
A Quantitative Analysis of Security, Anonymity and Scalability
for the Lightning Network

Sergei Tikhomirov
University of Luxembourg

Esch-sur-Alzette, Luxembourg
sergey.s.tikhomirov@gmail.com

Pedro Moreno-Sanchez
TU Wien

Vienna, Austria
pedro.sanchez@tuwien.ac.at

Matteo Maffei
TU Wien

Vienna, Austria
matteo.maffei@tuwien.ac.at

Abstract—Payment channel networks have been introduced
to mitigate the scalability issues inherent to permissionless
decentralized cryptocurrencies such as Bitcoin. Launched
in 2018, the Lightning Network (LN) has been gaining
popularity and consists today of more than 5000 nodes
and 35000 payment channels that jointly hold 965 bitcoins
(9.2M USD as of June 2020). This adoption has motivated
research from both academia and industry.

Payment channels suffer from security vulnerabilities,
such as the wormhole attack [39], anonymity issues [38],
and scalability limitations related to the upper bound on
the number of concurrent payments per channel [28], which
have been pointed out by the scientific community but never
quantitatively analyzed.

In this work, we first analyze the proneness of the LN
to the wormhole attack and attacks against anonymity. We
observe that an adversary needs to control only 2% of nodes
to learn sensitive payment information (e.g., sender, receiver,
and amount) or to carry out the wormhole attack. Second, we
study the management of concurrent payments in the LN
and quantify its negative effect on scalability. We observe
that for micropayments, the forwarding capability of up to
50% of channels is restricted to a value smaller than the
channel capacity. This phenomenon hinders scalability and
opens the door for denial-of-service attacks: we estimate that
a network-wide DoS attack costs within 1.6M USD, while
isolating the biggest community costs only 238k USD.

Our findings should prompt the LN community to con-
sider the issues studied in this work when educating users
about path selection algorithms, as well as to adopt multi-hop
payment protocols that provide stronger security, privacy
and scalability guarantees.

Index Terms—Bitcoin, Lightning Network, privacy, security,
anonymity, scalability

1. Introduction

Bitcoin [47] is the first cryptocurrency in market
capitalization and arguably the most widely deployed
one. However, the decentralized nature of its consensus
algorithm limits the transaction throughput to tens of
transactions per second [20], [31], hindering its capability
to cater for the growing number of users and transactions.

This issue has received prominent attention from both
academia and industry. Current efforts can be roughly
classified in two groups: (i) more efficient and scalable

consensus algorithms (on-chain scalability) and (ii) pro-
tocols aiming to process the bulk of transactions off-chain
resorting to on-chain transactions only to resolve disputes
(off-chain scalability). The latter approach is backwards
compatible, a crucial aspect for large scale adoption.

The Lightning Network [50] (LN), the focus of this
work, is an off-chain scalability solution in the form of a
payment channel network. A payment channel allows two
users to perform off-chain payments, using the blockchain
only to open a channel and to close it (either collabora-
tively or through a dispute resolution mechanism). The
cost of creating a payment channel prevents a user from
creating a channel with every other user in the network.
Instead, a user only opens channels with a few others,
leveraging paths of payment channels to carry out trans-
actions with users who are not directly connected.

While the LN has the potential to deliver a large
throughput given that transactions are not stored on-chain,
the number of in-flight transactions per channel is limited.
Otherwise peers would not be able to close the channel,
as the resulting transaction would exceed the size limit for
an on-chain transaction. The LN community [28] observed
that this could limit the network throughput more than its
capacity and lead to DoS attacks, but the impact of this
limitation has never been evaluated in practice.

The LN (and off-chain protocols in general) was
initially proposed not only for scalability but also as a
mitigation of privacy concerns. Unlike on-chain transac-
tions, which are stored in a publicly accessible blockchain
database (and are hence available for data analysis),
LN transactions are neither globally shared nor publicly
stored. However, recent work has shown that LN’s security
and privacy guarantees can be undermined by on-path
attackers. Specifically, Malavolta et al. [39] described
the wormhole attack where on-path adversaries prevent
honest intermediaries from participating in the successful
completion of a payment and steal the transaction fees
originally intended for them. Another work [38] showed
that sender and receiver anonymity, as well as the confi-
dentiality of transaction values, can be easily broken by
observing the message payload.

