decompiling and analyzing the configuration. We now
use FWS to check that the configuration of Figure 2 meets
the requirements 1-5 of Section 3.1. First, we ask the tool
the following query:

((srcIp == 10.0.1.0/24 && dstIp == 10.0.2.0/24) ||
(srcIp == 10.0.2.0/24 && dstIp == 10.0.1.0/24))

&& state == NEW

where srcIp, dstIp represent the fields for source and
destination address of the IP packet entering the firewall
interfaces, and state tells if a connection is new or
established. The query checks whether hosts with srcIp
10.0.1.0/24 can start new connections towards those with
dstIp 10.0.2.0/24, or vice versa, as stated by require-
ment 1. The operator == constrains a variable to be equal
to a value or inside a certain interval; the operators && and
|| stand for logical conjunction and disjunction.

The output we obtain from the tool is in Figure 3a,
where * denotes any value. The table contains all of the
allowed connections matching the query, confirming that
requirement 1 is satisfied.

We now check that external hosts can access the web
and the SSH servers only by connecting to the firewall
IP address 172.16.0.254 at port 443 and 22 respectively

96

Source IP Source Port Destination IP Destination Port Protocol State
10.0.2.0/24 * 10.0.1.0/24 * * NEW
10.0.1.0/24 * 10.0.2.0/24 * * NEW

(a) Requirement 1

Source IP Source Port DNAT IP DNAT Port Destination IP Destination Port Protocol State
* * 10.0.1.15 - 172.16.0.254 443 tcp NEW

* * 10.0.2.15 - 172.16.0.254 22 tcp NEW

(b) Requirement 2

Source IP Source Port SNAT IP SNAT Port Destination IP Destination Port Protocol State
10.0.0.0/16 * 172.16.0.254 - * \ {10.0.0.0/16} 80 tcp NEW

443

(c) Requirements 3 and 4

Source IP Source Port Destination IP Destination Port Protocol State
172.16.0.254 * * * * NEW

(d) Requirement 5

Figure 3: Results of FWS when checking the iptables configuration of Figure 2

(requirement 2). To do that, we ask which packets can reach
the hosts with addresses 10.0.1.15 and 10.0.2.15:

(dstIp’ == 10.0.1.15 || dstIp’ == 10.0.2.15) &&
state == NEW

The variable dstIp’ represents the destination address of
the packet possibly translated by a NAT: in the queries the
variables with a prime “’”, e.g., dstIp’ above, denote con-
straints applied to packets exiting a firewall interface; vari-
ables without primes instead constrain packets entering the
firewall. The result in Figure 3b confirms that requirement 2
is satisfied: indeed, the servers 10.0.1.15 and 10.0.2.15 are
reachable from any host connecting to the firewall on ports
443 and 22 only.

The next query checks the requirements 3 and 4 together:

srcIp == 10.0.0.0/16 && not(dstIp’ == 10.0.0.0/16)
&& state == NEW

Intuitively, the query asks for the new connections that are
allowed from an internal source to an external destination.
The answer in Figure 3c shows that both the requirements
are met. Indeed, the notation * \ {10.0.0.0/16} repre-
sents all destination addresses except those in the subnet
10.0.0.0/16 (in the standard CIDR notation). Finally, by
checking requirement 5 with the query

srcIp == 172.16.0.254 && state == NEW

we obtain the output of Figure 3d showing that the firewall
can reach any host.

We can thus conclude that the configuration in Figure 2
is correct with respect to the requirements.

3.3. Non-Compliant Configuration in ipfw

Figure 4 implements the example policy in ipfw. On
purpose, we introduce subtle but realistic differences with

respect to the one in iptables and we show how FWS
spots them in a clear and concise way.

Configuring the firewall with ipfw. The first command
declares NAT rules, named nat 1, that will be activated
by the following rules. Notice that next commands have
numbers (after the add keyword) that can be used for
jumps, as we will see below. We refer to those numbers in
the description. Command 00001 accepts all the packets
that belong to already established connections (command
check-state). As for iptables this is important to
ensure functionality of connection-oriented protocols. Com-
mand 00010 enables traffic between internal networks (re-
quirement 1). Command 00100 applies nat 1 to the pack-
ets received via the interface ext, implementing the destina-
tion NAT of requirement 2. The actual connections to hosts
10.0.1.15 and 10.0.2.15, respectively on ports 443 and 22,
are enabled by the next commands 00200, 00201, 00300
and 00301. Notice that packets coming from those hosts
are handled by jumping (command skipto 1000) to the
last but one line, which applies nat 1, translating source
address to 172.0.16.254 (SNAT). Then, packets are accepted
by command 01001. Next line (command 00500) im-
plements the requirements 3 and 4 similarly to previous
rules, i.e., by jumping to 01000 which enforces the SNAT
on outgoing connections. Command keep-state is the
counter-part of check-state: the connection is saved in
the firewall state so that packets belonging to the same con-
nection will be allowed through the firewall by rule 00001.
Rule 00501 allows the firewall host to communicate to any
host. Finally, command 00999 rejects any packet that does
not match any previous rule, implementing a default deny
policy.

97

NAT setup. The first line defines the SNAT for packets leaving the firewall through the interface
ext (Requirement 4), the other two lines specify to perform DNAT on packets arriving to the ports
22 and 443 of the firewall (Requirement 2)
ipfw -q nat 1 config if ext unreg_only reset \

redirect_port tcp 10.0.1.15:443 443 \
redirect_port tcp 10.0.2.15:22 22

Allow established packets
ipfw -q add 00001 check-state
Requirement 1: Allow arbitrary traffic between internal networks
ipfw -q add 00010 allow all from 10.0.0.0/16 to 10.0.0.0/16
Requirement 2: Apply DNAT on packets arriving to the external interface of the firewall
ipfw -q add 00100 nat 1 ip from any to 172.16.0.254 in recv ext
Requirement 2: Allow SSH/HTTPS incoming traffic to the corresponding hosts and responses from these services
ipfw -q add 00200 allow tcp from any to 10.0.1.15 443
ipfw -q add 00201 skipto 1000 tcp from 10.0.1.15 443 to any
ipfw -q add 00300 allow tcp from any to 10.0.2.15 22
ipfw -q add 00301 skipto 1000 tcp from 10.0.2.15 22 to any
Requirements 3 and 4: Allow HTTP/HTTPS outgoing traffic
ipfw -q add 00500 skipto 1000 tcp from 10.0.0.0/16 to any 80,443 setup keep-state
Requirement 5: Allow arbitrary outgoing traffic by the firewall
ipfw -q add 00501 allow ip from me to any setup keep-state
Drop all the other packets
ipfw -q add 00999 deny all from any to any
Apply SNAT to outgoing connnections
ipfw -q add 01000 nat 1 ip from any to not 10.0.0.0/16 out
ipfw -q add 01001 allow ip from any to any

Figure 4: Policy in ipfw.

