
eThor: Practical and Provably Sound Static Analysis
of Ethereum Smart Contracts

Clara Schneidewind

TU Wien

Vienna, Austria

clara.schneidewind@tuwien.ac.at

Ilya Grishchenko

TU Wien

Vienna, Austria

ilya.grishchenko@tuwien.ac.at

Markus Scherer

TU Wien

Vienna, Austria

markus.scherer@tuwien.ac.at

Matteo Maffei

TU Wien

Vienna, Austria

matteo.maffei@tuwien.ac.at

ABSTRACT
Ethereum has emerged as the most popular smart contract platform,

with hundreds of thousands of contracts stored on the blockchain

and covering diverse application scenarios, such as auctions, trad-

ing platforms, or elections. Given the financial nature of smart

contracts, security vulnerabilities may lead to catastrophic conse-

quences and, even worse, can hardly be fixed as data stored on the

blockchain, including the smart contract code itself, are immutable.

An automated security analysis of these contracts is thus of utmost

interest, but at the same time technically challenging. This is as e.g.,

Ethereum’s transaction-oriented programming mechanisms feature

a subtle semantics, and since the blockchain data at execution time,

including the code of callers and callees, are not statically known.

In this work, we present eThor , the first sound and automated

static analyzer for EVM bytecode, which is based on an abstraction

of the EVM bytecode semantics based on Horn clauses. In particular,

our static analysis supports reachability properties, which we show

to be sufficient for capturing interesting security properties for

smart contracts (e.g., single-entrancy) as well as contract-specific

functional properties. Our analysis is proven sound against a com-

plete semantics of EVM bytecode, and a large-scale experimental

evaluation on real-world contracts demonstrates that eThor is practi-
cal and outperforms the state-of-the-art static analyzers: specifically,

eThor is the only one to provide soundness guarantees, terminates

on 94% of a representative set of real-world contracts, and achieves

an 𝐹 -measure (which combines sensitivity and specificity) of 89%.

ACM Reference Format:
Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei.

2020. eThor: Practical and Provably Sound Static Analysis of Ethereum

Smart Contracts. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), November 9–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/

10.1145/3372297.3417250

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417250

1 INTRODUCTION
Smart contracts introduced a radical paradigm shift in distributed

computation, promising security in an adversarial setting thanks

to the underlying consensus algorithm. Software developers can

implement sophisticated distributed, transaction-based computa-

tions by leveraging the scripting language offered by the underlying

blockchain technology. While many cryptocurrencies have an in-

tentionally limited scripting language (e.g., Bitcoin [39]), Ethereum

was designed from the ground up with a quasi Turing-complete

language
1
. Ethereum smart contracts have thus found a variety

of appealing use cases, such as auctions [25], data management

systems [8], financial contracts [13], elections [38], trading plat-

forms [37, 41], permission management [11] and verifiable cloud

computing [18], just to mention a few. Given their financial nature,

bugs and vulnerabilities in smart contracts may lead to catastrophic

consequences. For instance, the infamous DAO vulnerability [1]

recently led to a 60M$ financial loss and similar vulnerabilities oc-

cur on a regular basis [2, 3]. Furthermore, many smart contracts in

the wild are intentionally fraudulent, as highlighted in a recent sur-

vey [10]. Even worse, due to the unmodifiable nature of blockchains,

bugs or vulnerabilities in deployed smart contracts cannot be fixed.

A rigorous security analysis of smart contracts is thus crucial for

the trust of the society in blockchain technologies and their wide-

spread deployment. Unfortunately, this task is quite challenging for

various reasons. First, Ethereum smart contracts are developed in an

ad-hoc language, called Solidity, which resembles JavaScript but fea-

tures non-standard semantic behaviours and transaction-oriented

mechanisms, which complicate smart contract development and

verification. Second, smart contracts are uploaded to the blockchain

in the form of Ethereum Virtual Machine (EVM) bytecode, a stack-

based low-level code featuring very little static information, which

makes it extremely difficult to analyze. Finally, most of the data

available at runtime on the blockchain, including the contracts that

the contract under analysis may interact with, may not be known

statically, which requires ad-hoc abstraction techniques. As a re-

sult, while effective bug-finding tools for smart contracts have been

recently presented, there exists at present no automated security anal-
ysis for EVM bytecode that provides formal security guarantees (i.e.,
absence of false negatives, as proven against a formal semantics of

EVM bytecode), as further detailed below.

1
While the language itself is Turing complete, computations are bounded by a resource

budget (called gas), consumed by each instruction thereby enforcing termination.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

621

https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250

1.1 State-of-the-art in Smart Contract Analysis
Existing approaches to smart contract analysis can be mainly classi-

fied as interactive frameworks for semantic-based machine-checked

proofs [9, 12, 23, 27, 28, 47] and automated, heuristic-driven bug-

finding tools [21, 33, 36, 40, 48]. Some recent works try to fill the

middle ground between these two approaches, aiming at the best

of the two worlds, i.e., an automated, yet sound static analysis of

Ethereum smart contracts that can prove generic security proper-

ties [22, 32, 35, 46]. We conducted a thorough investigation, finding

out that all of them fail to provide the intended soundness guar-

antees, which showcases the difficulty of this task. For details we

refer the reader to [43]. Inspired by the issues that we see in the

state of the art, we introduce a principled approach to the design

and implementation of a sound, yet performant, static analysis tool

for EVM bytecode.

1.2 Our Contributions
The contributions of this work can be summarized as follows:

• We design the first provably sound static analyzer for EVM

bytecode, which builds on top of a Horn-clause-based reach-

ability analysis. We show that reachability analysis suffices

to verify interesting security properties for smart contracts

as well as contract-specific functional properties via an en-

coding into Hoare-style reasoning. The design of such static

analysis is technically challenging, since it requires careful

abstractions of various EVM components (e.g., the stack-

based execution model, the gas bounding the smart contract

execution, and the memory model) as well as a dedicated

over-approximation of blockchain data which are not stati-

cally known and yet affect contract execution (e.g., the code

of other contracts which may act both as callers and callees);

• We prove our static analysis technique sound against the for-

mal semantics of EVM bytecode by Grishchenko et al. [23];

• In order to facilitate future refinements of our analysis, as

well as the design of similar static analyses for other lan-

guages, we design and implement HoRSt, a framework for

the specification and implementation of static analyses based

on Horn clause resolution. Specifically, HoRSt takes as input
a (mathematical) specification of the Horn clauses defining

the static analysis and produces an smt-lib [7] encoding

suitable for z3 [29], which includes various optimizations

such as Horn clause and constant folding;

• We useHoRSt to implement the static analyzer eThor . To gain
confidence in the resulting implementation, we encode the

relevant semantic tests (604 in total) of the official EVM suite

as reachability properties, against which we successfully test

the soundness and precision of eThor ;
• We conduct a large-scale experimental evaluation on real-

world contracts comparing eThor to the state-of-the-art ana-

lyzer ZEUS [32] which claims to provide soundness guaran-

tees. While ZEUS shows a striking specificity (i.e., complete-

ness) of 99.8%, eThor clearly outperforms ZEUS in terms of

recall (i.e., soundness) – 100% vs. 11.4% – which empirically

refutes ZEUS’ soundness claim. With a specificity of 80.4%,

eThor shows an overall performance of 89.1% (according to

the F-measure) as compared to ZEUS’ F-measure of 20.4%.

The remainder of this paper is organized as follows. § 2 re-

views Ethereum and the semantics of EVM bytecode. § 3 intro-

duces our static reachability analysis, specifies its soundness guar-

antee and discusses relevant smart contract properties in scope of

the analysis. § 4 introduces the specification language HoRSt. § 5
presents eThor and our experimental evaluation. § 6 overviews re-

lated work. § 7 concludes by discussing interesting future research

directions. The appendix provides additional material. The source

code of eThor and HoRSt with the data set used in the experimental

evaluation are available online [6].

2 ETHEREUM
Wefirst introduce background on Ethereum (§ 2.1) and then overview

the EVM bytecode semantics by [23] utilized in this work (§ 2.2).

2.1 Background
The Ethereum platform can be seen as a transaction-based state

machine where transactions alter the global state of the system,

which consists of accounts. There are two types of accounts: Ex-

ternal accounts, which are owned by a user of the system, and

contract accounts, which can be seen as distributed programs. All

accounts hold a balance in the virtual currency Ether. Additionally,
contract accounts include persistent storage and the contract’s code.

Transactions can either create new contract accounts or call exist-

ing accounts. Calls to external accounts can only transfer Ether to

this account, but calls to contract accounts additionally execute the

account’s contract code. The contract execution might influence the

storage of the account and might as well perform new transactions

– in this case, we speak of internal transactions. The effects of con-
tract executions are determined by the Ethereum Virtual Machine
(EVM). This virtual machine characterizes the quasi Turing complete
execution model of Ethereum smart contracts where the otherwise

Turing complete execution is restricted by an upfront defined re-

source gas that effectively limits the number of execution steps. A

transaction’s originator can specify an upper bound on the gas that

she is willing to pay for the contract execution and also sets the gas

price (the amount of Ether to pay for a unit of gas). The originator

then prepays the specified gas limit and gets refunded according to

the remaining gas in case of successful contract execution.

EVM bytecode. Contracts are published on the blockchain in

form of EVM bytecode– an Assembler like bytecode language. The

EVM is a stack-based machine and specifies the semantics of byte-

code instructions. Consequently, EVM bytecode mainly consists of

standard instructions for stack operations, arithmetics, jumps and

local memory access. The instruction set is complemented with

blockchain-specific instructions such as an opcode for the SHA3

hash and several opcodes for accessing information on the current

(internal) transaction. In addition, there are opcodes for accessing

and modifying the storage of the executing account and distinct

opcodes for initiating internal transactions.

Each instruction is associated with (a potentially environment-

dependent) gas cost. If the up-front defined gas-limit is exceeded

during execution, the transaction execution halts exceptionally and

the effects of the current transaction on the global state are reverted.

For nested transactions, an exception only reverts the effects of the

executing transaction, but not those of the calling transactions.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

622

Callstacks 𝑆 := EXC ::𝑈 | HALT(𝜎, gas, 𝑑, 𝜂) ::𝑈 | 𝑈
Plain callstacks 𝑈 := (𝜇, 𝜄, 𝜎, 𝜂) ::𝑈 | 𝜖
Machine states 𝜇 := (gas, pc,𝑚, 𝑖, 𝑠)
Account states 𝑎 := (𝑛,𝑏, code, stor)

Figure 1: Grammar for calls stacks

Solidity. In practice, Ethereum smart contracts are shipped and exe-

cuted in EVMbytecode format but are, for a large part, written in the

high-level language Solidity [5]. The syntax of Solidity resembles

JavaScript, enriched with primitives accounting for the distributed

blockchain setting. Solidity exhibits specific features that give rise

to smart contract vulnerabilities, as will be discussed in § 2.3. We

will not give a full account of Solidity’s language features here, but

add explanations throughout the paper when needed.

2.2 EVM Semantics
Our static analysis targets a recently introduced small-step seman-

tics for EVM bytecode [23], which we shortly review below.
2

The semantics of EVM bytecode is given by a small-step relation

Γ ⊨ 𝑆 → 𝑆 ′ that encompasses the possible steps that a callstack

𝑆 , representing the overall state of a contract execution, can make

under the transaction environment Γ. The transaction environment

Γ summarizes static information about the transaction execution

such as the information on the block that the transaction is part

of and transaction-specific information such as gas price or limit.

We write Γ ⊨ 𝑆 →∗ 𝑆 ′ for the reflexive transitive closure of the
small-step relation and call the pair (Γ, 𝑆) a configuration.
Configurations. The most important formal components of EVM

configurations are summarized in Figure 1.

Global State. Ethereum’s global state 𝜎 is given as a mapping

from account addresses to account states. An account state consists

of a nonce 𝑛 that is incremented in the course of contract creation, a

balance 𝑏, a persistent storage stor, and the account’s code. External
accounts have no code and hence cannot access storage.

Callstacks. The overall state of an external transaction is cap-

tured by a stack of execution states that we will refer to as callstack.
The individual execution states reflect the states of the pending

internal transactions. More formally, the elements of a callstack are

either regular execution states of the form (𝜇, 𝜄, 𝜎, 𝜂) or terminal

execution states HALT(𝜎, gas, 𝑑, 𝜂) and EXC which can only occur

as top stack elements. For terminated executions we differentiate

between exceptional halting (EXC), which will revert all effects of

the transaction, and regular halting HALT(𝜎, gas, 𝑑, 𝜂), in which

case the effects of the transaction are captured by the global state

𝜎 at the point of halting, the gas remaining from the execution, the

return data 𝑑 , and the transaction effects 𝜂 (effects that will only be

applied after completing the external execution).

The state of a non-terminated internal transaction is described

by a regular execution state of the form (𝜇, 𝜄, 𝜎, 𝜂). During execu-

tion, this state tracks the current global state 𝜎 of the system, the

execution environment 𝜄 to the internal transaction (which specifies

2
Recent additions to the EVM semantics such as STATICCALL,CREATE, andCREATE2,
are not explicitly mentioned here, but covered by our static analysis specified in [6].

parameters such as the input to the transaction and the code to be

executed) as well as the local state 𝜇 of the stack machine, and the

transaction effects 𝜂 that will be applied after transaction execution.

The local machine state 𝜇 reflects the state of the stack ma-

chine that handles local computations. It is represented by a tuple

(gas, pc,m, i, s) holding the amount of gas available for execution,
the program counter pc, the local memory m, the number of active

words in memory i, and the machine stack s. As the stack machine

models local computations, the execution of every new (internal)

transaction starts again in a fresh machine state at program counter

zero with an empty stack and zero-initialized memory. Only the gas

value is initialized as specified by the initiator of the transaction.

Small-step Rules.We illustrate the mechanics of the EVM byte-

code semantics by an example and refer to [23] for a full definition.

Local instructions, e.g., ADD, only operate on the machine state:

𝜄.code [𝜇.pc] = ADD 𝜇.s = 𝑎 :: 𝑏 :: 𝑠

𝜇.gas ≥ 3 𝜇′ = 𝜇 [s → (𝑎 + 𝑏) :: 𝑠] [pc += 1] [gas −= 3]
Γ ⊨ (𝜇, 𝜄, 𝜎, 𝜂) :: 𝑆 → (𝜇′, 𝜄, 𝜎, 𝜂) :: 𝑆

Given a stack that contains at least two values and given a sufficient

amount of gas (here 3 units), an ADD instruction takes two values

from the stack and pushes their sum. These effects, as well as the

advancement in the program counter and the substraction of the

gas cost, are reflected in the updated machine state 𝜇 ′.
A more evolved semantics is exhibited by the transaction initiat-

ing instructions (CALL,CALLCODE andDELEGATECALL,CREATE).
Intuitively, CALL executes the callee’s code in its own environment,

CALLCODE executes the callee’s code in the caller’s environment,

which might be useful to call libraries implemented in a separate

contract, and DELEGATECALL goes a step further by preserving

not only the caller’s environment but even part of the environment

of the previous call (e.g., the sender information), which effectively

treats the callee’s code as an internal function of the caller’s code.

Finally, the CREATE instruction initiates an internal transaction

that creates a new account. Instructions from this set are partic-

ularly difficult to analyze, since their arguments are dynamically

evaluated and the execution environment has to be tracked and

properly modified across different calls. Further, it can well be that

the code of a called function is not accessible at analysis time, e.g.,

because the contract allows for money transfers to a dynamic set

of contracts (as the DAO contract discussed in the next section).

2.3 Security Properties of Smart Contracts
Ethereum smart contracts have undergone several severe attacks in

the past that were enabled by major bugs in the contract code, most

prominently the DAO hack [1]. Interestingly, this bug can be traced

back to the violation of a generic security property of the attacked

contract, called single-entrancy. We will shortly present the class

of reentrancy attacks and the underlying security property.