These works describe the possibility of security and
privacy attacks but lack a quantitative analysis to deter-
mine their likelihood and severity in the current LN. Given
that, in this work we answer the following question:

What is the quantitative impact of the aforemen-
tioned scalability, security, and privacy limita-
tions in the current Lightning Network?

387

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2020, Sergei Tikhomirov. Under license to IEEE.
DOI 10.1109/EuroSPW51379.2020.00059

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

1.1. Contributions

We answer the question above through a systematic
evaluation of the LN based on a recent network snapshot.

First, we assess the vulnerability of the LN to the
wormhole attack as well as attacks against value privacy
(the attacker estimates the payment amount) and rela-
tionship anonymity (the attacker learns the pair sender-
receiver for a given payment). We show that the network is
vulnerable if the attacker compromises a moderate number
of highly connected nodes. For instance, with selected 100
compromised nodes (less than 2% of the total number of
nodes), nearly all paths are prone to value privacy attacks,
around 70% are prone to anonymity attacks, and around
30% are prone to the wormhole attack. As a countermea-
sure, we propose path selection policies to defend against
these attacks, though a fundamental tradeoff is present: a
high payment success rate involves reliance on large hubs,
which may become honeypots or collude to deanonymize
users.

Second, we study the effect that the limited number of
concurrent channel updates has on the utility and security
of the LN. In particular, we show that for an average
transaction amount of 550 satoshis (0.05 USD) this limita-
tion reduces LN performance by 80%, with 50% of chan-
nels being limited by the number of in-flight payments
rather than capacity. This effect is gradually decreasing
for transaction amounts up to around 0.25 USD. However,
micropayments where a few satoshis are transacted is one
of the most compelling use cases of the LN.

This limitation opens the door to DoS attacks. Our
empirical results show that an attacker can block a channel
by investing only 527k satoshis (around 50 USD) and
the complete Lightning Network with a cost of 164 BTC
(1.6M USD). The attack cost can be significantly reduced
by targeting channels with high capacity and connectiv-
ity, as well as channels between communities – highly
connected network subgraphs. For instance, by blocking
selected channels representing 13% of the total node count
(which would cost around 238k USD), the attacker can cut
off the largest community from the rest of the network.

We suggest using cryptographic techniques such as
anonymous multi-hop locks (AMHL) [39] to improve
upon this limitation of the Lightning Network.

The rest of this paper is organized as follows. We
present the required background in Section 2. We describe
the datasets we use for this study in Section 3. We evaluate
the proneness of LN to security and anonymity attacks
in Section 4. We study the effect of the limit on concurrent
LN channel updates in Section 5. We review the related
work in Section 6 and conclude in Section 7.

2. Background

The Lightning Network (LN) has emerged as the alter-
native to the scalability issue of Bitcoin with the highest
adoption in practice [21]. As of June 2020, LN facilitates
the off-chain exchange of over 900 BTC. The principles
of the LN can be used to improve the scalability of other
cryptocurrencies. For instance, similar networks operate
with Litecoin [15] and Ethereum [8]. In this section, we
introduce the basic notions of the LN and refer the reader
to [33] for further reading.

LN nodes. A node in the LN is governed by a pair
of signing and verification keys from the ECDSA sig-
nature scheme, and identified by the hashed value of
the verification key. Additionally, the owner can assign
a handcrafted identifier (alias) to their node. Operations
from a node are authorized with a digital signature created
with the corresponding signing key. Thus, whoever holds
the signing key is the owner of a node. One user can
potentially own several nodes.

LN channels. An LN channel (i.e., an edge) is jointly
controlled by the two counterparties. Its capacity is deter-
mined by the amount of coins initially deposited. While
the total capacity of the channel stays constant during its
lifetime, the balance of each counterparty varies according
to two operations: (i) single channel updates, where the
two users agree on an updated balance; and (ii) multi-
hop transactions, where the balance of several channels
forming a path are simultaneously updated.