Decompiling and analyzing the configuration. We now
use FWS to check if the configuration of Figure 4 meets
the requirements 1-5 of Section 3.1. We perform exactly the
same queries we did for iptables in Section 3.2. In fact,
one of the advantages of our approach is that the analysis
is fully independent of the particular firewall system and of
the language analyzed.

Queries for the requirements 1 and 5 give exactly the
same results we got for iptables (cf. figures 5a, 5d and
3a, 3d). For requirement 2, instead, we get an interesting
difference. For the ipfw configuration we obtain that hosts
10.0.1.15 and 10.0.2.15 cannot be reached by the internal
network and by the firewall host via DNAT (cf. Figure 5b).
This is because in the ipfw configuration, rule 00100 is
defined for interface ext, i.e., for packets received from the
Internet. In fact, requirement 2 could be interpreted in this
stricter way by a system administrator, as hosts 10.0.1.15
and 10.0.2.15 are anyway reachable from internal hosts even
without DNAT. FWS is able to spot this subtle difference
in the two configurations. To make the ipfw configuration
behave as the iptables one (for requirement 2), it is
enough to remove recv ext from rule 00100.

In checking the requirements 3 and 4, FWS reports that
the hosts 10.0.1.15 and 10.0.2.15 can start new connections
from source ports 443 and 22, respectively, to any other host.
This is due to rules 00201 and 00301 that enable the two
hosts to answer connections done through the DNAT and
constitutes an alternative way to make connection-oriented
protocols work without exploiting the check-state com-
mand. In principle, this should be considered non-compliant
with requirement 3 as new connections from 443 and 22
from the two hosts will access any port and not just 80 and
443, as requested. Again, FWS spots this difference in the
policy. This error can be rectified by removing rules 00201

and 00301 from the policy and adding the keep-state
keyword to the rules 00200 and 00300.

Interestingly, FWS can compute the equivalence of con-
figurations written for different firewall systems/languages.
In this particular case, FWS outputs that the fixed ipfw
configuration and the iptables one are equivalent, rela-
tively to the five requirements.

3.4. Maintaining Firewall Configurations

In this section, we show how FWS can be used to
perform maintenance of the iptables policy presented
in Section 3.2.

The company has added a new machine to the sub-
net 10.0.1.0/24, which has been assigned the IP address
10.0.1.22. Differently from the other hosts of the network,
we want to allow Internet access (with SNAT) to this
machine only over HTTPS. The other requirements on the
traffic should be preserved. For this purpose, we can add
the following rule to the FORWARD chain, which drops
connections to port 80 from host 10.0.1.22:

-A FORWARD -s 10.0.1.22 -p tcp --dport 80 -j DROP

However, we must be careful about the position where to
place this rule in order to fulfill the desired requirement and
avoid to unintentionally block legal traffic.

If we place the new rule at the end of the FORWARD
chain, the policy equivalence analysis implemented in FWS
reports that the new policy is equivalent to the previous
version. We can use the related rules analysis to understand
which rules are relevant for processing HTTP packets. We
find out that the output of the analysis includes only the
following filtering rule from the FORWARD chain:

-A FORWARD -s 10.0.0.0/16 -p tcp --dport 80
-j ACCEPT

98

The above rule accepts all the HTTP traffic from the internal
networks and is evaluated before the new DROP rule. Hence,
our new rule should be placed before this one.

If we add the new rule before those of the other require-
ments, e.g., after the rules that allow packets of incoming
connections, FWS reports that the policy is not equivalent to
the previous one. We can check the impact of our changes
by running the policy difference analysis projected over the
HTTP traffic:

protocol == tcp && dstPort == 80

The output of the analysis is shown in Figure 6a. The first
column is + or - for lines that appear in the synthesis or
disappear after the updates, respectively. We can see that
host 10.0.1.22 is now unable to connect to the Internet, as
desired (second table of Figure 6a). However, our update
also prevents communications over HTTP with other ma-
chines on the internal networks, thus violating requirement 1
(first table of Figure 6a).

The correct place where to add the new rule is between
the rule for requirement 1 and those for requirement 3. In
this way we allow HTTP traffic from 10.0.1.22 only to the
internal networks. If we repeat the analysis, we see that now
the only difference is just in the HTTP traffic towards the
Internet, as desired (cf. Figure 6b).

4. FWS Architecture and Algorithms

FWS [6] consists of one analysis module and many
front-end compilers from real configuration languages into
the intermediate language presented in detail in Section 6.

The analysis module is implemented in Haskell. It takes
configurations specified in the intermediate language and
performs various analyses, as already illustrated in Sec-
tion 3. Each front-end compiler takes a real firewall configu-
ration for a specific firewall system, and compiles it into the
intermediate language. The complexity of this compilation
is usually small, as we will discuss in Section 6.3. At
the moment, FWS supports the three main Unix firewall
systems (iptables, ipfw and pf) and the subset of
the Cisco IOS configuration language concerning standard,
extended and named ACLs. The front-end compilers are
implemented in Python in order to facilitate the extension
to new firewall languages and systems, even from potential
external contributors.