Preliminary Notions. In order to present security properties in a

concise fashion, the previously presented small-step semantics is

augmented with an annotation to callstack elements that reflects

the currently executed contract. We say that an execution state 𝑠 is

strongly consistent with annotated contract 𝑐 if 𝑠 executes 𝑐 (accord-

ing to the execution environment) and 𝑐 is present in the global

state of 𝑠 . Further, for arguing about EVM bytecode executions, we

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

623

1

2

3
4

5

Figure 2: Reentrancy Attack.

are only interested in those initial configurations that might result

from a valid external transaction in a valid block. We call these

configurations reachable and refer to [23] for a detailed definition.

Single-entrancy. Intuitively, single-entrancy characterizes the ro-

bustness of a contract against reentrancy attacks [10, 36]. Reen-

trancy attacks exploit that a contract calling another contract can

be called back (reentered) before completing the original internal

transaction. At the point of reentering the contract can then be in

an inconsistent state which allows for unintended behavior. In the

DAO hack, the attacker stole all funds of a contract by reentering

the contract and sending money to herself. We exemplify this kind

of attack by the Bank contract in Figure 2: this has a basic reentrancy

protection in place which however can easily be circumvented.

The Bank contract implements a simple banking functionality,

keeping the balance of all users (identified by their addresses) in

the mapping bal. We only discuss the contract function drain which

allows a user to transfer all its money from its bank account to the

provided beneficiary address a. For protecting against reentrancy,

the drain function implements a locking functionality: it is only

entered in case the lock is not taken. In this case it takes the lock

(using function take), transfers the remaining balance of the function

callee (denoted by msg.sender) to the beneficiary address a, updates the

user’s balance, and releases the lock. Note that the call construct

(being translated to a CALL instruction in EVM bytecode) does

not only trigger the value transfer, but also invokes the execution

of the callee’s so-called fallback function (written as a function

without name or arguments in Solidity as depicted in the Mallory

contract in Figure 2). Hence, the use of a call can cause the executed

contract to be reentered during execution, potentially undermining

the contract integrity. The locking mechanism should prevent this

problem by causing an exception in case the contract is reentered

(indicated by the lock being taken). However, since the locking

functionality is publicly accessible, a reentrancy attack (as depicted

in Figure 2) is possible: An attacker calling the drain function (via

Mallory) with Mallory’s address as argument (1) transfers all of Mallory’s

funds back to her and executes her fallback function (2). Mallory

then first calls the public release function to release the lock (3) and

next calls the drain function of Bank again (4). Since the attacker’s

balance has not been updated at this point, another transfer to

Mallory can be performed (5). These steps can be continued until

running out of gas or reaching the callstack limit. In both cases

the last value transfer is rolled back, but the effects of all former

internal transactions persist, leaving the contract Bank drained-out.

The security property ruling out these attacks is called single-
entrancy and is formalized below. Intuitively, a contract is single-

entrant if it cannot perform any more calls after reentering.

Definition 2.1 (Single-entrancy [23]). A contract 𝑐 is single-entrant

if for all reachable configurations (Γ, 𝑠𝑐 :: 𝑆), for all 𝑠 ′, 𝑠 ′′, 𝑆 ′

Γ ⊨ 𝑠𝑐 :: 𝑆 →∗ 𝑠′𝑐 :: 𝑆′ ++ 𝑠𝑐 :: 𝑆

=⇒ ¬∃𝑠′′, 𝑐′. Γ ⊨ 𝑠′𝑐 :: 𝑆′ ++ 𝑠𝑐 :: 𝑆 →∗ 𝑠′′
𝑐′ :: 𝑠

′
𝑐 :: 𝑆′ ++ 𝑠𝑐 :: 𝑆

where ++ denotes concatenation of callstacks. The property ex-

presses that after reentering a contract 𝑐 (in state 𝑠 ′𝑐) while executing
a call initiated by the very same contract, it is not possible any-

more to perform another internal transaction (which would result

in adding another element 𝑠 ′′
𝑐′ to the call stack). Note that the call

stack records the sequence of calling states, hence the suffix 𝑠𝑐 :: 𝑆

indicates a pending call initiated by the execution 𝑠 of contract 𝑐 .

Single-entrancy is particularly interesting in that it constitutes a

generic robustness property of smart contracts. Other prominent

vulnerabilities [2, 3] are caused by functional correctness issues

particular to a specific contract. For spotting such issues, contract-

specific correctness properties need to be defined and verified. We

discuss the formalization of such properties in § 3.5.

3 STATIC ANALYSIS OF EVM BYTECODE
Starting from the small-step semantics presented in § 2.2, we design

a sound reachability analysis that supports (among others) the vali-

dation of the single-entrancy property. We follow the verification

chain depicted in Figure 3: For showing the executions of a contract

to satisfy some property Φ, we formulate a Horn-clause-based ab-
straction that abstracts the contract execution behavior and argue

about an abstracted property over abstract executions instead. This
reasoning is sound given that all concrete small-step executions are

modeled by some abstract execution and given that the abstracted

property over-approximates Φ.
A Horn-clause-based abstraction for a small-step semantics→

is characterized by an abstraction function 𝛼 that translates con-

crete configurations (here) into abstract configurations (here).

Abstract configurations are sets of predicate applications where

predicates (formally characterized by their signature S) range over
the values from abstract domains. These abstract arguments are

equipped with an order ≤ that can be canonically lifted to pred-

icates and further to abstract configurations, hence establishing

a notion of precision on the latter. Intuitively, 𝛼 translates a con-

crete configuration into its most precise abstraction. The abstract
semantics is specified by a set of Constrained Horn clauses Λ over

the predicates from S and describes how abstract configurations

evolve during abstract execution. A Constrained Horn clause is a

logical implication that can be interpreted as an inference rule for

a predicate, consequently an abstract execution consists of logical

derivations from an abstract configuration using Λ. A Horn-clause-

based abstraction constitutes a sound approximation of small-step

semantics → if every concrete (multi-step) execution →∗ ′
can

be simulated by an abstract execution: More precisely, from the

abstract configuration 𝛼 () one can logically derive using Λ an

abstract configuration that constitutes an over-approximation of

′
(so is at least as abstract as 𝛼 (′)). A formal presentation of the

soundness statement is given in § 3.4 while a characterization in

abstract interpretation terminology is deferred to § B.2. A sound ab-

straction allows for the provable analysis of reachability properties:
Such properties can be expressed as sets of problematic configu-

rations (here). Correspondingly, a sound abstraction for such a

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

624

?

Small-step Semantics

Abstract Semantics

concrete execution

abstract execution

...

...

Soundness

Reachability Property
bad concrete

states

Reachability Query
bad abstract

states

Soundness

contract execution
behavior property abstraction?

...

Figure 3: Formal verification chain of eThor. Δ ⊢Λ Δ′
denotes

that the abstract configuration Δ′
can be logically derived from Δ′

(within one step) using the Horn clauses in Λ.

property is a set of bad abstract configurations (here) which con-

tains all possible over-approximations of the bad concrete states.

The soundness of the abstract semantics then guarantees that if no

bad abstract configuration from this set can be entered, also no bad

configuration can be reached in the concrete execution.

3.1 Main Abstractions
Our analysis abstracts from several details of the original small-step

semantics. In the following we overview the main abstractions:

Blockchain environment. The analysis describes the invocation of a

contract (in the following denoted as 𝑐∗) in an arbitrary blockchain

environment, hence is not modeling the execution environment as

well as large fractions of the global state. Indeed, most of this infor-

mation is not statically known as the state of the blockchain at the

time of contract execution cannot be reliably predicted. As a conse-

quence, the analysis has to deal with a high number of unknown

environment inputs in the abstract semantics. Most prominently,

the behavior of other contracts needs to be appropriately over-

approximated, which turns out to be particularly challenging since

such contracts can interact with 𝑐∗ in multitudinous ways.

Gas modelling. The contract gas consumption is not modeled. The

gas resource bounding the contract execution is set by the trans-

action initiator and hence not necessarily known at analysis time.

Thus, our analysis assumes contract executions to halt exception-

ally at any point due to an out-of-gas exception. This does not affect

the precision of the analysis for security properties that consider

arbitrary contract invocations (and hence arbitrary gas limits).

Memory model. In the EVM the local memory is byte-indexed, while

the machine stack holds words (encompassing 32 bytes). Conse-

quently loading a machine word from memory requires to assemble

the byte values from 32 consecutive memory cells. However, as al-

ready described in [42], in practice reasoning about this conversion

between words and bytes is hard. Therefore, we model memory in

our abstraction as a word array: this enables very cheap accesses in

case that memory is accessed at the start of a new memory word,

and otherwise just requires the combination of two memory words.

Callstack. The callstack is captured by a two-level abstraction distin-
guishing only between the original execution of 𝑐∗ (call level 0) and
reentrancies of 𝑐∗ ultimately originating from the original execu-

tion (call level 1). This abstraction reflects that given the unknown

S𝑐∗ ∋ 𝑝 :=

| MStatepc : (N × (N→ �̂�)) × (N→ �̂�) × (N→ �̂�) × B→ B
| Exc : B→ B
| Halt : (N→ �̂�) × B→ B

pc ∈ {0, . . . , |𝑐∗ .code | − 1}
�̂� := N ∪ {⊤}

Figure 4: Definition of the predicate signature S𝑐∗ and the
abstract domain �̂� .

blockchain environment, the state of the callstack when reenter-

ing is obscure: it is unknown who initiated the reentering call and

which other internal transactions have been executed before.

3.2 Analysis Definition
In the following we formally specify our analysis by defining the

underlying Horn-clause-based abstraction. An abstract configura-

tion is a set of predicate applications representing one or several

concrete configurations. Since we are interested in analyzing exe-

cutions of the contract 𝑐∗, we consider EVM configurations repre-

senting such executions which are call stacks having an execution

state of contract 𝑐∗ as a bottom element. We abstract such a call

stack by the set of all its elements that describe executions of 𝑐∗,
reflecting the stack structure only by indicating whether a relevant

execution state represents the original execution of 𝑐∗ (call level
0) or a reentering execution that hence appears higher on the call

stack (call level 1). The individual execution states are abstracted

as predicate applications using the predicates listed in Figure 4:

A predicate application of the form MStatepc ((size, s),𝑚, stor, cℓ)
describes a regular execution of 𝑐∗ at program counter pc that has
a local stack of size size with elements as described by the mapping

s (from stack positions to elements) and a local memory 𝑚, and

the global storage of contract 𝑐∗ at this point being stor. Accord-
ingly, the predicate application Exc(cℓ) denotes that an execution

of 𝑐∗ halted exceptionally on call level cℓ and Halt(stor, cℓ) repre-
sents an execution that halted regularly on call level cℓ with the

global storage of 𝑐∗ being stor. Since during the abstract execution,

a precise modeling of all the described state components is not al-

ways possible, the argument domains of the predicates encompass

the abstract domain �̂� that enriches N with the join element ⊤
over-approximating any natural number. Formally, the described

abstractions of EVM configurations are captured by the abstraction

function 𝛼 in Figure 5 that maps call stacks into the corresponding

sets of predicates, yielding an abstract configuration.

Note that 𝛼 is parametrized by 𝑐∗ and that only the callstack

elements modeling executions of 𝑐∗ are translated.
The transitions between abstract configurations (as yielded by 𝛼)

are described by an abstract semantics in the form of Constrained

Horn clauses. The abstract semantics is also specific to the contract

𝑐∗: Depending on the EVM instructions that appear in 𝑐∗, it contains
Horn clauses that over-approximate the execution steps enabled by

the corresponding instructions. We hence formulate the abstract

semantics as a function 𝛿 that maps a contract 𝑐∗ to the union of

Horn clauses that model the individual instructions in the contract:

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

625

𝛼𝑐∗ (𝑆) :=

∅ 𝑆 = 𝜖

𝛼𝑠 (𝑠, 𝑐∗ .addr, cℓ) ∪ 𝛼𝑐∗ (𝑆′) 𝑆 = 𝑠𝑐∗ :: 𝑆
′ ∧

cℓ = (𝑆′ = 𝜖) ? 0 : 1

𝛼𝑐∗ (𝑆′) 𝑆 = 𝑠𝑐 :: 𝑆′ ∧ 𝑐 ≠ 𝑐∗

𝛼𝑠 (𝑠, 𝑎, cℓ) :=

{MStatepc ((|s |,
stackToArray(s)),

toWordMem(m),
𝜎 (𝑎) .stor, cℓ) } 𝑠 = ((gas, pc,m, i, s), 𝜄, 𝜎, 𝜂)

{Exc(cℓ) } 𝑠 = EXC
{Halt(𝜎 (𝑎) .stor, cℓ) } 𝑠 = HALT(𝜎, gas, data, 𝜂)
∅ otherwise

stackToArray(𝑠) :=
{
𝜆𝑥. 0 𝑠 = 𝜖

(stackToArray(𝑠′)) |𝑠
′ |

𝑥 𝑠 = 𝑥 :: 𝑠′

toWordMem(𝑚) := 𝜆𝑥.𝑚 [𝑥 · 32] | |
1
𝑚 [𝑥 · 32 + 1] · · · | |

1
𝑚 [𝑥 · 32 + 31]

Figure 5: Configuration abstraction function. Here 𝑣 | |𝑛𝑤 de-

notes the value obtained by concatenating 𝑣 ’s and𝑤 ’s byte repre-

sentation, assuming that𝑤 is represented by 𝑛 bytes.

LADDMpc :=

{MStatepc ((size, s),𝑚, stor, cℓ) ∧ size > 1

∧ 𝑥 = s[size − 1] ∧ �̂� = s[size − 2]
=⇒ MStatepc+1 ((size − 1, s[size − 2 → 𝑥 +̂ �̂�]),𝑚, stor, cℓ), (A1)

MStatepc ((size, s),𝑚, stor, cℓ) =⇒ Exc(cℓ) } (A2)

LCALLMpc :=

{MStatepc ((size, s),𝑚, stor, cℓ) ∧ size > 6

=⇒ MStatepc+1 ((size − 6, s[size − 7 → ⊤]), 𝜆𝑥 .⊤, 𝜆𝑥 .⊤, cℓ), (C1)

MStatepc ((size, s),𝑚, stor, cℓ) ∧ size > 6

=⇒ MState0 ((0, 𝜆𝑥 . 0), 𝜆𝑥 . 0, stor, 1), (C2)

MStatepc ((size, s),𝑚, stor, cℓ) ∧ size > 6 ∧ Halt(storℎ, 1)
=⇒ MState0 ((0, 𝜆𝑥 . 0), 𝜆𝑥 . 0, storℎ, 1), . . .} (C3)

Figure 6: Partial definition of L·Mpc: selection of abstract se-
mantics rules. For CALL the exception rule is omitted.

𝛿 (𝑐∗) :=
⋃

0≤𝑖< |𝑐∗ .code|
L𝑐∗ .code[𝑖]M𝑖

The core of the abstract semantics is defined by the instruction
abstraction function L·M𝑖 that maps a contract instruction at position

𝑖 to a set of Horn clauses over-approximating the semantics of the

corresponding instruction. We will discuss the translation of the

ADD and CALL instruction depicted in Figure 6 to illustrate the

main features of the abstract semantics.

Addition. The abstract semantics of the addition instruction (ADD)
encompasses two Horn clauses describing the successful execution

and the failure case. A prerequisite for a successful addition is the

existence of a sufficient amount of arguments on the machine stack.

In this case, the top stack values are extracted and the stack at the

next program counter (modeled by the predicate MStatepc+1) is

updated with their sum. As the stack elements, however, range over

the abstract value domain �̂� , the addition operation on N needs

to be lifted to �̂� : Following the general intuition of ⊤ represent-

ing all potential values in N, the occurrence of ⊤ as one of the

operands immediately declassifies the result to ⊤. Similar liftings

are performed for all unary, binary and comparison operators in

the instruction set. A precise definition is given in § B.3.