LN transactions. A multi-hop transaction (or simply a
transaction hereby) leverages a path of channels between
a sender and a receiver (who might not share a channel
between them). A transaction must ensure the atomicity
of the transfer: either all balances along the path are
updated or none of them are. For that, the LN relies on
Hash Time-Lock Contracts (HTLCs), excerpts from the
Bitcoin’s scripting language that permit a node (u1) to
lock x coins in a channel between two nodes (u1 and u2)
and release them according to the encoded conditions. The
terms for the HTLC(u1, u2, y, x, t) are defined with a hash
value y := H(r), where r is chosen uniformly at random,
an amount x of coins, and a timeout t, as follows: (i) If
u2 reveals a value r such that H(r) = y before t expires,
u1 pays x to u2; (ii) if t expires, u1 receives x back.

LN relies on HTLCs to enable multi-hop transactions.
All HTLCs along the path use the same hash value
y = H(r) aiming to achieve atomicity expecting that none
of the intermediate balances can be updated before the re-
ceiver reveals r, and all of them can be updated after that.
An illustrative example of an HTLC-based transaction is
depicted in Figure 1. Here, the user u1 transfers 1 bitcoin
to u5 using u2, u3 and u4 as intermediaries. For that, u5

locally chooses a value r uniformly at random, computes
the cryptographic challenge for the HTLC as y := H(r),
and sends y to the sender (step 1). The message encoding
y is called an invoice. Then, the payment starts with
a commit phase (steps 2-5) where every pair of nodes,
starting from the sender, establishes an HTLC using y.
After the commit phase is finished, the transaction enters
the release phase. Here, the receiver reveals r to u4 to
fulfill the contract (step 6), triggering thereby the release
phase where every pair of nodes fulfills their contract from
the receiver to the sender (steps 6-9).

It is important to note two aspects here. First, every
intermediary user charges a fee for the forwarding service
provided. For instance, u2 receives 1.3 coins but only
forwards 1.2 coins, getting a fee of 0.1 coins. Second,
the time parameter of the contracts throughout the path is
decreasing to ensure that no user loses coins. For instance,
the HTLC between u1 and u2 sets a timeout of four days
whereas the timeout in the HTLC between u2 and u3 is
only three days. This facilitates that u2 has enough time
to settle the contract with u1 after receiving r from u3.

388

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

9. r
u2

4. HTLC(u3, u4, y, 1.1, 2)

8. r
u3 7. r

5. HTLC(u4, u5, y, 1, 1)
u4

6. r

1. y := H(r)

u5

Figure 1. An HTLC-based payment in the LN. The node u1 pays u5 using u2, u3 and u4 as intermediaries. Here we assume that each node charges
a fee of 0.1 and time is measured in days.

Figure 2. Node degree distribution.

LN implementations. The development of the LN, which
was originally introduced in [50], is guided by a set of
request for comments (RFC) documents called ”Basics
of Lightning Technology” or BOLTs [12], which are then
followed by several implementation teams. The three most
advanced implementations available today are LND [6],
c-lightning [3], and Eclair [1]. Additionally, there exist
implementations at earlier stages of development: Elec-
trum [26], [27], lit [5], lpd [36], ptarmigan [2], and rust-
lightning [9]. Our analysis is concerned with the definition
of the LN as described in the BOLTs and thus the results
apply equally to every implementation.

3. Datasets

We obtained a snapshot of LN on 2020-02-25
from [30] and parsed with the code in [59]. This snapshot
consists of 5929 nodes and 35233 channels. We model this
data as an undirected multi-graph (i.e., may contain multi-
ple edges between each pair of nodes), as several channels
can be shared by two LN nodes. We only considered the
largest connected component, which contains 5862 nodes
(98.87%) and 35196 channels (99.89%). We observe that
this subgraph contains a representative sample of the LN.
We refer to this dataset as LN20.

Based on LN20, LN nodes have an average degree of
12.01 and a median degree of 3 (see Figures 2 and 3).
The majority of nodes have very few channels, whereas
there is a small number of nodes with many channels. In
particular, there are more than 1744 nodes with degree
1, and the most connected node has 1198 channels. The
capacity is also unequally distributed. These observations
motivate the methodology in our experiments in Section 4.

We also derive a series of historic snapshots which
represent the state of LN on the first day of each month
from April 2018 to February 2020. We refer to this dataset
as LNHist and use it in our experiments in Section 5.

Ethical considerations. Our analysis is based solely on
publicly available data. All our calculations are based on
a local representation of the LN network graph obtained
from [30], without connecting to LN nodes. We do not
interfere with the LN activity, nor deanonymize any node.

Figure 3. Channel capacity distribution.