Encoding in Z3. The analysis module takes as in-
put a firewall configuration expressed in the intermedi-
ate language and builds a set of logical predicates P =
{P1(p, p̃), . . . ,Pn(p, p̃)} defined over pairs of packets that
characterize the firewall behavior. In particular, Pi(p, p̃)
evaluates to true if the input packet p is accepted as p̃ by
the firewall. The union of the pairs that satisfy one of the
predicates in P represents the overall firewall behavior. We
work with pairs since the input packet can be modified as it
traverses the firewall due to the presence of NAT: of course,
when no NAT occurs, p and p̃ coincide. The technical details
of the logic encoding will be given in Section 6.4.

Algorithm 1 All-BVSAT�

Input: Formula ϕ over bit-vectors with free variables �x
Output: Set of multi-cubes M that are models of ϕ

1: B ← ϕ
2: M← ∅
3: while B is satisfiable do
4: �v ← a satisfiable assignment to B
5: for each multi-cube �M ∈M do
6: Extend �M with �v if possible

7: B ← B ∧ (�x /∈ �M)

8: if B ∧ �x = �v is still satisfiable then
9: �C ← {v1} × ...× {vn}

10: for each i in 1..n do
11: Expand interval Ci

12: M←M∪ {�C}
13: B ← B ∧ (�x /∈ �M)

14: return M

We adopt the algorithms presented in [32] to synthesize,
through the Z3 solver [5], an abstract firewall specification,
starting from the predicates in P . We further exploit Z3
to perform interesting analyses on firewall policies, such as
checking for policy equivalence and implication or synthe-
sizing policy differences.

We model packets as tuples of Z3 bit-vector vari-
ables of appropriate size (srcIP, srcPort, dstIP,
dstPort, protocol, state) that represent source
and destination IPs and ports, the protocol and the packet
state. Rule constraints are expressed as logical formulas on
those packet variables. For example, the constraint

dstIp ≡ 10.0.2.15 ∧ dstPort == 22

selects packets with destination 10.0.2.15 and port 22.
We write dstIp ≡ 10.0.2.15 as a shortcut for equating
dstIp with the numerical representation of the IP address
10.0.2.15. Intervals are encoded with two ≤ constraints.

Enumerating accepted packets. In order to succinctly
enumerate all the packets accepted by the firewall, FWS
adopts the multi-cubes representation proposed in [32]. A
multi-cube maps each variable v to a union of disjoint
intervals Iv to which the value of v belongs. For instance,
the solutions of the formula

(dstIp ≡ 10.0.2.15 ∨ dstIp ≡ 10.0.1.0/24)∧
(dstPort == 22 ∨ dstPort == 443)

can be expressed with the following multi-cube:

dstIp = {10.0.2.15} ∪ [10.0.1.0, 10.0.1.255],

dstPort = {22} ∪ {443}
For each formula Pi defined over bit-vector variables, we
compute the satisfying multi-cubes using Algorithm 1 [32].

Intuitively, each iteration of the while loop selects an
assignment of variables �v that is not covered by any of the
existing multi-cubes. First the algorithm tries to extend the

99

Source IP Source Port Destination IP Destination Port Protocol State
10.0.2.0/24 * 10.0.1.0/24 * * NEW
10.0.1.0/24 * 10.0.2.0/24 * * NEW

(a) Requirement 1

Source IP Source Port DNAT IP DNAT Port Destination IP Destination Port Protocol State
* \ { * 10.0.2.15 - 172.16.0.254 22 tcp NEW
10.0.1.0-10.0.2.255
127.0.0.0/8

}

* \ { * 10.0.1.15 - 172.16.0.254 443 tcp NEW
10.0.1.0-10.0.2.255
127.0.0.0/8

}

(b) Requirement 2

Source IP Source Port SNAT IP SNAT Port Destination IP Destination Port Protocol State
10.0.2.15 22 172.16.0.254 - * \ {10.0.0.0/16} * tcp NEW
10.0.1.15 443 172.16.0.254 - * \ {10.0.0.0/16} * tcp NEW
10.0.0.0/16 * 172.16.0.254 - * \ {10.0.0.0/16} 80 tcp NEW

443

(c) Requirements 3 and 4

Source IP Source Port Destination IP Destination Port Protocol State
172.16.0.254 * * * * NEW

(d) Requirement 5

Figure 5: Results of FWS when checking the ipfw configuration of Figure 4

+/- Source IP Source Port Destination IP Destination Port Protocol State
+ 10.0.0.0/16 \ { * 10.0.0.0/16 80 tcp NEW

10.0.1.22
}

- 10.0.0.0/16 * 10.0.0.0/16 80 tcp NEW

+/- Source IP Source Port SNAT IP SNAT Port Destination IP Destination Port Protocol State
+ 10.0.0.0/16 \ { * 172.16.0.254 - * \ { 80 tcp NEW

10.0.1.22 10.0.0.0/16
} }

- 10.0.0.0/16 * 172.16.0.254 - * \ { 80 tcp NEW
10.0.0.0/16
}

(a) Policy differences after the wrong update

+/- Source IP Source Port SNAT IP SNAT Port Destination IP Destination Port Protocol State
+ 10.0.0.0/16 \ { * 172.16.0.254 - * \ { 80 tcp NEW

10.0.1.22 10.0.0.0/16
} }

- 10.0.0.0/16 * 172.16.0.254 - * \ { 80 tcp NEW
10.0.0.0/16
}

(b) Policy differences after the correct update

Figure 6: Maintenance of the iptables configuration

100

existing multi-cubes with the values in �v; next, if the formula
is still satisfiable, a new multi-cube is created.

During the extension/creation of multi-cubes, the algo-
rithm performs an expansion step that extends as much as
possible the intervals both downwards and upwards. This
step uses a variant of the binary search algorithm to find
the bounds of the maximal interval that satisfies the given
formula. The complexity of this step is linear in the size
in bits of the variable under consideration. We refer the
interested reader to [32] for additional details about the
algorithm.

Dealing with NAT. In [32], since NAT is not supported,
the logical predicate representing firewall behavior can be
defined on a single packet and Algorithm 1 is applied di-
rectly. With NAT, synthesis gets more complicated: NAT can
happen in different moments of packet processing that, in
turn, introduce many variables in the formulas, representing
intermediate address values for the packet. Some variables,
however, are not touched by NAT and this needs to be
represented in the predicates, as discussed in the following.