In accordance to the choice of not modeling gas consumption,

the Horn clause modeling the failure case – which is common

to the abstract semantics of all instructions – does not have any

preconditions, but the instruction reachability. This rule subsumes

all other possible failure cases (such as stack over- and underflows).

Contract Calls. The abstraction for CALL is the most interesting.

This instruction takes seven arguments from the stack that specify

parameters to the call, such as the target of the call or the value

to be transferred, as well as the memory addresses specifying the

location of the input and the return data. When returning from

a successful contract call, the value 1 is written to the stack and

the return value is written to the specified memory fragment. The

persistent storage after a successful call contains all changes that

were performed during the execution of the called contract. In the

case of an exception the storage is rolled back to the point of calling

and the value 0 is written to the stack to indicate failure.

Since a contract CALL initiates the execution of another (un-

known) contract, all its effects on the executions of 𝑐∗ need to be

modeled. More precisely, these effects are two-fold: the resuming

execution of 𝑐∗ on the current call level needs to be approximated,

as well as the reentering executions of 𝑐∗ (on a higher call level). For
obtaining an analysis that is precise enough to detect real-world

contracts with reentrancy protection as secure, it is crucial to model

𝑐∗’s persistent storage as accurately as possible in reentering execu-

tions. This makes it necessary to carefully study how the storage at

the point of reentering relates to the one in the previous executions

of 𝑐∗, taking into account that (in the absence of DELEGATECALL
and CALLCODE instructions in 𝑐∗) only 𝑐∗ can manipulate its own

storage. Figure 7 overviews the storage propagation in the case

of a contract call: To this end it shows the sequence diagram of a

concrete execution of 𝑐∗ that calls a contract 𝑐 ′ which again trig-

gers several reentrancies of 𝑐∗. In this course three ways of storage

propagation between executions of 𝑐∗ are exhibited: 1) The storage
is forward propagated from a calling execution to a reentering exe-

cution of 𝑐∗ (A , C) 2) The storage is cross propagated from a finished

reentering execution to another reentering execution of 𝑐∗ (B) 3)
The storage is back propagated from a finished reentering execution

to a calling execution of 𝑐∗ (D , E) These three kinds of propagation

are reflected in the three abstract rules for the call instruction given

in Figure 6 and correspondingly visualized in Figure 7.

Rule (C1) describes how the execution of 𝑐∗ (original and reenter-
ing alike) resumes after returning from the call, and hence approxi-

mates storage back propagation: For the sake of simplicity, storage

gets over-approximated in this case by 𝜆𝑥.⊤. The same applies

to the local memory and stack top value as those are affected by

the result of the computation of the unknown contract. Rule (C2)

captures the initiation of a reentering execution (at call level 1) with

storage forward propagation: As contract execution always starts

at program counter 0 with empty stack and all-zero local memory,

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

626

RET

RET

CALL

RET

CALL

RET

Re-entering Executions

Call Level 0 Call Level 1

RET
RET

CALL

CALL

CALL

CALL

Initial Execution

RET

Ti
m

e
A

B

C

D

E

E D
C

A

B

C2 C2

C1C1 C3

Figure 7: Illustration of the different call abstractions.

only abstractions (instances of theMState0 predicate) of this shape
are implied. The forward propagation of storage is modeled by

initializing the MState0 predicate with the storage stor at call time.

Rule (C3) models storage cross propagation: Similar to rule (C2), an

abstract reentering execution in a fresh machine state is triggered.

However, the storage is not propagated from the point of calling, but

from a finished reentering execution whose results are abstracted

by the halting predicateHalt at call level 1. This rule is independent
of the callee in that it is only conditioned on the reachability of some

CALL instruction, but it does not depend on the callee’s state. Its

cyclic structure requires extrapolating an invariant on the potential

storage modifications that are computable by 𝑐∗: Intuitively, when
reentering 𝑐∗ it needs to be considered that priorly the storage was

modified by applying an arbitrary sequence of 𝑐∗’s public functions.
The significance of this abstraction is motivated by the example

in Figure 2 where the attack is only enabled by calling Bank’s release

function first, to release the lock before reentering.

3.3 Scope of the analysis
Before presenting the soundness result, we discuss the scope of

the analysis. The analysis targets contracts in a stand-alone setting,

which means that the behavior of all contracts that 𝑐∗ might in-

teract with is over-approximated. This abstraction is not merely a

design choice, but rather a necessity as the state of the blockchain

(including the code of the contracts residing there) at execution

time cannot be statically determined. Still, we could easily accom-

modate the precise analysis of a set of known contracts e.g., library

contracts that are already present on the blockchain. We omitted

this straightforward extension in this work for the sake of clarity

and succinctness in the analysis definition and the soundness claim.

Following this line of argumentation, we assume 𝑐∗ not to contain
DELEGATECALL and CALLCODE instructions: these instructions

enable the execution of another contract code in the context of 𝑐∗,
allowing for the modification of the persistent storage of 𝑐∗ and
even of money transfers on behalf of 𝑐∗. Using DELEGATECALL
or CALLCODE to call an unknown contract can therefore poten-

tially result in the reachability of any execution states of contract

𝑐∗. Consequently every property relying on the non-reachability

of certain problematic contract states would be considered vio-

lated. In a setting of multiple known contracts the restriction on

DELEGATECALL and CALLCODE instructions could be relaxed to

allow for such calls that are guaranteed to target known contracts.

We now briefly illustrate the key design choices behind our ab-

straction, which we carefully crafted to find the sweet spot between

accuracy and practicality. The analysis is value sensitive in that

concrete stack, memory, and storage values are tracked until they

get abstracted due to the influence of unknown components. For lo-

cal computations, the analysis is partly flow-sensitive (considering

the order of instructions, but merging abstract configurations at

the same program counters) and path-sensitive (being sensitive to

branch conditions). On the level of contract calls, a partial context

sensitivity is given in that the storage at the time of calling influ-

ences the analysis of the subsequent call, but no other inputs to

the call are tracked. In particular (due to the lack of knowledge on

interactions with other contracts) all reentering calls are merged

into a single abstraction, accumulating all possible storage states

at the point of reentering. For this reason, the analysis of calls on

level 1 is less precise than the one of the original execution on call

level 0, where only the restrictions of flow sensitivity apply.

3.4 Soundness Result
We prove, for each contract 𝑐∗, that the defined Horn-clause-based

abstraction soundly over-approximates the small-step semantics

presented in § 2.2. Formally, this property is stated as follows:

Theorem 3.1 (Soundness). Let 𝑐∗ be a contract not containing
DELEGATECALL or CALLCODE. Let Γ be a transaction environment
and let 𝑆 and 𝑆 ′ be annotated callstacks such that |𝑆 ′ | > 0. Then for
all execution states 𝑠 that are strongly consistent with 𝑐∗ it holds that

Γ ⊨ 𝑠𝑐∗ :: 𝑆 →∗ 𝑆′ ++ 𝑆 =⇒ ∀Δ𝐼 . 𝛼𝑐∗ ([𝑠𝑐∗]) ≤ Δ𝐼

=⇒ ∃Δ. Δ𝐼 , 𝛿 (𝑐∗) ⊢ Δ ∧ 𝛼𝑐∗ (𝑆′) ≤ Δ

The theorem states that every execution of contract 𝑐∗ (modeled

by a multi-step execution starting in state 𝑠𝑐∗ on an arbitrary call

stack 𝑆 and ending in call stack 𝑆 ′ ++ 𝑆 , indicating that the original

execution of 𝑐∗ yielded the state as modeled by the call stack 𝑆 ′),
can be mimicked by an abstract execution. This means that from

every abstract configuration Δ𝐼 that abstracts 𝑠𝑐∗ (so that it is more

abstract than 𝛼 ([𝑠𝑐∗])) one can logically derive using the Horn

clauses in 𝛿 (𝑐∗) some abstract configuration Δ abstracting 𝑆 ′. As a
consequence of this theorem we can soundly reason about arbitrary

executions of a contract 𝑐∗: if we can show that from an abstract

configuration Δ𝐼 , that abstracts a set of initial execution states

of 𝑐∗, it is impossible to derive using 𝛿 (𝑐∗) some other abstract

configuration Δ, that abstracts a set of problematic execution states

of 𝑐∗, then this ensures that all these problematic states are not

reachable with a small-step execution from any of the initial states.

For the proof of Theorem 3.1 we refer the reader to the extended

version of this paper at [6].

3.5 Reachability Properties for Contract Safety
As characterized by the soundness result, our abstraction allows

for the sound analysis of reachability properties. We will illustrate

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

627

in the following how such a reachability analysis is sufficient to

express relevant smart contract security properties.

Single-entrancy. Some generic security properties of Ethereum

smart contracts can be over-approximated by reachability proper-

ties and thus checked automatically by our static analysis. Consider,

the single-entrancy property from § 2.3 which has been proven to

be approximated by the following reachability property in [22].

Definition 3.2 (Call unreachability [22]). A contract 𝑐 is call un-

reachable if for all regular execution states (𝜇, 𝜄, 𝜎, 𝜂) that are strongly
consistent with 𝑐 and satisfy 𝜇 = (𝑔, 0, 𝜆𝑥 . 0, 0, 𝜖) for some 𝑔 ∈ N, it
holds that for all transaction environments Γ and all callstacks 𝑆

¬∃𝑠, 𝑆 . Γ ⊨ (𝜇, 𝜄, 𝜎, 𝜂)𝑐 :: 𝑆 →∗ 𝑠𝑐 :: 𝑆′ ++ 𝑆

∧ |𝑆′ | > 0 ∧ code (𝑐) [𝑠.𝜇.pc] ∈ Instcall

Where Instcall = {CALL,CALLCODE,DELEGATECALL,CREATE}

Intuitively, call reachability is a valid over-approximation of

single-entrancy as an internal transaction can only be initiated by

the execution of a call instruction. Consequently, for excluding

that an internal transaction was initiated after reentering, it is

sufficient to ensure that no call instruction is reachable at this point.

In addition, as all contracts start their executions in a fresh machine

state (program counter and active words set to 0, empty stack,

memory initialized to 0) when being initially called, it is sufficient

to check all executions of contract 𝑐 that started in such a state.

Static assertion checking. The Solidity language supports the

insertion of assertions into source code. Assertions shall function

as pure sanity checks for developers and are enforced at runtime

by the compiler creating the corresponding checks on the bytecode

level and throwing an exception (using the INVALID opcode) in

case of an assertion violation [19]. However, adding these additional

checks creates a two-fold cost overhead: At create time a longer

bytecode needs to be deployed (the longer the bytecode the higher

the gas cost for creation) and at call time the additional checks need

to be executed which results in additional gas consumption. With

our static analysis technique, assertions can be statically checked

by querying the reachability of the INVALID instruction. If no such

instruction is reachable, by the soundness of the analysis, the code

is proven to give the same guarantees as with the assertion checks

(up to gas) and those checks can safely be removed from the code

resulting in shorter and cheaper contracts.
3
Formally, we can char-

acterize this property as the following reachability property:

Definition 3.3 (Static assertion checking). Let 𝑐 be a contract and
(𝜇, 𝜄, 𝜎, 𝜂) regular execution states such that (𝜇, 𝜄, 𝜎, 𝜂) is strongly
consistent with 𝑐 and 𝜇 = (𝑔, 0, 𝜆𝑥 . 0, 0, 𝜖) for some 𝑔 ∈ N. Let Γ be

an arbitrary transaction environment and 𝑆 be an arbitrary callstack.

Then a the static assertion check for 𝑐 is defined as follows:

¬∃𝑠, 𝑆 . Γ ⊨ (𝜇, 𝜄, 𝜎, 𝜂)𝑐 :: 𝑆 →∗ 𝑠𝑐 :: 𝑆′ ++ 𝑆 ∧ code (𝑐) [𝑠.𝜇.pc] = INVALID

Intuitively this property says that during an execution of contract

𝑐 it should never be possible to execute an INVALID instruction.

Semi-automated verification of contract-specific properties.
As demonstrated by Hildebrandt et al. [27], reachability analysis

can be effectively used for Hoare-Logic-style reasoning. This holds

3
The Solidity Docs [19] discuss exactly this future use of static analysis tools for

assertion checking.

in particular for the analysis tool presented in this work: Let us

consider a Hoare triple {𝑃}C{𝑄} where 𝑃 is the precondition (op-

erating on the execution state), C is the contract code and 𝑄 is the

postcondition that should be satisfied after executing code C in an

execution state satisfying 𝑃 . Then we can intuitively check this

claim by checking that a state satisfying ¬𝑄 can never be reached

when starting execution in a state satisfying 𝑃 . More formally, we

can define Hoare triples as reachability properties as follows:

Definition 3.4 (Hoare triples). Let 𝑐∗ be a contract and let C be a

code fragment of 𝑐∗. Let 𝑃 ∈ S → B be a predicate on execution

states (strongly consistent with 𝑐∗) that models execution right

at the start of C and similarly let 𝑄 ∈ S → B be a predicate on

execution states (strongly consistent with 𝑐∗) that models execution

right at the point after executing C. Then Hoare triples {𝑃}C{𝑄}
can be characterized as follows:

{𝑃 }C{𝑄 } := ∀𝑠. 𝑃 (𝑠) =⇒ ¬∃𝑠′. Γ ⊨ 𝑠𝑐∗ :: 𝑆 →∗ 𝑠′𝑐∗ :: 𝑆 ∧ ¬𝑄 (𝑠′)

Hoare-Logic style reasoning can be used for the semi-automated

verification of smart contracts given that their behavior is speci-

fied in terms of pre- and postconditions. For now it still requires

a non-negligible amount of expertise to insert the corresponding

abstract conditions on the bytecode-level, but by a proper integra-

tion into the Solidity compiler the generation of the initialization

and reachability queries could be fully automated (cf. § C.1). We

want to stress that in contrast to existing approaches, our analysis

technique has the potential to provide fully automated pre- and

postcondition checking even in the presence of loops as it leverages

the fixed point engines of state-of-the-art SMT solvers [30].

4 HORST : A STATIC ANALYSIS LANGUAGE
To facilitate the principled and robust development of static an-

alyzers based on Horn clause resolution, we designed HoRSt – a

framework consisting of a high-level specification language for

defining Horn-clause-based abstractions and a compiler generating

optimized smt-lib encodings for SMT solvers. The objective of

HoRSt is to assist analysis designers in developing fast and robust

static analyzers from clean and readable logical specifications.

Many existing practical analyzers are built on top of modern SMT

solvers such as z3. These solvers are highly optimized for perfor-

mance, however they show big performance deviations on different

problem instances which are (due to the heavy use of heuristics)

difficult to predict for the users. Handcrafting logical specifications

for such solvers in their low-level input format smt-lib is hence
not only cumbersome, error-prone, and requires technical expertise,

but is also very inflexible, since the performance effects of differ-

ent encodings may vary with the concrete problem instance. For

tackling this issue, HoRSt decouples the high-level analysis design
from the compilation to the input format: A high-level specification

format allows for clear, human-readable analysis definitions while

the translation process is handled by a stable and streamlined back-

end. On top, HoRSt allows for easily applying and experimenting

with different Horn-clause-level optimizations that we can show

to enhance the performance of z3 substantially in our problem do-

main.Wewill shortly illustrate the utilization ofHoRSt in the design
process of our static analyzer and discuss the most interesting opti-

mizations performed by the HoRSt compiler. For an introduction to

the HoRSt language, we refer the reader to § A.1.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

628

 Spec

Smart Contract

Internal Horn Clause
Representation

Horn Clause
Transformations

smt-lib
Output

Contract
Parser

 Compiler</>

Parameter
Interface

Figure 8: Utilization of HoRSt for static analysis

Designing static analyses using HoRSt. The HoRSt language al-
lows for writing math-like specifications of Horn clauses such as

those given in Figure 6. For parametrizing those clauses (e.g., by the

program counters of a specific contract) an interface with a Java™

back end can be specified to handle the domain-specific infrastruc-

ture, such as contract parsing. We overview the different steps of

the analysis design process in Figure 8.