4. Security and privacy: theory and practice

As introduced in Section 2, the LN builds upon
Hash Time-Lock Contracts aiming to achieve atomicity in
multi-hop payments. However, [39] argues that due to the
wormhole attack atomicity does not hold in LN. Another
LN study [38] shows that privacy of LN users and their
transactions can be breached. While the aforementioned
works demonstrate the feasibility of these attacks, their
effectiveness in practice depends, among other factors, on
the topology of the LN. In this experiment, we aim to
identify the impact of these security and privacy issues in
our snapshot of the LN.

4.1. Security and privacy attacks: background

Value privacy [38]. Intuitively, value privacy ensures that
for a transaction involving only honest users, corrupted
users outside of the path learn no information about the
transaction value. This notion thus heavily relies on the ex-
istence of paths without adversarial nodes. Otherwise, an
adversarial intermediary node can trivially learn the (upper
bound of the) amount of a transaction that it forwards. For
instance, in Figure 4 the adversary u3 forwards 1.2 coins
to u4, estimating the transaction amount at around 1 coin
plus forwarding fees.

Relationship anonymity [38]. Intuitively, relationship
anonymity ensures that given two simultaneous transac-
tions between two pairs of nodes (u1, u2) and (u′

1, u
′
2)

routed through the same path of intermediary users
i1, . . . , in, the adversary controlling some of those in-
termediaries cannot tell who is paying to whom with
probability better than 1/2. However, this is not achieved
in the LN. An adversary controlling i1 and in can use
the cryptographic challenge included in the HTLC to
determine who pays to whom. For instance, in Figure 4
the adversary controlling u2 and u4 can determine that u1

is transacting with u5 as the same value y is used along
the whole path. Similarly, u2 and u4 can determine that
u′
1 is transacting with u′

5 as the same y′ is being used
along the path.

389

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

9. r
u2

4. HTLC(u3, u4, y, 1.1, 2)

8. r
u3 7. r

5. HTLC(u4, u5, y, 1, 1)
u4

6. r

1. y := H(r)

u5

Transaction
amount is 1

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

3'. HTLC(u2, u3, y', 1.2, 3)
u2

4. HTLC(u3, u4, y, 1.1, 2)

4'. HTLC(u3, u4, y', 1.1, 2)
u3 u4

5. HTLC(u4, u5, y, 1, 1)
u5

2'. HTLC(u1, u2, y', 1.3, 4)

u'1
5'. HTLC(u4, u'5, y', 1, 1)

u'5

u1 pays u5. They
use same y

u1 pays u5. They
use same y

2. HTLC(u1, u2, y, 1.3, 4)u1
3. HTLC(u2, u3, y, 1.2, 3)

8. r
u2

4. HTLC(u3, u4, y, 1.1, 2)
u3

5. HTLC(u4, u5, y, 1, 1)

7. r

u4
6. r

1. y := H(r)

u5

HTLC with u2
and u3 expire

Get 1.3 Pay 1

Figure 4. An illustrative example of value privacy (top), relationship anonymity (middle), and the wormhole attack (bottom).

The wormhole attack [39]. In the wormhole attack,
two colluding nodes in a transaction path prevent honest
intermediaries from participating in the successful com-
pletion of the payment, stealing the fees initially intended
for honest intermediaries. An example of the wormhole
attack is depicted in Figure 4. Here, u4 does not send the
opening value r to u3 (step 7 in Figure 1) to fulfill the
HTLC previously set in this channel. Instead, u4 sends
the value r to u2 outside of the LN protocol, which
allows u2 to settle the HTLC with u1. As a consequence,
contracts with u3 expire, simulating transaction failure
and preventing u3 from participating in the successful
completion of the transaction. Note that the funds in u3’s
channel are temporarily blocked, which effectively leads
to a denial-of-service attack over that channel. This attack
can be amplified if multiple honest intermediaries are
located between the colluding adversarial nodes.

4.2. Methodology

In this section, we describe how we study the prone-
ness of the LN to attacks with respect to the value privacy,
relationship anonymity, and wormhole attack scenarios.