A natural way is to impose equality constraints on
variables that are not touched by NAT. Despite intuitive,
this approach has a severe drawback: equality constraints
do not work well with Algorithm 1. For instance, consider
the formula 1 ≤ v1 ≤ 5 ∧ v1 = v2: the algorithm uses
the SMT solver to find a solution of the formula (e.g.,
v1 = v2 = {3}) and tries to expand, one after the other, the
intervals associated to v1 and v2. However, the expansion
fails because increasing the interval of v1 would violate the
equality constraint with v2. The result of the algorithm are
5 different multi-cubes, i.e., v1 = v2 = {i ∈ [1..5]}.

To solve this problem we introduce new variables only
for the packet features that are modified by NAT rules and
implicitly model equality constraints by sharing the same
variable in the input and in the output packet. For instance,
if a NAT rule modifies the destination address of the input
packet p, the output packet p̃ is represented with the same
variables as p with the exception of the destination address
that uses the fresh variable dstIp’.

Since the introduction of these fresh variables is only
required for the packets that are subject to NAT, we con-
sider separate predicates covering the different cases: DNAT,
SNAT and filtering. In DNAT and SNAT all variables will
be the same except for the destination and source address,
respectively. In filtering, all variables will coincide, as the
input and the output packets are the same.

In principle, this separation could lead to an explosion of
the number of predicates. However, when studying the exist-
ing firewall systems, we found that the maximum number of
packets that we need to consider is three: the input packet,
the packet after applying destination NAT and the packet
after applying source NAT. In fact, in real systems NAT
is applied at most twice during packet processing. For this
reason, the proposed approach works very well in practice.

Supported Analyses. Besides synthesizing high-level spec-
ifications, once we have a firewall expressed as logical con-

Analysis Multi-cubes Time (m:s.cs)
N1 → N2 35 0:53.73
N1 → N3 28 0:37.77
N1 → Out 25 1:20.65

N2 → N1 45 0:45.32
N2 → N3 39 0:34.27
N2 → Out 31 0:57.40

N3 → N1 47 2:19.16
N3 → N2 17 0:05.68
N3 → Out 8 0:09.45

Out → N1 52 6:02.08
Out → N2 10 0:11.41
Out → N3 8 0:08.12

Complete policy 138 17:09.31

Table 1: Tests performed on our department policy

straints in Z3, the FWS tool can perform various interesting
fully automated analyses:

• Reachability: to check whether or not a certain
address is reachable from another one, possibly
through NAT, it suffices to impose the desired con-
straints on the packet variables using the query
language of FWS and check satisfiability;

• Implication: we can see if policy P1 is implied by
policy P2 by asking Z3 if there exists no pair of
packets that is accepted by P2 and rejected by P1;

• Equivalence: we can verify if two policies are equiv-
alent by checking mutual implication;

• Differences: given two policies, possibly projected,
we can synthesize them and show the differences in
the extracted multi-cubes;

• Related rules: to identify the rules affecting the
processing of the packets selected by user-provided
query, we remove, one at a time, a rule from the
policy and check whether the new policy is not
equivalent to the original one.

5. Experiments with Real Configurations

We have used our tool on several policies to assess how
our approach scales to real-world scenarios. We have per-
formed our tests on a desktop PC (running Ubuntu 16.04.2)
equipped with an Intel i7-3770 CPU and 16 GB of RAM.

Stanford University Backbone Network. It is a medium-
sized network that contains 16 operational zone Cisco
routers [35]. From the configuration files of these routers we
have extracted 252 ACL policies containing 1916 filtering
rules in total. Our tool separately synthesized all the policies
in 2 minutes and 17.46 seconds; the largest ACL, made
of 111 rules, has been analyzed in 16.36 seconds and the
corresponding specification consists of 12 multi-cubes. The
encoding of the ACL policies in our framework has required
a simple, mechanized syntactic translation from the Cisco
routers configuration syntax into the intermediate language.

101

Description Rules Multi-cubes Time (m:s.cs)
Policy from Github 15 11 00:00.765
Ticket from OpenWRT 65 11 00:01.519
Kerberos server 8 14 00:01.635
Policy from a blog 28 25 00:02.572
Eduroam laptop 21 15 00:01.018
Memphis testbed 34 15 00:01.233
Kornwall 52 23 00:02.362
Shorewall 77 48 00:28.154
Home router 76 36 00:05.879
Medium-sized company 90 20 00:25.289
veroneau.net 263 7 05:55.690

Table 2: Tests performed on real-world policies

Analysis <1m 1-3m 3-5m 5-10m 10-20m
Subnet → Subnet 0 405 37 20 0
Subnet → Internet 14 5 1 1 0
Internet → Subnet 5 13 1 0 2

Table 3: Tests performed on the Chair for Network Archi-
tectures and Services firewall policy

Our department policy. The network of our department
is logically partitioned in the main network N1, the labs
network N2 and a mixed network N3. The firewall acts
as a router between these networks and is connected to
the Internet via other routers. The policy is written in
iptables, consists of 530 rules (including both SNAT
and DNAT) and contains 5 user-defined chains. In Table 1
we report the execution times and the sizes of the obtained
specifications when running our tool on the policy projected
on specific source and destination networks, as well as the
time required to synthesize the entire firewall policy. The
analysis on specific source and destination networks takes
less that one minute most of the times and six minutes in
the worst case.

Other real-world policies. The authors of [24] have col-
lected a set of anonymized iptables configurations from
several institutions and from the Internet. Table 2 reports the
time needed to perform a complete synthesis for a selected
subset of these policies, together with their size and the
number of multi-cubes of the synthesized specification.

The repository also contains the firewall configuration
of the lab the authors of [24] are affiliated to. The firewall
has 22 network interfaces and its policy consists of 4841
iptables rules. We have slightly modified the policy to
remove checks on MAC addresses since they are currently
not supported by FWS. In Table 3 we provide a summary of
the time required to produce a synthesis for each possible
pair of input/output interfaces and to communicate with
the Internet. Most of the analyses terminate in less than
3 minutes and just a couple of cases involving particularly
complex subnets take more than 10 minutes to be completed.