The core of the analysis is the HoRSt specification. Using high-
level programming constructs such as algebraic data types, pat-

tern matching, and bounded iteration, a HoRSt specification de-

scribes Constrained Horn clauses over user-defined predicates.

Horn clauses can be parametrized by (families) of sets that are

specified in the parameter interface (e.g., the sets of all program

counters containing a certain bytecode instruction in a specific

contract). Given such a specification, the analysis designer needs

to provide infrastructure code written in Java™. In particular this

code needs to exhibit an implementation of those sets (or functions)

specified in the parameter interface. In the case of our analysis, the

environment code contains the infrastructure for contract parsing

and the parameter interface allows for accessing the assembled

contract information (code length, positions of opcodes, etc.) in

the analysis specification. The HoRSt compiler itself is utilized to

generate (optimized) smt-lib output given a HoRSt specification
and the parameter interface implementation: It unfolds the high-

level specification into separate Horn clauses over basic data types,

applying the interface implementation: To this end it also resolves

all high-level constructs, ensuring that the resulting Horn clauses

fall into the fragment that can be handled by z3. On top, the HoRSt
compiler (optionally) performs different optimizations and transfor-

mations on the resulting Horn clauses, before translating them into

the standardized SMT output format smt-lib. The most important

of these transformations are discussed in the following.

Low-level optimizations. One of the most effective optimizations

performed by HoRSt is the predicate elimination by unfolding Horn

clauses. This satisfiability preserving transformation has been long-

studied in the literature [15, 44] and showed beneficial for solving

Horn clauses in certain settings [14, 26]. In practice, however, the

exhaustive application of this transformation can lead to an expo-

nential blow-up in the number of Horn clauses and hence does not

necessarily yield the best results. For this reason HoRSt implements

different strategies for the (partial) application of this transforma-

tion, which we call linear folding and exhaustive folding.
Finally, HoRSt supports constant folding for minimizing the

smt-lib output and value encoding to map custom data types into

primitive type encodings that are efficiently solvable by z3. We refer

to § A for further details on HoRSt internals and functionalities.

5 IMPLEMENTATION & EVALUATION
We use HoRSt to generate the analyzer eThor which implements the

static analysis defined in § 3. In the following, we overview the de-

sign of eThor and illustrate how eThor can enhance smart contract

security in practice. To this end we conduct a case study on a widely

used library contract, showing eThor’s capability of verifying func-

tional correctness properties and static assertion checks. Further, we

validate eThor’s soundness and precision on the official EVM test-

suite and run a large-scale evaluation for the single-entrancy prop-

erty on a set of real-world contracts from the Ethereum blockchain,

comparing eThor with the state-of-the-art analyzer ZEUS [32].

5.1 Static Analysis Tool
Themechanics of eThor are outlined in Figure 9: eThor takes as input
the smart contract to be analyzed in bytecode format and a HoRSt-
specification parametrized by the contract. To enhance the tool’s

performance and precision, eThor performs a multi-staged analysis:

First, it approximates the contract jump destinations. This step

decouples the control flow reconstruction (which can be performed

more efficiently with a less precise abstract semantics as typically

no computations on jump destinations are performed, but just

their flow during the stack needs to be modeled) from the more

evolved abstract semantics required for precisely analyzing the

properties discussed in § 3.5. As both used semantics are sound,

the soundness of the overall analysis is guaranteed. In a second

preprocessing step, eThor performs a simple partial execution of

atomic program blocks in order to statically determine fixed stack

values. This can be beneficial in order to, e.g., precompute hash

values and results of exponentiation which would otherwise need

to be over-approximated in the analysis due to the lacking support

for such operations by z3. The results from the preanalysis steps

are incorporated into the analysis by a predefined interface in the

HoRSt-specification. The HoRSt compiler then – given the interface

implementation and the specification – creates an internal Horn

clause representation which, after optionally performing different

optimizations, is translated to an smt-lib file on which the SMT

solver z3 is invoked. The reconstructed control flow is obtained by

a Soufflé [31] program, which was created by manually translating

a HoRSt specification. Soufflé is a high performance datalog engine,

which we plan to support as a compilation target for (a subset

of) HoRSt in the near future. Since the problem of control flow

reconstruction falls into the fragment supported by modern datalog

solvers, we found Soufflé more performant than using the general-

purpose solver z3 in this context
4
. However, for reasoning about

more involved properties, the expressiveness of z3 is required as

we will illustrate in § 5.2.

5.2 Case Study: SafeMath Library
As a case study for functional correctness and assertion checkingwe

chose Solidity’s SafeMath library [4], a library implementing proper

exception behavior for standard arithmetic operations. This particu-

larly encompasses exceptions in case of overflows, underflows, and

4z3 implements a standard datalog engine which is restricted to work with predicates

over finite domains. This constraint ensures that the smt-lib-expressible Horn clauses
do not leave the datalog-solvable fragment. Soufflé overcomes this restriction in favor of

a more liberal characterization of the solvable fragment which could also be integrated

into the HoRSt language - allowing for compilation to Soufflé from this fragment.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

629

Smart Contract

Spec

CFG Gen

Constant Analysis

Z3

ExhaustiveLinear

Spec

Horn Clause Gen

Figure 9: Analysis outline.

division or modulo by 0. The SafeMath library is special in that it is not

deployed as an own contract on the blockchain, but its functions

get inlined during the compilation of a contract that uses them
5
.

This specific behavior makes it particularly interesting to analyze

the individual library functions as their concrete implementations

may vary with changes in the compiler.

Functional Correctness. For our case study we compiled the func-

tions of the SafeMath library with a recent stable Solidity compiler

version (0.5.0) and verified that they expose the desired behavior.

We showed that all functions 1) cannot return successfully in the

problematic corner cases. 2) can return successfully with the correct

result in the absence of corner cases. 3) if halting successfully in

the absence of corner cases, they can return nothing but the correct

result. As these properties require to precisely relate different input

values over the execution (e.g., requiring that the sum of two input

values exceeds 2
256

), we needed to slightly adapt our analysis by

adding a representation of the initial input (as word array) to the

MState and theHalt predicates. This array is accessed by the CALL-
DATALOAD operation which fetches the input data. Additionally,

we need to model return values by an own predicate. For more

details, we refer the reader to § C.2. eThor manages to prove the

corresponding functional properties for each of the five functions

within milliseconds, showcasing the tool’s efficiency. Note that

verifying meaningful functional correctness properties, like in this

case study, requires to universally quantify over potential inputs,

hence making an analysis with a datalog engine (such as Soufflé),
which requires to explicitly list finite initial relations, infeasible.

Static Assertion Checking. The following code snippet shows the

division function of the SafeMath library:

1 function div(uint256 a, uint256 b, string memory errorMessage)
internal pure returns (uint256) {

2 require(b > 0, errorMessage);
3 uint256 c = a / b;
4 // assert(a == b * c + a % b); // There is no case in which

this doesn't hold
5 return c; }

It testifies that the function used to contain an assertion which was

deemed to be unnecessary and hence removed (probably to save

gas). We reinserted this assertion and indeed could prove that the

dynamic assertion check is superfluous as it can never be violated.

5.3 Large-scale Evaluation
We performed a series of experiments to assess the overall per-

formance of our tool. In particular, we systematically evaluated

5
In Solidity, one always needs to provide definitions of the (library) contracts one is

interacting with. In case that a library is only containing pure internal functions, the

Solidity compiler inlines this functions instead of compiling them to DELEGATECALL
call instructions to an address at which the user specified the library to reside.

eThor’s correctness and precision on the official EVM testsuite and

additionally conducted a large scale analysis for the single-entrancy

property, comparing eThor with the ZEUS [32] static analyzer, using
the real-world data set introduced with the latter

6
.

Automated Testing. For a principled correctness assessment, we

evaluated eThor against the virtual machine test cases provided by

the Ethereum Foundation
7
. Being formulated as pre- and postcon-

ditions, these test cases fall in the class of properties characterized

in § 2.3 and we could automatically translate them into queries in

HoRSt. The test suite defines 609 test cases, 604 of which specify

properties relevant for a single contract setting (see § C.3 for de-

tails). Using a 1 second timeout, we were able to solve 85% (513) of

the test cases precisely with a termination rate of 99% (597).

Reentrancy. For the call unreachability property described in

Definition 3.2, we evaluated eThor against the set of real-world con-
tracts presented in [32]. The authors extracted 22493 contracts from

the Ethereum blockchain over a period of three months and (after

deduplication) made available a list of 1524 contract addresses. Due

to various problems of this data set (as described in [6]), sanitization

leaves us with 720 distinct bytecodes out of which we label 100

contracts to be trivially non-reentrant (due to absence of possibly

reentering instructions) and 2 were out of the analysis scope (con-

taining at least one DELEGATECALL or CALLCODE instruction)

and hence immediately classified to be potentially vulnerable. We

make the sanitized benchmark available to the community, includ-

ing bytecode and sources (where available) [6]. For 13 contracts we

failed to reconstruct the control-flow graph, leaving us with 605

distinct contracts to run our experiments on.

We ran three different experiments for evaluating eThor’s per-
formance for the single-entrancy property, performing no folding,

linear folding, and exhaustive Horn clause folding. This experi-

mental set up aims not only to conduct a comparison with ZEUS,

but also to showcase how eThor’s modular structure facilitates its

performance in that eThor can flexibly benefit from different opti-

mization techniques of the HoRSt compiler. In the comparison with

ZEUS, we take into account the combined result of the three dif-

ferent experiments (the contracts solvable using any of the applied

foldings). For the exhaustive folding, we omitted instances where

the time for smt-lib generation exceeded 15 minutes.
8
All of the

experiments were conducted on a virtual machine with 64 Cores

at 2 GHz and 128 GiB of RAM. At most 64 queries were executed

at once, each with a 10 minutes timeout. Combining the different

experiments we obtained results for all but 28 contracts.

We compared the results with [32]. Because of the existing sound-

ness concerns regarding [32] in the literature [22, 45], we manually

reassessed the ground truth for all contracts that were labeled inse-

cure by at least one of the tools. Since this is a challenging and time

consuming task, especially in the case that no Solidity source code is

available, we excluded all contracts with more than 6000 bytecodes

for which we were not able to obtain the source code, which leaves

us with 709 contracts for which we assessed the ground truth.

6
We compare with [32] as we found it the only (claimed) sound tool to support a

property comparable to single-entrancy. [46] only supports a pattern (NW) which the

authors claim to be different from reentrancy. [35] utilizes a similar pattern.

7
https://github.com/ethereum/tests/

8
This timeout was chosen since it yielded a termination rate of > 95%.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

630

https://github.com/ethereum/tests/

Measure Definition eThor [32]

termination terminated/total 94.3 98.1

sensitivity 𝑡𝑝/(𝑡𝑝 + 𝑓 𝑛) 100 11.4

specificity 𝑡𝑛/(𝑡𝑛 + 𝑓 𝑝) 80.4 99.8

F-measure 2 ∗ (spec ∗ sens/(spec + sens)) 89.1 20.4

Table 1: Performance comparison of eThor and ZEUS [32].
total/terminated denotes the number of contracts in the data set/the

number of contracts the respective tool terminated on. tp/fp denotes
the number of true/false positives and tn/fn the true/false negatives.

Surprisingly, we found numerous contracts labeled non-reentrant

by [32] which, if analyzed in a single contract setting, definitely

were reentrant according to the definition of reentrancy given in

Definition 2.1 and also according to the informal definition provided

in [32] itself
9
. We assume this to be an artifact of [32]’s syntacti-

cal treatment of the call directive on the Solidity level which is,

however, insufficient to catch all possible reentrancies. As the work

excludes reentrancies introduced by the send directive (even though
this is officially considered potentially insecure [20]), for the sake

of better comparability, we slightly updated our abstract semantics

to account for calls that can be deemed secure following the same

argument (namely that a small gas budget prevents reentrancy). We

compare eThor against [32] on our manually established ground

truth. The results are summarized in Table 1.

For achieving a termination rate comparable to [32] (94.3% vs.

98.1%), we needed to run our tool with a higher timeout (10 min.

query timeout vs 1 min. contract time out for ZEUS). This differ-

ence can be explained by the fact that our analysis works on little

structured bytecode in contrast to the simplified high-level repre-

sentation used by [32]. Additional overhead needs to be attributed

to the usage of sound abstractions on the bytecode level as well

as to our different experimental setup that did not allow for the

same amount of parallelization. The soundness claim of [32] is chal-

lenged by the experimentally assessed sensitivity of only 11.4%. One

possible explanation for this low value, which deviates from the

numbers reported in [32] on the same data set, is that the intuition

guiding the manual investigation performed by [32] departed from

the notion of single-entrancy and the intuitive definition given by

the authors. This highlights the importance of formalizing not only

the analysis technique but also the security properties to be verified.

When interpreting the high specificity of [32] (almost 100%) one

should consider that ZEUS labels only 25 contracts vulnerable in

total out of which one is a false positive. Given that the data set is

biased towards safe contracts (513 safe as opposed to 196 unsafe

ones) a high specificity can be the result of a tool’s tendency to

label contracts erroneously secure. Due to the proven soundness,

for eThor such a behavior is excluded by design. This overall ad-

vantage of eThor over ZEUS in terms of accuracy is reflected by

eThor’s F-measure of 89.1% as opposed to 20.4% for ZEUS.

Horn Clause Folding. Our experimental evaluation shows that,

while both forms of Horn clause folding improve the termination

rate, the results of the different foldings are not directly comparable.

9
[32] gives the following informal definition: ‘A function is reentrant if it can be

interrupted while in the midst of its execution, and safely re-invoked even before its

previous invocations complete execution.’

Figure 10: Query runtimes inms for the combined approach
itemized by queries. A red/green/blue dot denotes a query solved

fastest with no/linear/exhaustive folding.

This is illustrated by Figure 10 which plots the (lowest) termination

times for those queries that terminated within 200 seconds during

the large-scale experiment. The different colors indicate the kind of

optimization (no/linear/exhaustive folding) that was fastest to solve

the corresponding query. The distribution of the dots shows that in

the range of low query times (indicating structured contracts) ex-

haustive folding (depicted in blue) dominates. However, for longer

query times, the linear folding (depicted in green) often shows a bet-

ter performance. One possible explanation is that for more complex

contracts, the blow-up in rules created by the exhaustive folding

exceeds the benefits of eliminating more predicates. Interestingly,

for few instances, even applying no folding at all (indicated in red)

led to the fastest termination. We can only explain this behavior by

special heuristics used inside z3 that helped these particular cases.

This shows the lacking predictability of z3 and thereby motivates

the necessity of high-level tools like HoRSt that allow users to easily

combine different optimizations in order to obtain results reliably.

6 RELATEDWORK & DISCUSSION
In the last years there have been plenty of works on the automatic

analysis of Ethereum smart contracts. These works can be clas-

sified in dynamic and static analysis approaches: An example of

a dynamic approach is the work by Grossmann et al. [24] which

studies effectively callback freedom, a property characterizing the

absence of reentrancy bugs, and provides a dynamic detection algo-

rithm for it. Besides that, the authors prove that statically showing

a smart contract to be effectively callback free is indeed undecid-

able. This work serves as a motivation why the correct and precise

static analysis of smart contracts with respect to relevant security

properties is challenging and requires the usage of suitable (sound)

abstractions in order to be feasible, or even possible.

As a consequence, most practical static analysis tools so far

focused on the heuristic detection of certain (classes of) bugs. These

works do not strive for any theoretical guarantees nor do they

aim for giving formal (and semantic) characterizations of security

properties that the analysis targets. Important representatives of

such bug-finding tools are the static analyzer Oyente [36] which

was the first static analyzer for Ethereum smart contracts and the

tool Osiris [45] which focuses on the detection of integer bugs.

Since the aim and scope of these tools differ substantially from the

ones of eThor , we omit a more detailed discussion and refer the

interested reader to recent surveys [17, 22, 34] for more details.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

631

In contrast to pure bug-finding, some recent works target a sound

and automated static analysis of smart contract security properties.

In particular the tools Securify [46], ZEUS [32], EtherTrust [22],

and NeuCheck [35] make such soundness claims.

Securify implements a dependency analysis based on the recon-

structed control-flow graph of contract bytecode and expresses

some generic security properties in terms of these dependencies.

The paper claims that the provided dependency patterns are either

sufficient for the satisfaction (compliance patterns) or the violation

(violation patterns) of a property. However, no proofs for the cor-

rectness of the control-flow graph transformation, the soundness

of the dependency analysis itself, or the relationship between the

security patterns and the properties are provided. As a consequence

we could empirically show that Securify’s algorithm for control

flow reconstruction is unsound and give counterexamples for 13 out

of 17 patterns (which partly also indicate a flaw in the dependency

analysis itself). In [43] we give a detailed account of these issues.

NeuCheck is a tool for analyzing Solidity smart contracts by

searching for patterns in the contract syntax graph. The soundness

claim of the work is neither substantiated by a soundness statement,

nor proof. Also no semantics of Solidity is given and no (formal)

security properties are formulated. This lack of formalism makes it

hard to validate any soundness claim. Despite the missing formal

connections, the given patterns are clearly of syntactic nature and

can be argued not to match the intuitive properties given through-

out the paper which makes NeuCheck rather a bug-finding and

style-checking tool. For more details we refer to [43].

Similar to NeuCheck, ZEUS analyzes smart contracts written

in Solidity. To this end, it transforms Solidity smart contracts into

an abstract intermediate language and later into LLVM bitcode

which allows for leveraging existing symbolic model checkers. The

code transformations are claimed to be semantics preserving which

however has already been refuted by [22]. Additionally, the ana-

lyzed security properties are neither formally defined nor are they

translated for model checking in a streamlined fashion: while some

of them are compiled to assertions, other properties require addi-

tional code transformations which we show to be flawed in [43].

Empirical evidence for the unsoundness of ZEUS has been reported

by [45] and is emphasized by the empirical evaluation in § 5.

The work presented in [22] surveys different approaches to static

analysis and aims at illustrating design choices and challenges in

sound static analysis. The work also discusses EtherTrust, a first

proof of concept for a reachability analysis based on Horn clauses,

which however is still preliminary and exhibits soundness issues

in its abstraction as discussed [6].

For avoiding the pitfalls leading to unsoundness in the presented

works, eThor follows a principled design approach: Starting from

the formal EVM semantics defined in [23], it formulates an abstract

semantics in the specification language HoRSt which is proven

sound with respect to the concrete semantics, hence covering all

particularities of the EVM bytecode language. Based on this abstract

semantic specification, a streamlined compilation process creates an

SMT encoding which is again systematically tested for soundness

against the official test suite to minimize the effect of implemen-

tation bugs. The challenge of sound control flow reconstruction

is solved by basing a corresponding preanalysis on a proper relax-

ation of the provably sound abstract semantics in the Soufflé format,

ensuring that the original soundness guarantees are inherited. For

a more robust development, it is planned to also streamline this

process in the future by making the HoRSt compiler support Soufflé
as an additional output format for a restricted Horn clause frag-

ment. For providing end-to-end guarantees of the resulting static

analyzer, we do not only ensure the soundness of the core analysis

by proofs and testing, but also give provably sound approximations

for relevant formalized semantic security properties suitable for

encoding in the analysis framework.

7 CONCLUSION
We presented eThor , the first automated tool implementing a sound

static analysis technique for EVM bytecode, showing how to ab-

stract the semantics of EVM bytecode into a set of Horn clauses

and how to express security as well as functional properties in

terms of reachability queries, which are solved using z3. In order

to ensure the long-term maintenance of the static analyzer and

facilitate future refinements, we designed HoRSt, a development

framework for Horn-clause-based static analysis tools, which given

a high-level specification of Horn clauses automatically generates

an optimized implementation in the smt-lib format. We success-

fully evaluated eThor against the official Ethereum test suite to

gain further confidence in our implementation and conducted a

large-scale evaluation, demonstrating the practicality of our ap-

proach. Within a large-scale experiment we compared eThor to
the state-of-the-art analysis tool ZEUS, demonstrating that eThor
surpasses ZEUS in terms of overall performance (as quantified by

the F-measure).

This work opens up several interesting research directions. For

instance, we plan to extend our analysis as well as HoRSt to re-

lational properties, since some interesting security properties for

smart contracts can be defined in terms of 2-safety properties [23].

Furthermore, we intend to further refine the analysis in order to

enhance its precision, e.g., by extending the approach to a multi-

contract setting, introducing abstractions for calls that approxi-

mate the account’s persistent storage and local memory after call-

ing more accurately. Furthermore, we plan to extend the scope of

HoRSt significantly. First, we intend to make the specification of

the static analysis accessible to proof assistants in order to mech-

anize soundness proofs. Furthermore, we intend to explore the

automated generation of static analysis patterns from the speci-

fication of the concrete semantics, in order to further reduce the

domain knowledge required in the design of static analyzers.

ACKNOWLEDGMENTS
This work has been partially supported by the European Research

Council (ERC) under the European Union’s Horizon 2020 research

(grant agreement 771527-BROWSEC); by the Austrian Science Fund

(FWF) through the projects PROFET (grant agreement P31621)

and the project W1255-N23; by the Austrian Research Promotion

Agency (FFG) through the Bridge-1 project PR4DLT (grant agree-

ment 13808694) and the COMET K1 SBA; by the Internet Founda-

tion Austria (IPA) through the netidee project EtherTrust (Call 12,

project 2158); by the Vienna Business Agency through the project

Vienna Cybersecurity and Privacy Research Center (VISP); and by

Google Cloud.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

632

REFERENCES
[1] 2016. The DAO Smart Contract. Available at http://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[2] 2017. The Parity Wallet Breach, 30 million ether reported stolen. Available at https:
//www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/.

[3] 2017. The Parity Wallet Vulnerability. Available at https://paritytech.io/blog/

security-alert.html.

[4] 2019. SafeMath library source. https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/math/SafeMath.sol.

[5] 2019. Solidity. https://solidity.readthedocs.io/.

[6] 2020. eThor: extended version, source code, build, and evaluation artifacts.

https://secpriv.wien/ethor.

[7] 2020. SMT-LIB. Available at http://smtlib.cs.uiowa.edu/language.shtml.

[8] Chandra Adhikari. 2017. Secure Framework for Healthcare Data Management

Using Ethereum-based Blockchain Technology. (2017).

[9] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards

Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. CPP. ACM. To
appear (2018).

[10] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks

on Ethereum Smart Contracts (SoK). In International Conference on Principles of
Security and Trust. Springer, 164–186.

[11] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. Medrec:

Using Blockchain for Medical Data Access and Permission Management. In Open
and Big Data (OBD), International Conference on. IEEE, 25–30.

[12] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-

lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart

contracts: Short paper. In Proceedings of the 2016 ACMWorkshop on Programming
Languages and Analysis for Security. ACM, 91–96.

[13] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. 2017. Findel:

Secure Derivative Contracts for Ethereum. In International Conference on Financial
Cryptography and Data Security. Springer, 453–467.

[14] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. 2015.

Horn clause solvers for program verification. In Fields of Logic and Computation
II. Springer, 24–51.

[15] Rod M Burstall and John Darlington. 1977. A transformation system for develop-

ing recursive programs. Journal of the ACM (JACM) 24, 1 (1977), 44–67.
[16] Patrick Cousot and Radhia Cousot. 2004. Basic concepts of abstract interpretation.

In Building the Information Society. Springer, 359–366.
[17] Monika Di Angelo and Gernot Salzer. 2019. A survey of tools for analyzing

ethereum smart contracts. In 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON). IEEE, 69–78.

[18] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van

Moorsel. 2017. Betrayal, Distrust, and Rationality: Smart Counter-Collusion

Contracts for Verifiable Cloud Computing. (2017).

[19] Ethereum 2018. Solidity Docs. Ethereum. https://solidity.readthedocs.io/en/

develop/control-structures.html#error-handling-assert-require-revert-and-

exceptions

[20] Ethereum 2019. Solidity Docs. Ethereum. https://solidity.readthedocs.io/en/

v0.5.13/security-considerations

[21] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-gas Conditions in

Ethereum Smart Contracts. Object-Oriented Programming, Systems, Languages &
Applications OOPSLA (2018).

[22] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. Foundations

and Tools for the Static Analysis of Ethereum Smart Contracts. In Proceedings of
the 30th International Conference on Computer-Aided Verification (CAV). Springer,
51–78.

[23] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic

Framework for the Security Analysis of Ethereum Smart Contracts. In Proceedings
of the 7th International Conference on Principles of Security and Trust (POST).
Springer, 243–269.

[24] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online detection of effectively

callback free objects with applications to smart contracts. Proceedings of the ACM
on Programming Languages 2, POPL (2017), 48.

[25] Adam Hahn, Rajveer Singh, Chen-Ching Liu, and Sijie Chen. 2017. Smart

Contract-Based Campus Demonstration of Decentralized Transactive Energy

Auctions. In Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT), 2017 IEEE. IEEE, 1–5.

[26] Manuel V Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-García,

Edison Mera, José F Morales, and Germán Puebla. 2012. An overview of Ciao and

its design philosophy. Theory and Practice of Logic Programming 12, 1-2 (2012),

219–252.

[27] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip

Daian, Dwight Guth, and Grigore Rosu. 2017. KEVM: A Complete Semantics of
the Ethereum Virtual Machine. Technical Report.

[28] Yoichi Hirai. 2017. Defining the ethereum virtual machine for interactive theorem

provers. In International Conference on Financial Cryptography and Data Security.
Springer, 520–535.

[29] Kryštof Hoder and Nikolaj Bjørner. 2012. Generalized property directed reach-

ability. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 157–171.

[30] Kryštof Hoder, Nikolaj Bjørner, and Leonardo De Moura. 2011. 𝜇Z–an efficient

engine for fixed points with constraints. In International Conference on Computer
Aided Verification. Springer, 457–462.

[31] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis

of program analyzers. In International Conference on Computer Aided Verification.
Springer, 422–430.

[32] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts. NDSS.

[33] Johannes Krupp and Christian Rossow. 2018. TEETHER: Gnawing at Ethereum

to Automatically Exploit Smart Contracts. In Proceedings of the 27th USENIX
Conference on Security Symposium (SEC’18). USENIX Association, 1317–1333.

[34] Jing Liu and Zhentian Liu. 2019. A survey on security verification of blockchain

smart contracts. IEEE Access 7 (2019), 77894–77904.
[35] Ning Lu, Bin Wang, Yongxin Zhang, Wenbo Shi, and Christian Esposito. 2019.

NeuCheck: A more practical Ethereum smart contract security analysis tool.

Software: Practice and Experience (2019).
[36] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 254–269.

[37] Florian Mathieu and Ryno Mathee. 2017. Blocktix: Decentralized Event Hosting

and Ticket Distribution Network. (2017). Available at https://blocktix.io/public/

doc/blocktix-wp-draft.pdf.

[38] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. 2017. A Smart Contract

for Boardroom Voting with Maximum Voter Privacy. Proceedings of the Financial
Cryptography and Data Security Conference (2017).

[39] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Avail-

able at http://bitcoin.org/bitcoin.pdf.

[40] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. arXiv
preprint arXiv:1802.06038 (2018).

[41] Benedikt Notheisen, Magnus Gödde, and Christof Weinhardt. 2017. Trading

Stocks on Blocks-Engineering Decentralized Markets. In International Conference
on Design Science Research in Information Systems. Springer, 474–478.

[42] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. 2018. A

formal verification tool for ethereum vm bytecode. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 912–915.

[43] Clara Schneidewind, Markus Scherer, and Matteo Maffei. 2020. The Good, the Bad

and the Ugly: Pitfalls and Best Practices in Automated Sound Static Analysis of

Ethereum Smart Contracts. In International Symposium on Leveraging Applications
of Formal Methods (ISoLA). Springer.

[44] Hisao Tamaki. 1984. Unfold/fold transformation of logic programs. Proc. of 2nd
ILPC (1984), 127–138.

[45] Christof Ferreira Torres, Julian Schütte, et al. 2018. Osiris: Hunting for integer

bugs in ethereum smart contracts. In Proceedings of the 34th Annual Computer
Security Applications Conference (SAC). ACM, 664–676.

[46] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart

Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS). ACM, 67–82.

[47] Zheng Yang and Hang Lei. 2019. FEther: An Extensible Definitional Interpreter

for Smart-Contract Verifications in Coq. IEEE Access 7 (2019), 37770–37791.
[48] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro Ya-

mashita, and Hidetoshi Kurihara. 2018. Security Assurance for Smart Contract.

In New Technologies, Mobility and Security (NTMS), 2018 9th IFIP International
Conference on. IEEE, 1–5.

APPENDIX
The appendix is structured as follows: In § A we overview the anal-

ysis specification language HoRSt. In § B we make the theoretical

foundations of our work explicit, in particular its relation to ab-

stract interpretation. Finally, § C gives details on how the security

properties discussed in the paper are implemented in eThor using
the specification language HoRSt.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

633

http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
http://smtlib.cs.uiowa.edu/language.shtml
https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.13/security-considerations
https://solidity.readthedocs.io/en/v0.5.13/security-considerations
https://blocktix.io/public/doc/blocktix-wp-draft.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf
http://bitcoin.org/bitcoin.pdf

A HORST
This section gives an introduction to the newly developed language

HoRSt that allows for the high-level specification of Horn-clause-

based static analyses. We will first give a short primer that illus-

trates the main functionality of HoRSt, followed by a more detailed

discussion of the optimizations performed by the HoRSt compiler.

A.1 HoRSt by Example
For illustrating the features of HoRSt we show how to express a

general rule for binary stack operations, subsuming the rule for

addition presented in § 3. Figure 11 shows an excerpt of the HoRSt-
specification of the presented static analysis. The abstract domain

of the analysis is realized by the definition of the abstract data

type AbsDom. Predicate signatures can be specified by corresponding

predicate declarations as done for the case of the MState predicate.

HoRSt allows for parametrizing predicates and thereby specifying

whole predicate families: The MState predicate is parametrized by

two integer values (as specified in the curly braces) that will in-

tuitively correspond to the contract’s identifier and the program

counter whose state it is approximating. The arguments of the MState

predicate family reflect exactly those specified in § 3.

To facilitatemodular specifications,HoRSt supports non-recursive
operations over arbitrary types, such as absadd which implements

abstract addition. In the given example, we show the flexibility of

HoRSt by presenting a single rule template for generating rules for

all binary stack operations. To this end, we define a function binOp

that given an opcode c and two integer arguments applies to them

the binary operation corresponding to the opcode. This function is

then leveraged in the rule template opBin. Rule templates serve for

generating the abstract semantics given in the form of Horn clauses.