Queries. We have performed some tests to evaluate the
expressiveness of the output produced by FWS. For instance,
in the Home router example, we can check which hosts in
the private LAN are reachable via the public IP address of
the router by running the query

dstIp == 117.195.222.105 && state == NEW

FWS succinctly reports that external hosts can access the
internal server 192.168.1.130 on ports 22, 80, 443 and 1194
via DNAT. For hosts in the private LAN 192.168.1.0/24,
both SNAT and DNAT are applied to connections towards
the public IP address to avoid the problem of asymmetric
routing (this technique is called NAT reflection). For lack
of space, we do not discuss the remaining examples that are
available online [6].

6. The Intermediate Language

We now present the intermediate language used for
decompiling firewall configurations. The language uncovers
the bipartite structure common to real firewall languages.
The first component consists of a set of rules that are applied
to packets, in order to determine their destiny. The format of
the rules and the actions they prescribe are largely shared by
the available firewall languages, apart from minor syntactic
differences. The second component specifies which rulesets
are applied and which steps are performed to elaborate
packets. This is peculiar to each operating system and each
firewall tool and, intuitively, summarizes the specific low-
level behavior of a particular system.

6.1. Firewall Rulesets

We now define the format of the rules and when a packet
matches a rule. It is convenient to introduce some notation.

Given a packet p, we write sa(p) and da(p) to denote
the source and destination addresses of p, respectively. An
address a consists of an IP address and possibly a port,
which are denoted as ip(a) and port(a). An address range
n is a pair consisting of a set of IP addresses and a set of
ports, written ip(n):port(n). We say that the address a is in
the range n (written a ∈ n) if ip(a) ∈ ip(n), and port(a) ∈
port(n), when port(a) is defined, e.g., we only check the IP
address for ICMP packets. We write p[da 	→ a] to denote
a packet identical to p, except for the destination address
da that is translated into a; similarly, with p[sa 	→ a] we
represent a packet equal to p, except for the source address
sa that is equal to a. This is useful to model NAT.

We consider stateful firewalls that keep track of the state
s of network connections and possibly use this information
to process a packet. Any existing network connection can be
described by several protocol-specific properties, e.g., source
and destination addresses or ports, and by the translations to
apply. This is fundamental with NAT since the translation
applied to the packet that started a new connection needs
to be transparently applied to any further packet on the
same connection. Thus, filtering and translation decisions
may depend on the previous packets belonging to the same
connection.

A firewall rule is composed of two parts: a predicate φ
expressing criteria over packets, and an action t, called tar-
get, defining the “destiny” of matching packets. Let Actions
be the set of actions a firewall may perform over a packet.

102

Here we consider a core set of actions included in most of
the available firewall languages:

ACCEPT packet is accepted
DROP packet is discarded
CALL(R) invoke the ruleset R
RETURN exit from the current ruleset
GOTO(R) jump to the ruleset R
NAT(nd, ns) network address translation
CHECK-STATE(X) examine the state

Intuitively, ACCEPT and DROP accept and drop a packet,
respectively; the targets CALL(_) and RETURN implement a
behavior close to procedure call; GOTO(_) is an uncondi-
tional jump; NAT performs address translation and nd and ns
are address ranges used to specify the translated destination
and source address of a packet, respectively; in the following
we use the symbol � to denote an identity translation, e.g.,
ip(n) : � means that the IP addresses are translated accord-
ing to ip(n), whereas ports are unmodified; CHECK-STATE

examines the state and, for matching packets, it reapplies
established translations. The argument X ∈ {→,←,↔} of
the CHECK-STATE action denotes the fields of the packets that
are rewritten according to the information from the state.
More precisely, → rewrites the destination address, ← the
source one, and ↔ rewrites both.

Formally, a rule is defined as follows.

Definition 1 (Firewall rule). A firewall rule r is a pair (φ, t)
where φ is a logical formula over a packet, and t ∈ Actions
is the target of the rule.

A packet p matches a rule (φ, t) whenever φ(p) evaluates
to true. Rules are organized in (possibly empty) lists called
rulesets. Similarly to real firewall implementations, we in-
spect the rules, one after the other, until we find a matching
one, which establishes the destiny of the packet. Rulesets
have a default target denoted by td ∈ {ACCEPT, DROP}, which
accepts or drops the packet when no other rule matches.

6.2. Control Diagram

The other peculiar component of our intermediate lan-
guage specifies the steps performed by the kernel of the
operating system to process a single packet passing through
the firewall. A packet is subject to different rulesets and
we represent the control flow of rule inspection through a
labeled directed graph called control diagram.

The nodes of a control diagram represent different pro-
cessing steps and arcs determine their sequence. The arcs
are labeled with a predicate describing the requirements a
packet has to meet in order to pass to the next processing
step. We assume control diagrams to be deterministic, i.e.,
that every pair of arcs leaving the same node has mutually
exclusive predicates.

Definition 2 (Control diagram). Let Ψ be a set of predicates
over packets. A control diagram C is a tuple (Q,A, qi, qf)
where

• Q is the set of nodes;

qi

Prem Pren Fwdm
Fwdf

Inpm Inpn
Inpf

Outm Outn Outf Postm Postn

qf

¬ψ1

ψ1

¬ψ2

ψ2

ψ2

¬ψ2

Figure 7: The control diagram of iptables

• A ⊆ Q×Ψ×Q is the set of arcs, such that whenever
((q, ψ, q′), (q, ψ′, q′′) ∈ A∧q′ = q′′) then ¬(ψ∧ψ′);

• qi, qf ∈ Q are distinguished nodes denoting the
starting and final point of elaboration.

The firewall manipulates, possibly translates and filters
a given packet by traversing a control diagram accordingly
to the following transition function.

Definition 3 (Transition function). Let C = (Q,A, qi, qf)
be a control diagram and let p be a packet. The transition
function δ : Q× Packets 	→ Q is defined as follows

δ(q, p) = q′ iff ∃(q, ψ, q′) ∈ A. ψ(p) holds.