As in our case the abstract semantics is specified as a function on a

concrete contract, the generation of Horn clauses in HoRSt needs
to be linked to a concrete contract bytecode. In order to account

for that in a generic fashion given that HoRSt cannot support fa-
cilities for reading files or parsing bytecodes, HoRSt provides an
interface for interacting with custom relations generated by Java™

code. This interface is specified upfront by so called selector func-
tions (introduced with the key word sel) which are declared, but not

defined in the HoRSt specification. In the given example, we declare

selector functions for accessing the identifiers of the contracts to

be analyzed (ids), the set of binary operations (binOps) and the pro-

gram counters in a contract that hold opcodes of a specific type

(pcForIdAndOpcode). In addition to that, selector functions also allow for

more advanced functionalities such as incorporating the results

of a preanalysis in an elegant fashion: To this end, we declare the

selector function argumentsTwoForIdAndPc that returns arguments to the

operation that could be statically precomputed (returning −1 in

case of failure). For generating Horn clauses, we can parametrize

the rule over the cross product of the result of (nested) selector

function applications as done in for the opBin rule. This then exactly

generates Horn clauses abstracting the behavior of a binary stack

operation as discussed in § 3: A stack size check is performed, the

two arguments are selected from the stack and finally the MState pred-

icate at the next program counter is implied with an updated stack

having the operation’s result as top element. The only derivation

occurs due to the consideration of the preanalysis: the operation

tryConcrete tries to access the statically precomputed argument, and

only in case of its absence performs the (more expensive) stack

access. This step however is not a necessity, but just illustrates how

the interplay between different stages of a static analysis can be

implemented for boosting the performance.

A.2 Compiler Optimizations
The HoRSt compiler features several transformations to generate

optimized smt-lib output. It first resolves high-level language

constructs such as operations and data types, and unfolds the

parametrization introduced by selector functions. The resulting

basic Horn clause representation is optimized by constant fold-

ing, and (optionally) performing different flavors of the unfolding

transformation to eliminate predicates that are not relevant for the

queries. In the following, we explain the unfolding transformation

in more detail.

The idea behind the unfolding transformation is that a predicate

𝑝 can be eliminated from a set of Horn clauses Λ by unfolding the

occurrences of 𝑝 in the premises according to the clauses that have

𝑝 as conclusion. An example is given in Figure 12. Here predicate 𝑃2
is eliminated by merging the two single execution steps (modeled

by the two clauses on the left) into a combined clause (on the right)

summarizing the steps.

This intuition serves as a starting point for the unfolding strategy

of linear folding. In linear folding, all clauses representing a basic

block of sequential execution steps are merged into a single clause.

More precisely, the unfolding transformation is only applied to

those predicates that are used linearly in Λ, meaning that 𝑝 occurs

in the premises of exactly one clause in Λ and in the conclusion of

exactly one different clause in Λ. Linear folding has the advantage

that it runs linearly in the number of clauses in Λ and yields as

result a reduced set of clauses Λ′
such that |Λ′ | ≤ |Λ|.

In contrast, applying the unfolding transformation exhaustively

on all predicates (with exception of those that are recursively used)

might yield an exponential blow-up in clauses (and hence also re-

sult in exponential runtime). In practice however, the set of clauses

Λ′
resulting from such a exhaustive folding is often of a reasonable

size. For mitigating the runtime overhead, however, it is crucial to

avoid unnecessary blow-ups in the intermediate clause sets pro-

duced during the transformation: To this end, for exhaustive folding

HoRSt applies linear folding first and only afterwards performs the

unfoldings that multiply existing clauses.

Figure 13 shows the effects of linear and exhaustive folding for a

simple contract with a loop. Since the abstraction at each program

counter is modeled by an own predicate (MState, here𝑀 for short),

the contract control flow is reflected by the logical dependencies

between these predicates as defined in the Horn clauses of the

abstract semantics. Hence, we depict the abstract semantics as a

transition system, interpreting predicates as states and Horn clauses

as transitions. Linear folding collapses all sequences with linear

control flow, while exhaustive folding in this case reduces the state

space even further without adding additional clauses.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

634

1 datatype AbsDom := @T | @V <int >; // Abstract Domain
2 datatype Opcode := @STOP | @ADD | ... | @INVALID | @SELFDESTRUCT // opcodes (shortened)
3

4 pred MState{int*int}: int * array <AbsDom > * array <AbsDom > * array <AbsDom > * bool;
5

6 op absadd(a: AbsDom , b: AbsDom): AbsDom := match (a, b) with | (@V(x), @V(y)) => @V((x + y) mod MAX) | _ => @T;
7 op binOp(c: Opcode , x: AbsDom , y: AbsDom): AbsDom := match c with | @ADD => absadd(x, y) | ... | _ => @T;
8

9 sel ids: unit -> [int]; // contracts to be analyzed
10 sel binOps: unit -> [int]; // binary stack operations
11 sel pcsForIdAndOpcode: int * int -> [int]; // program counters at which a specific opcode occurs in a specific contract
12 sel argumentsTwoForIdAndPc: int * int -> [int * int]; // results from the preanalysis for a given contract and pc
13

14 op tryConcrete {!c:int}(val:AbsDom): AbsDom := (!c = ~1) ? (val) : (@V(!c));
15

16 rule opBin :=
17 for (!op: int) in binOps (), (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode (!id, !op),
18 (!a:int , !b: int) in argumentsTwoForIdAndPc (!id, !pc)
19 clause [?x: AbsDom , ?y:AbsDom , ?size: int , ?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?cl: bool]
20 MState {!id, !pc}(?size , ?sa, ?mem , ?stor , ?cl), ?size > 1,
21 ?x = tryConcrete {!a} (select ?sa (?size -1)), ?y = tryConcrete {!b} (select ?sa (?size -2))
22 => MState {!id, !pc +1}(? size -1, store ?sa (?size -2) (binOp(intToOpCode(!op), ?x,?y)), ?mem , ?stor , ?cl);

Figure 11: HoRSt rule describing the abstract semantics of local binary stack operations.

𝑃1 (𝑥) ∧ 𝑦 = 𝑥 + 1 ⇒ 𝑃2 (𝑦)
𝑃2 (𝑦) ∧ 𝑧 = 𝑦 ∗ 3 ⇒ 𝑃3 (𝑧)

}
𝑃1 (𝑥) ∧ 𝑦 = 𝑥 + 1 ∧ 𝑧 = 𝑦 ∗ 3 ⇒ 𝑃3 (𝑧)

Figure 12: Unfolding of 𝑃2.

...

exhaustive folding
linear

 folding

Figure 13: Example of linear and exhaustive folding. Transi-
tion system view of the abstract semantics: States denote predi-

cates and arrows denote Horn clauses having the start predicate as

premise and the goal predicate as conclusion. Initial (final) states

are colored green (red). Linearly used predicates are colored blue.

B THEORETICAL FOUNDATIONS OF ETHOR
In this section, we provide details on the theoretical foundations

of eThor . We first formally characterize the notion of Horn-clause-

based abstractions as they can be implemented in HoRSt and then

relate this concept to the framework of abstract interpretation.

B.1 Horn-clause-based Abstractions
In this section, we more formally characterize the aim and scope of

this work, as well as the kind of static analyses that are realizable by

HoRSt. Generally, we focus on the reachability analysis of programs

with a small-step semantics, which we over-approximate by an

abstract program semantics based on Horn clauses. More formally,

we will assume a program’s small-step semantics to be a binary

relation 𝑆s over program configurations 𝑐 ∈ C. A Horn-clause-based

abstraction for such a small-step semantics 𝑆s is then fully specified

by a tuple (D,S, 𝛼,Λ) where S defines the signature of predicates

with arguments ranging over (partially) ordered subsets of D. For

a given predicate signature S, an abstraction function 𝛼 : C → A

maps concrete program configurations 𝑐 ∈ C to abstract program

configurations Δ ∈ A consisting of instances of predicates in S.
Formally, a predicate signature S ∈ N ↛∏(P(D) × (P(D) ×

P(D))) is a partial function from predicate namesN to their argu-

ment types (formally written as a product over the subsets of some

abstract superdomain D, equipped with a corresponding order).

We require for all 𝑛 ∈ N that (𝐷, ≤) ∈ S(𝑛) such that (𝐷, ≤) forms

a partially ordered set. Correspondingly, the set of abstract config-

urations AS over S can be defined as P({𝑛(®𝑣) | 𝑛 ∈ N ∧ ∀𝑖 ∈
{1, . . . , |S(𝑛) |}. 𝜋𝑖 (S(𝑛)) = (𝐷, ≤) =⇒ 𝜋𝑖 (®𝑣) ∈ 𝐷}) where 𝜋𝑖 (·)
denotes the usual projection operator. The abstraction of a small-

step semantics is then a set of constrained Horn clauses Λ ⊆ H(S)
that approximates the small-step execution rules.

A constrained Horn clause is a first order formula of the form

∀𝑋 . Φ, 𝑃 ⇒ 𝑐

Where 𝑋 ⊆ Vars × P(D) is a (functional) set of typed variables,

and Φ is a set of quantifier-free constraints over the variables in 𝑋 .

Conclusions 𝑐 are predicate applications 𝑛(®𝑧) ∈ 𝑃𝑋 := {𝑛(®𝑥) | | ®𝑥 | =
|S(𝑛) | ∧ ∀𝑖 ∈ {1, . . . , | ®𝑥 |}. 𝜋𝑖 (®𝑥) = 𝑥 ∧ 𝜋𝑖 (S(𝑛)) = (𝐷, ≤) =⇒
(𝑥, 𝐷) ∈ 𝑋 } over variables in𝑋 that respect the variable type. Corre-

spondingly, the premises 𝑃 ⊆ 𝑃𝑋 , are a set of predicate applications

over variables in 𝑋 .

We lift the suborders of S to an order on abstract configurations

Δ1,Δ2 ∈ AS as follows:

𝑛1 (®𝑡1) ≤𝑝 𝑛2 (®𝑡2) := 𝑛1 = 𝑛2

∧ ∀𝑖 ∈ {1, . . . , | ®𝑡1 | }. 𝜋𝑖 (®𝑡1) ≤𝑛1,𝑖 𝜋𝑖 (®𝑡2)
given 𝜋𝑖 (S (𝑛)) = (𝐷𝑛,𝑖 , ≤𝑛,𝑖)

Δ1 ≤ Δ2 := ∀𝑝1 ∈ Δ1 . ∃𝑝2 ∈ Δ2 . 𝑝1 ≤𝑝 𝑝2

Finally, we introduce the notion of soundness for a Horn-clause-

based abstraction.

Definition B.1. AHorn-clause-based abstraction (D,S, 𝛼,Λ) soundly
approximates a small-step semantics 𝑆s if

∀(𝑐, 𝑐′) ∈ 𝑆∗s . ∀Δ. 𝛼 (𝑐) ≤ Δ

⇒ ∃Δ′. Δ,Λ ⊢ Δ′ ∧ 𝛼 (𝑐′) ≤ Δ′
(1)

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

635

This statement requires that, whenever a concrete configura-

tion 𝑐 ′ is reachable from configuration 𝑐 (meaning that (𝑐, 𝑐 ′) is
contained in the reflexive and transitive closure of 𝑆s, denoted as

𝑆∗s), it shall hold that from all abstractions Δ of 𝑐 , the Horn clause

abstraction allows us to logically derive (⊢) a valid abstraction Δ′

of 𝑐 ′. Note that 𝛼 intuitively yields the most concrete abstraction

of a configuration, hence to make the property hold for all possible

abstractions of a configuration, we strengthen the property to hold

for all abstractions that are more abstract than 𝛼 (𝑐). The soundness
theorem implies that whenever we can show that from some ab-

straction Δ of a configuration 𝑐 there is no abstract configuration

Δ′
derivable such that Δ′

abstracts 𝑐 ′, then 𝑐 ′ is not reachable from
𝑐 . Consequently, if it is possible to enumerate all abstractions of

𝑐 ′, checking non-derivability (as it is supported by the fixedpoint

engines of modern SMT solvers) gives us a procedure for proving

unreachability of program configurations.

B.2 Relation to Abstract Interpretation
It is possible to phrase the previous characterization in terms of

classical abstract interpretation notions. More precisely, we can

define a Galois connection (𝛼,𝛾) between sets of concrete con-

figurations P(C) (ordered by ⊆) and abstract configurations A
(ordered by ≤). To this end, we lift the abstraction function 𝛼 to

sets of configurations in a canonical fashion:

𝛼 (𝐶) :=
⋃
𝑐∈𝐶

𝛼 (𝑐) (2)

Next, we define the concretization function based on 𝛼 :

𝛾 (Δ) := {𝑐 ∈ C | 𝛼 (𝑐) ≤ Δ}

Lemma B.2. The pair of functions (𝛼,𝛾) forms a Galois connection
between (P(C), ⊆) and (A, ≤).

Proof. We need to show for all 𝐶 and Δ that

𝛼 (𝐶) ≤ Δ ⇔ 𝐶 ⊆ 𝛾 (Δ)

⇒: Let 𝛼 (𝐶) ≤ Δ. Further let 𝑐 ∈ 𝐶 . We show that 𝑐 ∈ 𝛾 (Δ).
By the definition of 𝛾 it is sufficient to show that 𝛼 (𝑐) ≤ Δ.
Let 𝑝1 ∈ 𝛼 (𝑐). We show that there is some 𝑝2 ∈ Δ such that

𝑝1 ≤ 𝑝2. Since 𝑝1 ∈ 𝛼 (𝑐) and 𝑐 ∈ 𝐶 , we know that 𝑝1 ∈ 𝛼 (𝐶)
and since 𝛼 (𝐶) ≤ Δ also that there needs to be some 𝑝2 ∈ Δ
such that 𝑝1 ≤ 𝑝2 what concludes the proof.

⇐: Let 𝐶 ⊆ 𝛾 (Δ). Further let 𝑝1 ∈ 𝛼 (𝐶). We show that there is

some 𝑝2 ∈ Δ such that 𝑝1 ≤ 𝑝2. Since 𝑝1 ∈ 𝛼 (𝐶) there must

be some 𝑐 ∈ 𝐶 such that 𝑝1 ∈ 𝛼 (𝑐). And from 𝐶 ⊆ 𝛾 (Δ) we
can conclude that 𝑐 ∈ 𝛾 (Δ) which implies that 𝛼 (𝑐) ≤ Δ.
Consequently there needs to be a 𝑝2 ∈ Δ such that 𝑝1 ≤ 𝑝2
what concludes the proof.

□

Now, we can define reachability of concrete configurations and

derivability of abstract configurations as the least fixed points of

step functions (𝐹𝐼 for concrete configuration steps and 𝐹 ′Δ𝐼
for

abstract configuration steps) which describe a collecting semantics

(with respect to some initial configuration).

𝐹𝐼 (𝐶) := {𝑐 ′ | ∃𝑐 ∈ 𝐶. (𝑐, 𝑐 ′) ∈ 𝑆s} ∪ 𝐼

𝐹 ′Δ𝐼
(Δ) := {𝑝 | Δ,Λ ⊢ 𝑝} ∪ Δ𝐼

We obtain the following intuitive correspondences between the

different characterizations:

(𝑐, 𝑐 ′) ∈ 𝑆∗s ⇔ 𝑐 ′ ∈ lfp[𝐹 {𝑐 }] (3)

Δ,Λ ⊢ Δ′ ⇔ Δ′ ⊆ lfp[𝐹 ′Δ] (4)

where lfp[𝑓] denotes the least fixed point of a function 𝑓 .

To ensure that the corresponding least fixed points exists, we

need to ensure that the domains P(C) and A of the Galois connec-

tion form a complete lattice and that both 𝐹𝐼 and 𝐹
′
Δ𝐼

are monotone.

While ⟨P(C), ⊆, ∅,P(C),∪,∩⟩ is the canonical power set lattice,
we can easily show ⟨A, ≤, ∅,Δ,∪,∩⟩ to also form a complete lattice

as ⊆ is a subrelation of ≤. While it is trivial to show that 𝐹𝐼 is

monotone, for 𝐹 ′Δ𝐼
it becomes a proof obligation on Λ:

∀Δ,Δ′. Δ ≤ Δ′ ∧ Δ,Λ ⊢ 𝑝 =⇒ ∃𝑝 ′. 𝑝 ≤ 𝑝 ′ ∧ Δ′,Λ ⊢ 𝑝 ′ (5)

Using the step functions, we can characterize sound over-

approximations as defined in Definition B.1 in an alternative fashion.

More precisely, we require our approximation to be a sound upper
approximation [16].

Lemma B.3. A Horn-clause-based abstraction
(D, {≤𝑛,𝑖 } (𝑛,𝑖) ,S, 𝛼,Λ) soundly approximates a small-step
semantics 𝑆s iff Λ satisfies Equation (5) and for all 𝑐 ∈ C and all
Δ ≥ 𝛼 (𝑐)

𝛼 (lfp[𝐹 {𝑐 }]) ≤ lfp[𝐹 ′Δ]

Proof. "⇒": Assume Equation (1) and 𝑓1 ∈ 𝛼 (lfp[𝐹 {𝑐 }]) for
some fact 𝑓1. We show that there exists some fact 𝑓2 such that

𝑓2 ∈ lfp[𝐹 ′Δ] and 𝑓1 ≤ 𝑓2. By Equation (2), we know that from 𝑓1 ∈
𝛼 (lfp[𝐹 {𝑐 }]) we can conclude that there exists some 𝑐 ′ ∈ lfp[𝐹 {𝑐 }]
such that 𝑓1 ∈ 𝛼 (𝑐 ′). By Equation (3), we have that (𝑐, 𝑐 ′) ∈ 𝑆∗s
and hence by Equation (1) we can conclude that there exists some

Δ′
such that Δ,Λ ⊢ Δ′

and 𝛼 (𝑐 ′) ≤ Δ′
. With 𝑓1 ∈ 𝛼 (𝑐 ′) we get

from this that there exists some 𝑓2 ∈ Δ′
such that 𝑓1 ≤ 𝑓2. Since

Δ,Λ ⊢ Δ′
, we get from Equation (4) that Δ′ ⊆ lfp[𝐹 ′Δ] and hence

also 𝑓2 ∈ lfp[𝐹 ′Δ] which concludes the proof.

"⇐": Assume 𝛼 (lfp[𝐹 {𝑐 }]) ≤ lfp[𝐹 ′Δ] and let (𝑐, 𝑐 ′) ∈ 𝑆∗s and

𝛼 (𝑐) ≤ Δ. We show that there is some Δ′
such that Δ,Λ ⊢ Δ′

and

𝛼 (𝑐 ′) ≤ Δ′
. By Equation (3), we get that 𝑐 ′ ∈ lfp[𝐹 {𝑐 }] and hence

also 𝛼 (𝑐 ′) ⊆ 𝛼 (lfp[𝐹 {𝑐 }]) (by Equation (2)). As 𝛼 (lfp[𝐹 {𝑐 }]) ≤
lfp[𝐹 ′Δ] it follows that also 𝛼 (𝑐

′) ≤ lfp[𝐹 ′Δ]. Additionally, it follows
from Equation (4) that Δ,Λ ⊢ lfp[𝐹 ′Δ]. This closes our proof. □

Given that 𝐹 ′Δ is monotonic, 𝛼 (lfp[𝐹 {𝑐 }]) ≤ lfp[𝐹 ′Δ] can be

shown to follow from the one-step characterization below:

𝛼 ◦ 𝐹 ≤ 𝐹 ′ ◦ 𝛼 (6)

(where 𝐹 = 𝐹∅ and 𝐹 ′ = 𝐹 ′∅).
This is because 𝛼 ◦ 𝐹 ≤ 𝐹 ′ ◦ 𝛼 implies for all 𝑐 ∈ C and all

Δ ≥ 𝛼 (𝑐) that 𝛼 ◦ 𝐹 {𝑐 } ≤ 𝐹 ′Δ ◦ 𝛼 and by the fixed point transfer

theorem [16] for Galois connections, this result can be lifted to

least fixed points. As a consequence for proving Theorem 3.1, it is

sufficient to show that Equation (5) and Equation (6) hold.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

636

B.3 Analysis Definition (continued)
We overview additional details of the analysis definition in § 3.

The orders on the abstract argument domains of the predicates

in Figure 4 are formally defined as follows:

≤
�̂�
:= {(𝑎, ˆ𝑏) | ˆ𝑏 = ⊤ ∨ 𝑎 = ˆ𝑏}

≤N := {(𝑚,𝑛) |𝑚 = 𝑛}
≤B := {(𝑎, 𝑏) | 𝑎 = 𝑏}

≤N→�̂�
:= {(𝑓 , 𝑔) | ∀𝑛 ∈ N. 𝑓 (𝑛) ≤

�̂�
𝑔(𝑛)}

≤N×(N→�̂�) := {((𝑚, 𝑓), (𝑛,𝑔)) |𝑚 = 𝑛 ∧ ∀𝑖 < 𝑚. 𝑓 (𝑖) ≤
�̂�
𝑔(𝑖)}

We assume that the same orders apply to the same argument do-

mains of different predicates.

Abstract operations.We formally define abstract operations on

values from the abstract argument domains, starting with binary

operations on natural numbers: Let opbin ∈ N×N→ N be a binary

operation. We define abstract binary operations as follows:

·̂ ∈ (N × N→ N) → �̂� × �̂� → �̂�

�opbin (𝑥,𝑦) :=
{
opbin (𝑥,𝑦) 𝑥,𝑦 ∈ N
⊤ otherwise

Similarly, we can define abstract comparison operators. Let

opcomp ∈ N × N→ B be a comparison operation on natural num-

bers. We define abstract comparison operations as follows:

·̂ ∈ (N × N→ B) → �̂� × �̂� → B

�opcomp (𝑥,𝑦) :=
{
opcomp (𝑥,𝑦) 𝑥,𝑦 ∈ N
1 otherwise

We further define the abstract operations for array access used

in Figure 5. First, we define the function for extracting a specified

fraction of an integer (interpreted as 32-byte word)

· [·, ·] ∈ �̂� × N × N→ �̂�

𝑣 [𝑙,𝑟] :=

{⌊
𝑣

256
31−𝑟

⌋
mod 256

𝑟−𝑙+1 𝑙 ≤ 𝑟 ∧ 𝑣 ∈ N
⊤ otherwise

Next, we define the append function:

| | · ∈ �̂� × �̂� × N→ �̂�

𝑣 | |𝑛�̂� :=

{
�̂� ∗ 256𝑛 + 𝑣 𝑣, �̂� ∈ N
⊤ otherwise

We focused here only on those operations that were used in § 3.

For a full account of all abstract operations, we refer the reader to

our HoRSt specification in [6].

C CHECKING SECURITY PROPERTIES WITH
ETHOR

In this section, we discuss how the security properties presented

in § 2.3 are implemented in eThor using HoRSt. In particular, we

explain how reachability properties can be abstracted as queries us-

ing the example of the call reachability property. We then illustrate

the infrastructure for proving functional correctness properties as

well as the one for automated soundness and precision testing.

C.1 From Reachability Properties to Queries
All reachability properties introduced in § 3.5 can be seen as in-

stances of properties of the following form:

R(𝑃, 𝑅) := ∀𝑠. 𝑃 ([𝑠]) =⇒ ¬∃𝑆′, Γ ⊨ 𝑠𝑐∗ :: 𝑆 →∗ 𝑆′ ++ 𝑆 ∧ 𝑅 (𝑆′)

where 𝑠 is assumed to be strongly consistent with 𝑐∗ and 𝑆 ′ is
assumed to be non-empty. We will refer to properties of this form

in the following as unreachability properties.

For the sake of presentation, we will in the following interpret

predicates 𝑃, 𝑅 as the sets of elements satisfying these predicates.

Additionally, we will overload the abstraction function 𝛼 to operate

on sets of configurations hence writing 𝛼𝑐∗ (𝑅) for
⋃

𝑆′∈𝑅 𝛼𝑐∗ (𝑆 ′)
and 𝛼𝑐∗ (𝑃) for

⋃
[𝑠𝑐∗] ∈𝑃 𝛼𝑐∗ ([𝑠𝑐∗]).

Following Theorem 3.1 for proving such properties it is sufficient

to give some set Δ𝑃 such that Δ𝑃 ≥ 𝛼𝑐∗ (𝑃) and to show, for any set
Δ𝑅 over-approximating 𝛼𝑐∗ (𝑅) that Δ𝑃 ̸⊢ Δ𝑅 . Instead of showing

this property for all possible sets Δ𝑅 , it is sufficient to find a query

set Δquery that shares at least one element with all possible sets Δ𝑅 :

∀Δ𝑅 . Δ𝑅 ≥ 𝛼𝑐∗ (𝑅) =⇒ Δ𝑅 ∩ Δquery ≠ ∅ (7)

Proving Δ𝑅, 𝛿 (𝑐∗) ̸⊢ Δquery then implies that R(𝑃, 𝑅) holds.
Usually, such a set can be easily constructed from 𝑅 as follows:

Δquery (𝑅) := {𝑝′ | ∃𝑝. 𝑝 ∈ 𝛼𝑐∗ (𝑅) ∧ 𝑝 ≤𝑝 𝑝′ } (8)

Intuitively, it is sufficient to query for the most concrete abstraction

(as given by 𝛼∗𝑐) of the concrete configurations in 𝑅 and all predicate-

wise (≤𝑝) coarser abstractions of those. The set Δquery (𝑅) however
is only a valid query set for 𝑅 if for some 𝑆 ′ ∈ 𝑅 it holds that 𝛼𝑐∗ (𝑆 ′)
is non-empty. Otherwise Equation (7) is trivially violated. Intuitively

this means that only postconditions 𝑅 that make some restrictions

on those callstack components that are modeled by the analysis

(e.g., executions of contract 𝑐∗) can be reasonably analyzed using

this technique. We formally state this property in the following

lemma:

Lemma C.1. Let 𝑆s ⊆ C × C be a small-step semantics and
(D,S, 𝛼,Λ) a sound abstraction thereof. Further, let 𝑃 , 𝑅 ⊆ C be
predicates on configurations and Δ𝑃 be an abstract configuration s.t.
Δ𝑃 ≥ 𝛼 (𝑃). Then if there is some 𝑐 ′ ∈ 𝑅 s.t. 𝛼 (𝑐 ′) ≠ ∅ it holds that

Δ𝑃 ,Λ ̸⊢ Δquery (𝑅) =⇒ R(𝑃, 𝑅)

Thus, it is generally sufficient to query for the reachability of

Δquery (𝑅) in order to prove an unreachability property R(𝑃, 𝑅).
We will next show how this theoretical result can be used in

practice and in particular at the level of HoRSt.
Initialization. For checking an unreachability property R(𝑃, 𝑅),
we need to show the non-derivability of a valid query set Δquery
from some abstract configuration Δ𝑃 ≥ 𝛼 (𝑃). This requires to ax-

iomatize such an abstract configuration Δ𝑃 . This can be easily done

in HoRSt by providing rules having true as a single premise. For

axiomatizing that the execution starts in an initial machine state

as required for the call unreachability property defined in Defini-

tion 3.2 we can add the following rule to the analysis specification:

1 rule initOp :=
2 clause true => MState {0}(0, [@V(0)], [@V(0)], [@T], false);

As the precondition 𝑃 of the call unreachability property requires

the top state 𝑠 (that also serves as the zero-bar for the call level) to

be initial, 𝛼 (𝑠) can contain only predicate applications of the form

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

637

1 query reentrancyCall
2 for (!id: int) in ids(),
3 (!pc:int) in pcsForIdAndOpcode (!id, CALL)
4 [?sa: array <AbsDom >, ?mem: array <AbsDom >,
5 ?stor: array <AbsDom >, ?size:int]
6 MState {!id, !pc}(?size , ?sa, ?mem , ?stor , true);

Figure 14: HoRSt-query for reentrancy.

MState0 ((0, 𝜆𝑥 . 0), 𝜆𝑥 . 0,𝑚, 0) where𝑚 is some memory mapping.

However, 𝜆𝑥 .⊤ ([@T] in HoRSt) over-approximates all memory ar-

rays and hence Δ𝑃 = {MState0 ((0, 𝜆𝑥 . 0), 𝜆𝑥 . 0, 𝜆𝑥 .⊤, 0)} ≥ 𝛼 (𝑃).
Queries. In addition to syntax for writing an analysis specification,

HoRSt also provides mechanisms for the interaction with the under-

lying SMT solver. More precisely it supports syntax for specifying

queries and tests. Syntactically, queries consist of a list of premises

(as in a clause). A query leads to the invocation of the SMT solver to

test whether the conjunction of those premises is derivable from the

given initialization using the specified rules. The query will result

in SAT in case that all premises are derivable and in UNSAT in case

that the conjunction of premises can be proven to be non-derivable.

In order to check for reachability of abstract configurations,

HoRSt allows for the specification of (reachability) queries that can

also be generated from selector functions. The query shown in

Figure 14 for instance checks for reentrancy by checking if any

CALL instruction is reachable at call level 1
10
. It therefore is an

implementation of the reachability property introduced in § 3.5.

This query can be obtained from the call unreachability property

defined in Definition 3.2 which is of the form R(𝑃, 𝑅) with 𝑅 :=

{𝑠𝑐∗ :: 𝑆 ′ | |𝑆 ′ | > 0 ∧ 𝑐∗ .code[𝑠, 𝜇.pc] ∈ Instcall}. Intuitively, we can
split this property into a set of different properties R(𝑃, 𝑅𝑖) where
𝑖 ranges over the set of CALL instructions in 𝑐∗. More precisely, let

𝑅𝑖 := {𝑠𝑐∗ :: 𝑆 ′ | |𝑆 ′ | > 0 ∧ 𝑠, 𝜇.pc = 𝑖} then it holds that

R(𝑃, 𝑅) ⇔ ∀𝑖 ∈ {𝑖 | 𝑐∗ .code[𝑖] ∈ Instcall }. R(𝑃, 𝑅𝑖)

Then each instance of the reentrancyCall query specifies one query set

Δ𝑖query that satisfies Equation (7) for 𝑅𝑖 . Thus showing the underiv-

ability of all those sets from Δ𝑃 proves the claim. Intuitively, Δ𝑖query
satisfies Equation (7) for 𝑅𝑖 because 𝛼

∗
𝑐 (𝑅𝑖) contains an application

of a predicateMState𝑖 with argument cℓ = 1 and so it needs to con-

tain all abstractions of Δ𝑅𝑖 ≥ 𝛼∗𝑐 (𝑅𝑖) as the cℓ component cannot

further be abstracted. Consequently, the set Δ𝑖query, which contains

all predicates of that form, has a trivial intersection with Δ𝑅𝑖 .

C.2 Functional Correctness
For checking functional correctness, some modifications to the ab-

stract semantics are necessary. This is because the different contract

executions need to be bound the corresponding input data of the call

and to account for return data. We will in the following overview

the relevant changes and motivate that similar modifications can

easily be incorporated for reasoning about other dependencies with

the execution or blockchain environment. We will present the rele-

vant modifications in HoRSt syntax so that the explanations serve

as a guide to the enhanced version of the semantics [6].

10
There are corresponding queries for other relevant transaction initiating instructions.

First, the relevant predicates need to be enriched with a corre-

sponding representation of the call data. We decided to represent

call data as a word array with the particularity that the array’s first

element represents only 4 bytes. This is due to the call conventions

enforced by the Solidity compiler which interpret the first 4 bytes of

input data as the hash of the called function’s signature to dispatch

function calls properly. In addition to the call data, we introduce a

new predicate representing the return data of a call.

Formally, we arrive at the following predicate definitions:

1 datatype CallData := @D<int*array <AbsDom >>;
2 pred MState{int*int}: int * array <AbsDom > * array <AbsDom > *

array <AbsDom > * bool * CallData;
3 pred Exc{int}: bool;
4 pred Halt{int}: array <AbsDom > * AbsDom * bool * CallData;
5 pred ReturnData{int}: int * AbsDom * bool * CallData;

Note that we represent call data as a pair of its size and an array of

abstract words. Also, we added to the Halt predicate an argument

representing the return data size. This argument is from the abstract

domain with @T indicating that the concrete size of the return data is

unknown. The ReturnData predicate maps the positions of the return

data (word) array to the corresponding values that it holds.