We remark that, even though a control diagram looks
like a finite state automata, it is not because its arcs are
labeled by mutually exclusive predicates, rather than letters.

6.3. Firewall Definition and Examples

We define a firewall as the combination of the two
compontents: rulsets (cf. Section 6.1) and control diagram
(cf. Section 6.2).

Definition 4 (Firewall). A firewall F is a triple (C, ρ, c),
where C is a control diagram; ρ is a set of rulesets; and
c : Q 	→ ρ is the mapping from the nodes of C to the actual
rulesets.

To illustrate, we instantiate the above definition to
iptables and ipfw.

Modelling iptables. We define the firewall (C, ρ, c) for
iptables. Let L be the set of local addresses of a host
and let ψ1 and ψ2 be the following predicates over packets:

ψ1(p) = sa(p) ∈ L ψ2(p) = da(p) ∈ L.
Figure 7 shows the control diagram C of iptables, where
the nodes qi and qf mark start and end of packet processing
and untagged arcs carry the label “true”. The transition
function for iptables is defined accordingly to Defini-
tion 3, starting from the control diagram C, e.g., we have

δ(Pren, p) =

{
Inpm if ψ2(p)

Fwdm if ¬ψ2(p)
δ(Fwdf , p) = Postm

Each of the twelve built-in chains of iptables corre-
spond to a single ruleset and is represented by a different
node in the diagram. The node name is an abbreviation of

103

qi

Inp

Out

qf

¬ψ1

ψ1

¬ψ2ψ2

ψ2

¬ψ2

Figure 8: The control diagram of ipfw

the chain name while the superscript is an abbrevation of the
table name. For example Pren is the PREROUTING chain
of the NAT (n) table.

We also assume that the first rule of NAT rulesets Pren,
Postn, Inpn and Outn is CHECK-STATE. In fact, iptables
applies NAT chains only to new connections, i.e., packets
belonging to established connections are accepted by de-
fault. The twelve built-in chains are included in the set ρ of
rulesets (cf. Definition 4) but notice that ρ can also contain
additional user-defined chains. In the initial and final states
qi and qf we assume to have an empty ruleset with ACCEPT

as default policy.
The translation of the actual iptables configura-

tion into the rulesets of the intermediate language mainly
amounts to a simple syntactic translation, performed by
the corresponding front-end complier of FWS. Notice that
invocation of user defined chains is implemented by the
action CALL(_).

Modelling ipfw. The control diagram C of ipfw, dis-
played in Figure 8, is simpler than the one of iptables
(cf. Figure 7). The node Inp represents the procedure ex-
ecuted when an IP packet reaches the host from the net.
Dually, Out is for when the packet leaves the host. The
predicates ψ1, ψ2 are defined as for iptables and check
whether the packet has been generated by the host or is
addressed to the host itself, respectively. The transition
function δ easily follows from C, according to Definition 3.

We present the construction of the rulesets associated to
the node Inp. Let R = [rid1

, . . . , ridk
] be the unique ruleset

of ipfw, where the idi’s are the numeric identifiers asso-
ciated to the rules and ridk

is the rule encoding the default
policy set by the user. The idea is to generate k different
rulesets RI

i , one for each rule in R. If the rule ridi
contains

the keyword out, i.e., the rule is not considered when the
packet enters the firewall, we let RI

i = [(true, GOTO(RIi+1))].
Otherwise, we define RI

i = [trs(ridi), (true, GOTO(R
I
i+1))],

where the translation trs is defined by cases below:

trs(r) =

⎧⎪⎨
⎪⎩
(φ, GOTO(RIn)) if r is skipto idn φ

(φ, CALL(RIn)) if r is call idn φ

(φ,t) if r is t φ

The construction of the rulesets RO
i for the node Out is

similar, but in this case the rules containing the keyword in
should be ignored. The mapping function c returns RI

1 for

Inp, RO
1 for Out, and empty ruleset with ACCEPT as default

policy for qi and qf . These rulesets form the component ρ.

6.4. Formalization

We now formalize the behavior of firewall expressed in
the intermediate language by providing a logical predicate
on packet pairs (p, p̃) that holds true whenever a packet p
is accepted as p̃ by the firewall. This formalization is the
one used by FWS (cf. Section 4). We first discuss how to
remove control flow actions from the firewall specification.
Then, we translate a firewall specification with no control
flow actions into a logical predicate.

Firewall unfolding. By using rules with control flow actions
GOTO(_), CALL(_) and RETURN we can deal with firewalls
with an involved control flow. Now we show how to avoid
these actions without reducing the expressiveness of our
language. To this aim, we introduce an unfolding procedure
that, given a ruleset R, produces an equivalent ruleset �R�
that contains no control flow actions.

We process in order the rules contained in R. When a
return rule (φ, RETURN) is encountered, we delete it and add
the conjunct ¬φ to the predicates of the remaining rules
of the ruleset. In the case of a call rule (φ, CALL(R’)) we
recursively unfold R′, add the conjunct φ to all the rules
in �R′� and substitute the call rule with �R′�. The case of
a goto rule (φ, GOTO(R’)) is similar to the previous one,
with the difference that the conjunct ¬φ is added to the
predicates of the remaining rules in the ruleset. Essentially,
(φ, GOTO(R’)) is equivalent to a rule (φ, CALL(R’)) followed
by the rule (φ, RETURN). Rules having a target that is not
related to control flow are left unchanged.

The procedure described so far does not terminate in
case of rulesets that are mutually calling each other. In such
cases, existing firewall systems discard the packet involved
in the loop. Similarly, when we detect a loop during the
unfolding, the target of the call/goto rule that is causing the
loop is replaced with a DROP.

We can use the procedure defined above to transform
an entire firewall. Intuitively, given a firewall it suffices to
iterate over the nodes of the control diagram and unfold the
associated rulesets.

Logical characterization of firewalls. We construct a log-
ical predicate that characterizes all the packets accepted by
a ruleset, together with the relevant translations. Hereafter
we will only consider unfolded firewalls, i.e., firewalls with
no control flow actions like GOTO(_), CALL(_) and RETURN.