The existing rules simply propagate the call data array with the

only addition that the CALLDATALOAD instruction now accesses

the call data array instead of over-approximating the loaded value.

The new rule for CALLDATALOAD is depicted in Figure 15. The

CALLDATALOAD operation takes as argument a value from the

stack that specifies the position in the byte array where a word

should be accessed. The rule is split into two clauses to benefit from

the preanalysis. In case that the position of call data is known up-

front, the call data array ?call can be accessed more precisely. Since

we model the call data as a word instead of a byte array (similar to

our memory abstraction), either a word loaded from it consists of

a full word in the word array or needs to be composed out of two

neighboring words. Composing two integers (interpreting them

as byte arrays) however requires exponentiation as defined in the

append function in § B.3. z3 is not able to handle general exponen-

tiation - for this reason we can only compute such exponentiations

(by unfolding to multiplications) whose exponent is known upfront.

Thus, the first rule in Figure 15 handles the case where the argument

to the call is known upfront: the accessWordCallData function expects

the position as a parameter and computes the accessed word pre-

cisely from the call data array by unrolling exponentiation. The

second rule handles the case where the argument to the call is not

known upfront. In case that during the analysis it can be detected to

be concrete (by the function isConcrete), the accessWordCalldataEven func-

tion is used to access the call data at the corresponding position.

This function however only yields a precise result in case that the

provided position corresponds to the beginning of a word in the

call data array, otherwise it over-approximates the result as T.

The ReturnData predicate is inhabited by the rules that model regu-

lar halting. We exemplarily show the rule of the RETURN opcode

depicted in Figure 16. The RETURN instruction in EVM reads the

memory offset and the return data length from the stack and re-

turns the corresponding memory fragment as byte array. In our

abstraction the return data is modeled by an own predicate that

holds words instead of bytes. This design choice follows the one

made for the word-indexed memory and the call data array which

hold words instead of bytes as well for performance reasons. The

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

638

1 rule opCallDataLoad :=
2 for (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode (!id, CALLDATALOAD), (!a: int) in argumentsOneForIdAndPc (!id, !pc)
3 clause [?x: AbsDom , ?size: int , ?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?cl: bool , ?p: int , ?v: AbsDom , ?cdata:

CallData]
4 MState {!id, !pc}(?size , ?sa , ?mem , ?stor , ?cl, ?cdata), ?size > 0,
5 !a != ~1, // in case that the position could be pre -computed , use it for accessing the position more precisely
6 ?v = accessWordCalldata {!a}(? cdata) // accesses word at the corresponding position of the call data
7 => MState {!id, !pc +1}(?size , store ?sa (?size -1) (?v), ?mem , ?stor , ?cl, ?cdata),
8 clause [?x: AbsDom , ?size: int , ?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?cl: bool , ?cdata: CallData , ?p: int , ?v:

AbsDom]
9 MState {!id, !pc}(?size , ?sa , ?mem , ?stor , ?cl , ?cdata), ?size > 0,
10 !a = ~1, // if the argument could not be preecomputed , extract the argument from stack
11 ?x = select ?sa (?size - 1),
12 ?v = (isConcrete (?x)) ? (accessWordCalldataEven(extractConcrete (?x), ?cdata)) : (@T) // if the offset is concrete , try to access the

word at the given position. This will only result in a concrete result if the value is a word position
13 => MState {!id, !pc +1}(?size , store ?sa (?size -1) (?v), ?mem , ?stor , ?cl, ?cdata);

Figure 15: Rule for CALLDATALOAD in the enhanced abstract semantics.

1 rule opHaltOnReturn :=
2 for (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode (!id, RETURN)
3 let
4 macro #StackSizeCheck := MState {!id ,!pc}(?size , ?sa, ?mem , ?stor , ?cl, ?cdata), ?size > 1
5 in
6 clause [?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?size:int , ?cl: bool , ?cdata: CallData , ?length: AbsDom]
7 #StackSizeCheck , ?length = select ?sa (?size -2)
8 => Halt{!id}(?stor , ?length , ?cl, ?cdata),
9 clause [?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?size:int , ?cl: bool , ?offset: AbsDom , ?length: AbsDom , ?o:

int , ?l:int , ?p:int , ?v: AbsDom , ?cdata: CallData]
10 #StackSizeCheck , ?offset = select ?sa (?size -1), ?length = select ?sa (?size -2), // select top values on the stack
11 isConcrete (? offset), isConcrete (? length),
12 ?o = extractConcrete (? offset), ?l = extractConcrete (? length),
13 ?p >= 0, (?p * 32) < ?l, // write all words that are still within the length
14 ?v = accessWordMemoryEven (?o + ?p, ?mem)
15 => ReturnData {!id}(?p, ?v, ?cl, ?cdata), // careful: the Return data predicate is also inhabited in words!
16 clause [?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?size:int , ?cl: bool , ?offset: AbsDom , ?length: AbsDom , ?o:

int , ?l:int , ?p:int , ?v: AbsDom , ?cdata: CallData]
17 #StackSizeCheck , ?offset = select ?sa (?size -1), ?length = select ?sa (?size -2), // select top values on the stack
18 ~isConcrete (? offset), isConcrete (? length), // knowing only the length , we write top at the places in the specified range
19 ?l = extractConcrete (? length), ?p >= 0, ?p * 32 < ?l
20 => ReturnData {!id}(?p, @T , ?cl, ?cdata),
21 clause [?sa: array <AbsDom >, ?mem: array <AbsDom >, ?stor: array <AbsDom >, ?size:int , ?cl: bool , ?offset: AbsDom , ?length: AbsDom , ?o:

int , ?l:int , ?p:int , ?v: AbsDom , ?cdata: CallData]
22 #StackSizeCheck , ?length = select ?sa (?size -2), ~isConcrete (? length), ?p >= 0
23 => ReturnData {!id}(?p, @T , ?cl, ?cdata);

Figure 16: Rule for RETURN in the enhanced abstract semantics.

RETURN semantics is closely reflected in the abstract RETURN
rule: the first clause of the rule inhabits the Halt predicate, reading

the size of the return data from the stack. The next three clauses

inhabit the ReturnData predicate, differentiating depending on how

much information on the return data (size and memory offset) are

known: If both memory offset and length of the data are known,

for each word position ?p the corresponding memory word is read

from the memory array ?mem (using the function accesswordMemoryEven)

and written into the ReturnData predicate. The next clause describes

the case where the memory offset is unknown, but the size of the

return data is known. In this case we cannot know which (concrete

values) form the return data, but can only approximate all possible

return data words (as determined by the size of the array) with @T.

The last clause covers the case where the length of the return data

is unknown. Since it is unclear in this case whether data should be

returned in the first place (since the length could be 0), all potential

positions of the return data array are over-approximated by @T.

Finally, the functional correctness queries for the addition func-

tion of the SafeMath library are depicted in Figure 17. We first

specify the call data for a call to the add function of the SafeMath

library as an operation callAdd returning an CallData element when be-

ing provided with the arguments to the call. Since the add function

expects 2 integer arguments the callAdd function returns call data of

size 68 (4+2∗32) bytes where the @T array is initialized with the hash

of the corresponding function signature as first element (which rep-

resents the first 4 bytes of the call data) and the arguments x and y

as following two elements. Note that the hash of the function sig-

nature is provided by Solidity compilers via the so called Ethereum

Contract ABI (Contract Application Binary Interface). We plan to

automatically generate an infrastructure for functional correctness

queries on Solidity contracts from the contract ABI. The first func-

tional correctness test addOverflowNoHalt requires that it is impossible

to reach a Halt state (indicating regular halting) from a call to the

add function in case that the addition of ?x and ?y overflows.

The second functional correctness test (addNoOverflowCorrect) checks

whether it is possible (in case that no overflow occurs) to compute

the expected result (or an over-approximation thereof) in the first

place. Here abseq is the function implementing an equality test on

the abstract domain, hence considering every concrete element to

be potentially equal to @T. By the soundness of the analysis, if this

query would turn out to be unsatisfiable, it would be impossible

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

639

1 op callAdd(x: int , y: int): CallData :=
2 @D(68, store (store (store [@T] 0 @V (1997931255)) 1 (@V(x))) 2

(@V(y)));
3

4 test addOverflowNoHalt expect UNSAT
5 for (!id: int) in ids()
6 [?x:int , ?y: int , ?z:int , ?p:int , ?stor: array <AbsDom >, ?

rdsize:AbsDom]
7 ?x >= 0, ?y >= 0, ?x < MAX , ?y < MAX , ?x + ?y >= MAX ,
8 Halt{!id}(?stor , ?rdsize , false , callAdd (?x, ?y));
9

10 test addNoOverflowCorrect expect SAT
11 for (!id: int) in ids()
12 [?res: AbsDom , ?x:int , ?y: int , ?z:int , ?rdsize:AbsDom , ?stor

: array <AbsDom >]
13 ?x >= 0, ?y >= 0, ?x + ?y < MAX ,
14 ReturnData {!id}(0, ?res , false , callAdd (?x, ?y)),
15 Halt{!id}(?stor , ?rdsize , false , callAdd (?x, ?y)),
16 abseq(?rdsize , @V(32)), abseq(?res , @V(?x + ?y));
17

18 test addNoOverflowHalt expect UNSAT
19 for (!id: int) in ids()
20 [?res: AbsDom , ?x:int , ?y: int , ?z:int , ?rdsize: AbsDom , ?

stor: array <AbsDom >]
21 ?x >= 0, ?y >= 0, ?x + ?y < MAX ,
22 Halt{!id}(?stor , ?rdsize , false , callAdd (?x, ?y)),
23 ?rdsize != @V(32);
24

25 test addNoOverflowUnique expect UNSAT
26 for (!id: int) in ids()
27 [?res: AbsDom , ?x:int , ?y: int , ?z:int , ?rdsize: AbsDom , ?

stor: array <AbsDom >]
28 ?x >= 0, ?y >= 0, ?x + ?y < MAX ,
29 ReturnData {!id}(0, ?res , false , callAdd (?x, ?y)),
30 ?res != @V(?x + ?y);

Figure 17: Correctness queries for SafeMath’s add function

for the function to produce the correct result under any circum-

stances. This query of course does not prove that the function will

always provide a result: This indeed is and should not be provable,

since any smart contract can always halt exceptionally when run-

ning out of gas. This test case serves as a sanity check that only

becomes meaningful in conjunction with the following tests. The

third and fourth functional correctness tests (addNoOverflowHalt and

addNoOverflowUnique) prove that given non-overflowing arguments, if

the function execution halts successfully, nothing but the correct

result can be produced. In other words, it is impossible to halt suc-

cessfully without producing the correct result. This property is

composed of two queries since it needs to be shown that 1) It is

impossible for the function to halt without returning a result of

length 32 (corresponding to one word) as recorded in the Halt predi-

cate and 2) It is impossible that the actual return value (as recorded

in the ReturnData predicate) differs from the sum of the arguments.

The functional correctness tests for the other functions of the

SafeMath library follow the same pattern.

C.3 Automated Testing in HoRSt
The setup for automated testing (see § 5.3) shown in Figure 18

presents a use case for the Hoare-Logic-style reasoning capabilities

of eThor .
Test cases in the official test suite come in two flavors: the first

group consists of 490 test cases specifying a storage configuration

as postcondition, the second group, consisting of 108 test cases,

lacks a postcondition (which we interpret as exceptional halting).

To account for this test structure we declare four additional selec-

tor functions: The selector functions preStorageForId and postStorageForId

provide tuples of storage offsets and values which specify the

1 sel preStorageForId: int -> [int*int];
2 sel postStorageForId: int -> [int*int];
3 sel emptyListIfNoPostConditionForId: int -> [bool];
4 sel dummyListIfNoPostConditionForId: int -> [bool];
5

6 rule initOp :=
7 for (!id:int) in ids()
8 clause
9 true
10 => MState {!id, 0}(0, [@V(0)], [@V(0)],
11 for (! offset: int , !value:int) in preStorageForId (!id):
12 x: array <AbsDom > -> store x !offset @V(!value), [@V(0)],
13 false);
14

15 test correctValues expect SAT
16 for (!id: int) in ids(),
17 (!b: bool) in emptyListIfNoPostConditionForId (!id)
18 [?stor: array <AbsDom >, ?i: int]
19 for (! offset: int , !value:int) in postStorageForId (!id):
20 && abseq(select ?stor !offset ,@V(!value)),
21 (for (! offset: int , !value:int) in postStorageForId (!id):
22 || ?i = !offset) ? (true) : (abseq(select ?stor ?i,@V(0))),
23 Halt{!id}(?stor , false);
24

25 test uniqueValues expect UNSAT
26 for (!id: int) in ids(),
27 (!b: bool) in emptyListIfNoPostConditionForId (!id)
28 [?stor: array <AbsDom >]
29 for (! offset: int , !value:int) in postStorageForId (!id):
30 || absneq(select ?stor !offset ,@V(!value)),
31 Halt{!id}(?stor , false);
32

33 test irregularHalt expect UNSAT
34 for (!id: int) in ids(),
35 (!b: bool) in dummyListIfNoPostConditionForId (!id)
36 [?stor: array <AbsDom >]
37 Halt{!id}(?stor , false);

Figure 18: Setup for automated testing.

storage contents before and after the execution of the contract.

emptyListIfNoPostConditionForId and dummyListIfNoPostConditionForId generate

an empty list, respectively a list with one element, depending on if

there is a postcondition specified or not. Since rules are generated

for the cross product of their selector functions return values, we

can use these functions to generate different rules for different test

cases while still using the same HoRSt inputs.
The rule for initialization, initOp, slightly differs from the defini-

tion used in the other experiments. The analysis is initialized to

start in a storage as specified by preStorageForId.

To check for the reachability of a certain storage configuration,

we generate the two queries correctValues and uniqueValues. correctValues

is successful, if a Halt predicate is reachable whose storage contains

1) values abstractly equal to the values returned by postStorageForId at

the offsets returned by postStorage and 2) a value abstractly equal to 0

for all offsets not returned by postStorageForId. uniqueValues is successful,

if no Halt predicate is reachable whose storage contains any value

abstractly unequal to the values returned by postStorageForId. This is

only the case, if every value in the memory is concrete. In sum,

such a test case is considered to be solved correctly if correctValues

is successful and considered to be solved precisely if correctValues

and uniqueValues are successful. To check for exceptional halting, we

just query for the unreachability of a regular Halt predicate (see

irregularHalt). Such a query is considered solved precisely on suc-

cess and imprecisely on failure, since reaching additional program

states (Halt in this instance), which are not reachable in the concrete

execution, indicates over-approximation.

Session 2E: Smart Contracts and Cryptocurrencies CCS '20, November 9–13, 2020, Virtual Event, USA

640

	Abstract
	1 Introduction
	1.1 State-of-the-art in Smart Contract Analysis
	1.2 Our Contributions

	2 Ethereum
	2.1 Background
	2.2 EVM Semantics
	2.3 Security Properties of Smart Contracts

	3 Static Analysis of EVM Bytecode
	3.1 Main Abstractions
	3.2 Analysis Definition
	3.3 Scope of the analysis
	3.4 Soundness Result
	3.5 Reachability Properties for Contract Safety

	4 HoRSt: A Static Analysis Language
	5 Implementation & Evaluation
	5.1 Static Analysis Tool
	5.2 Case Study: SafeMath Library
	5.3 Large-scale Evaluation

	6 Related Work & Discussion
	7 Conclusion
	Acknowledgments
	References
	A HoRSt
	A.1 HoRSt by Example
	A.2 Compiler Optimizations

	B Theoretical Foundations of eThor
	B.1 Horn-clause-based Abstractions
	B.2 Relation to Abstract Interpretation
	B.3 Analysis Definition (continued)

	C Checking Security Properties with eThor
	C.1 From Reachability Properties to Queries
	C.2 Functional Correctness
	C.3 Automated Testing in HoRSt