To deal with NAT, we define an auxiliary function tr
that takes a packet p and computes the set of packets
resulting from all possible NAT translations that the firewall
may apply to p. Intuitively, it modifies the destination and
source addresses according to ranges dn, sn. Similarly to
CHECK-STATE(X), the parameter X ∈ {←,→,↔} specifies

104

Pε(p, p̃) = dp(R) ∧ p = p̃

Pr;R(p, p̃) = (φ(p) ∧ p = p̃) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ,ACCEPT)

Pr;R(p, p̃) = ¬φ(p) ∧ PR(p, p̃) if r = (φ,DROP)

Pr;R(p, p̃) = (φ(p) ∧ p̃ ∈ tr(p, dn, sn,↔)) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ,NAT(dn, sn))

Pr;R(p, p̃) = (φ(p) ∧ p̃ ∈ tr(p, ∗:∗, ∗:∗, X) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ,CHECK-STATE(X))

Table 4: Translation of rulesets into logical predicates.

if the translation applies to source, destination or both
addresses, respectively.

tr(p, dn, sn,↔) � {p[da �→ ad, sa �→ as] | ad ∈ dn, as ∈ sn}
tr(p, dn, sn,→) � {p[da �→ ad] | ad ∈ dn}
tr(p, dn, sn,←) � {p[sa �→ as] | as ∈ sn}

Furthermore, we model the default policy of a ruleset R
with the predicate dp, where dp(R) is true when the policy
is ACCEPT, false otherwise.

Given an unfolded ruleset R, we define a predicate
PR on pairs of packets: when PR(p, p̃) holds, then the
packet p can be accepted as p̃ by R. Its definition is in
Table 4, that induces on the rules in R. Intuitively, the
empty ruleset applies the default policy dp(R) and does not
transform the packet, which is encoded by the constraint
p = p̃; rule (φ, ACCEPT) is the conjunction of two cases:
φ(p) and ¬φ(p). In the first case, the packet is accepted
as it is, while in the other case (p, p̃) is accepted only
if the continuation R (represented as PR(p, p̃)) accepts it.
Rule (φ, DROP) accepts pairs accepted by the continuation R
only if φ(p) does not hold. The NAT rule (φ, NAT(dn, sn))
is treated similarly to (φ, ACCEPT): the only difference is
that p̃ is obtained by applying the NAT translation to p,
written tr(p, dn, sn,↔). Finally, (φ, CHECK-STATE(X)) is
like a NAT that applies all possible translations of kind X
(written as tr(p, ∗:∗, ∗:∗, X)). Intuitively, we abstract away
from the actual state of established connections and we over-
approximate it by considering any possible translations. At
run-time, only the connections corresponding to the actual
state will be possible.

We define the predicate associated to the firewall as
follows.

Definition 5. Let F = (C, ρ, c) be a firewall and C =
(Q,A, qi, qf) its corresponding control diagram.

The predicate associated to the firewall is defined as

PF (p, p̃) � P∅
qi(p, p̃) where

PIqf (p, p̃) � p = p̃

PIq (p, p̃) � ∃p′.Pc(q)(p, p′) ∧

⎛
⎜⎜⎝

∨
(q,ψ,q′)∈A

q′ /∈I

ψ(p′) ∧ PI∪{q}
q′ (p′, p̃)

⎞
⎟⎟⎠

for all q ∈ Q such that q = qf . Note that Pc(q) is the
predicate constructed from the ruleset associated to the node
q of the control diagram.

Intuitively, in the final state we just accept the pair (p, p̃).
In all the other states, we look for an intermediate packet
p′, such that the pair (p, p′) is accepted by the ruleset c(q)
of state q, packet p′ satisfies one of the ψ′s in the branches
of the control diagram and the pair (p′, p̃) is accepted in the
reached state q′. Thus, (p, p̃) will be accepted if and only
if there is a path starting from p in the control diagram
that obtains p̃ through intermediate transformations. The
set I is used to avoid infinite loops in the generation of
the predicate. Notice that we can ignore paths with loops,
although some control diagrams may contain them, because
firewalls have mechanisms to detect and discard a packet
when its elaboration loops.

7. Conclusions

We have presented FWS [6], a tool for the decompilation
of real firewall configurations. It parses real configuration
files and produces an abstract tabular specification summa-
rizing all accepted packets with possible address translation.
FWS also features various policy analyses that can be used
by system administrators to confirm the effect of a config-
uration update in terms of packet filtering and NAT.

The peculiarity of our approach is the adoption of an
intermediate language for firewalls that separates the speci-
fication of filtering/NAT rules from the platform-dependent
processing of the packet, expressed in terms of a control
diagram. The intermediate language provides a generic way
to specify and configure a firewall and is, by itself, an orig-
inal contribution. We have shown that real firewall systems
can be encoded in the intermediate language by providing a
specific control diagram. Then, a real configuration can be
compiled into the intermediate language by translating the
firewall rules into the intermediate language syntax.

We have provided the language with a characterization
in terms of a logical predicate on pairs of packets (p, p̃),
which holds true whenever packet p is accepted by the
firewall as p̃. Working on pairs of packets accounts for
NAT. We have reused existing algorithms [32] to extract a
succinct representation of all the accepted pairs using the Z3
solver. The results on real configurations show that the tool
is effective and can typically answer to queries in just a few
seconds. Complex queries or configurations, however, can
require minutes because of the complexity of the predicate
and the repeated invocations of the Z3 solver.

Future work. We want to extend our work in several
directions: encode more languages, e.g., from specialized

105

firewall devices; add a graphical user interface to improve
the usability of the tool; perform further experiments and
get feedback from network administrators; model MAC
addresses and other features of TCP/IP Level 2. We also
plan to explore firewall configuration for new network con-
figuration paradigms such as SDNs.

We will explore new techniques to synthesize the ab-
stract specification in order to improve the tool performance.
In particular, we want to take into account the initial in-
tervals in the configurations while computing the abstract
specification. The adopted algorithm in Z3 forgets this in-
formation by encoding the initial intervals as constraints on
address variables in the logical predicate but, in fact, the
bounds of the computed multi-cubes directly depends on
the bounds of the intervals specified in the firewall rules.
A promising alternative could be considering an approach
based on Header Space Analysis [30].

We intend to investigate the problem of compiling an
abstract specification into concrete firewall languages along
the lines of [36]. This would enable cross-compilation from
one firewall system to another, complementing what we
presented in this paper. In particular, we intend to develop
a compiler that is parametric with respect to the control
diagram of the target language.

Finally, it would be very interesting to extend our ap-
proach to deal with networks with more than one firewall.
The idea would be to combine the synthesized specifications
based on network topology and routing.

Acknowledgment

Work partially supported by CINI Cybersecurity Na-
tional Laboratory within the project FilieraSicura: Securing
the Supply Chain of Domestic Critical Infrastructures from
Cyber Attacks (www.filierasicura.it) funded by CISCO Sys-
tems Inc. and Leonardo SpA.
Letterio Galletta’s present affiliation is IMT Lucca, Italy.

References

[1] Open Networking Foundation, “Software-Defined Networking,” https:
//www.opennetworking.org/sdn-resources/sdn-definition.

[2] “Netfilter,” https://www.netfilter.org/.

[3] “The IPFW Firewall,” https://www.freebsd.org/doc/handbook/
firewalls-ipfw.html.

[4] “Packet Filter (PF),” https://www.openbsd.org/faq/pf/.

[5] Microsoft Research, “The Z3 Theorem Prover,” https://github.com/
Z3Prover/z3.

[6] FireWall Synthesizer (FWS): Tool and Examples, https://github.com/
secgroup/fws.

[7] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F. L. Luccio,
“Mignis: A Semantic Based Tool for Firewall Configuration,” in proc.
of the 27th IEEE CSF, 2014, pp. 351–365.

[8] P. Adão, R. Focardi, J. D. Guttman, and F. L. Luccio, “Localizing
firewall security policies,” in proc. of the 29th IEEE CSF, Lisbon,
Portugal, June 27 - July 1, 2016, pp. 194–209.

[9] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, “A Formal
Approach to Specify and Deploy a Network Security Policy,” in proc.
of 2nd IFIP FAST, 2004, pp. 203–218.

[10] M. G. Gouda and A. X. Liu, “Structured Firewall Design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[11] C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: semantic foundations for
networks,” in proc. of 41st ACM POPL, 2014, pp. 113–126.

[12] S. N. Foley and U. Neville, “A Firewall Algebra for OpenStack,”
in Proceedings of the 3rd IEEE Conference on Communications and
Network Security, CNS 2015, 2015, pp. 541–549.

[13] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel
Firewall Management Toolkit,” ACM Transactions on Computer Sys-
tems, vol. 22, no. 4, pp. 381–420, 2004.

[14] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Spec-
ifications of a High-Level Conflict-Free Firewall Policy Language for
Multi-Domain Networks,” in 12th ACM SACMAT, 2007, pp. 185–194.

[15] “High Level Firewall Language,” https://www.cusae.com/hlfl/, 2003.

[16] “NeTSPoC: A Network Security Policy Compiler,” https://hknutzen.
github.io/Netspoc/, 2011.

[17] “Uncomplicated Firewall,” https://help.ubuntu.com/community/UFW.

[18] “Pyroman,” http://pyroman.alioth.debian.org/, 2011.

[19] “Shorewall,” http://www.shorewall.net/, 2014.

[20] “KMyFirewall,” https://sourceforge.net/projects/kmyfirewall/, 2008.

[21] “Firestarter,” http://www.fs-security.com/, 2007.

[22] “Firewall Builder,” http://www.fwbuilder.org/, 2012.

[23] A. Jeffrey and T. Samak, “Model checking firewall policy configura-
tions,” in Proceedings of the 10th IEEE International Symposium on
Policies for Distributed Systems and Networks, POLICY 2009, 2009,
pp. 60–67.

[24] C. Diekmann, J. Michaelis, M. P. L. Haslbeck, and G. Carle, “Verified
iptables Firewall Analysis,” in the 15th IFIP Networking Conference,
Vienna, Austria, May 17-19, 2016, 2016, pp. 252–260.

[25] R. M. Marmorstein, “Formal Analysis of Firewall Policies,” Ph.D.
dissertation, College of William and Mary, May 2008.

[26] S. M. Perez, J. Cabot, J. Garcı́a-Alfaro, F. Cuppens, and N. Cuppens-
Boulahia, “A Model-Driven Approach for the Extraction of Network
Access-Control Policies,” in Proceedings of the Workshop on Model-
Driven Security Workshop, MDsec 2012, 2012.

[27] F. Cuppens, N. Cuppens-Boulahia, J. Garcı́a-Alfaro, T. Moataz, and
X. Rimasson, “Handling Stateful Firewall Anomalies,” in Proceedings
of the 27th IFIP Information Security and Privacy Conference, SEC
2012, 2012, pp. 174–186.

[28] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra,
“FIREMAN: A Toolkit for FIREwall Modeling and ANalysis,” in
27th IEEE S&P, 2006, pp. 199–213.

[29] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishna-
murthi, “The Margrave Tool for Firewall Analysis,” in Proceedings of
the 24th Large Installation System Administration Conference, LISA
2010, 2010.

[30] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analy-
sis: Static Checking for Networks,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2012, 2012, pp. 113–126.

[31] A. J. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis
Engine,” in proc. of the 21st IEEE S&P 2000, 2000, pp. 177–187.

[32] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman, “Auto-
mated Analysis and Debugging of Network Connectivity Policies,”
Microsoft, Tech. Rep., 2014.

[33] R. Russell, “Linux 2.4 Packet Filtering HOWTO,” http://www.
netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html.

[34] The Netfilter Project, “Traversing of Tables and Chains,” http://www.
iptables.info/en/structure-of-iptables.html.

[35] “Stanford University Backbone Network Configuration Ruleset,”
https://bitbucket.org/peymank/hassel-public/.

[36] C. Bodei, P. Degano, R. Focardi, L. Galletta, and M. Tempesta,
“Transcompiling firewalls,” in Proc. 7th International Conference on
Principles of Security and Trust, ser. LNCS, 2018.

106