We first compute the paths between pairs of nodes.
Given a pair of nodes u1 and u2, we compute the list of
paths that connect them with one restriction: we consider
only the paths with at most three intermediary nodes.
We observe that paths of this length suffice to allow
more than 85% of transactions between a random pair
of nodes (Figure 5). We also note that these paths allow
us to exemplify all attacks that we want to study in this
experiment. We note that considering longer paths would
only increase the absolute number of paths considered.
We leave a more exhaustive study for future work.

Let paths〈u1,u2〉 be the set of paths between u1 and u2

thereby computed. We further prune the set paths〈u1,u2〉
into a subset paths〈u1,u2〉,x, containing only the paths

Figure 5. The share of experiment runs where paths with sufficient
capacity exist between sender and receiver.

that allow to transfer at least x satoshis. For instance,
paths〈u1,u2〉,10 contains the paths between u1 and u2

allowing to transfer at least 10 satoshis.
For a channel to be capable of transferring x satoshis

from ui to uj , ui must have a balance of at least x satoshis.
However, the current balance of each counterparty in a
channel is not publicly available. Thus, we consider a
path suitable for a given transaction if the total capac-
ity of every channel in the path is not lower than the
transaction amount, independently of how this capacity
is distributed among the two channel counterparties. This
heuristic might consider a path suitable for a transaction
while it is not. We nevertheless follow this heuristic as it
is also used in practice by LN nodes when selecting paths
to perform payments.

As the next step, we study the effectiveness of
the selected attack. For a chosen transaction amount
x, we split the set paths〈u1,u2〉,x into two subsets: (i)
paths-prone〈u1,u2〉,x: The subset of paths that are prone
to the attack; (ii) paths-safe〈u1,u2〉,x: The subset of paths
that are not susceptible to being attacked. The definition
of a path of the form u1 → i1 → . . . → in → u2 being
prone to the specific attack depends on the type of the
attack as described as follows:

390

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

• Value privacy: We say that a path is prone to the
value privacy attack if any of the intermediary nodes is
under adversarial control.

• Relationship anonymity: We say that a path is prone
to the relationship anonymity attack if nodes i1 and in are
under adversarial control.

• Wormhole attack: We say that a path is prone to
the wormhole attack if there exist two non-neighboring
intermediary nodes ij and ik that are under adversarial
control (i.e., j < k and k �= j + 1).

We remark that there exist a difference in the definition
of a prone path in the wormhole attack and the relationship
anonymity attack. For the relationship anonymity attack
we do not require that there is an honest user between the
two adversarial nodes. For instance, a path of the form
u1 → i1 → i2 → u2 where i1 and i2 are under adversarial
control, would be considered prone to the relationship
anonymity attack but safe against the wormhole attack.

Another aspect that we consider is which nodes are
under adversarial control. We follow three strategies. First,
we assume that nodes with highest degree (i.e., highly
connected nodes) are colluding to carry out an attack.
Highly connected nodes are interesting to study as they are
the ones with the highest stake in the network. Thus, an
adversary might attempt to corrupt them (e.g., by bribery
or stealing the private key) to maximize the effect of the
attack. Second, we assume that nodes with the highest
total capacity in their adjacent channels are corrupted.
Finally, we consider that random nodes in the network
are colluding to carry out an attack. We model here that
any node (independently of its node degree) might be
corrupted. For instance, the same user might create several
LN nodes and place them at strategic positions in the LN
to carry out the attacks we study here.

We refine our aforementioned path datasets to con-
sider these three attacks strategies. In particular, for each
number of malicious nodes (y) and each strategy, we
re-split the set paths-prone〈u1,u2〉,x between those prone
to the attack and those otherwise safe. For instance, we
denote by paths-prone〈u1,u2〉,x,y-con the subset of paths
between u1 and u2 that allow to transfer x satoshis and
that are prone to the attack if y nodes with the highest
node degree are corrupted. Correspondingly, we denote
by paths-prone〈u1,u2〉,x,y-ran the subset of paths between
u1 and u2 that allow to transfer x satoshis and that are
prone to the attack if y nodes chosen uniformly at random
are corrupted.

Finally, for each attack strategy, we consider

α〈ui,uj〉 :=
|paths-prone〈ui,uj〉,x,y|

|paths-prone〈ui,uj〉,x,y|+ |paths-safe〈ui,uj〉,x,y|
the probability that a transaction between ui and uj is
vulnerable to the attack. Averaging across all the pairs
of nodes tested, we extract the final probabilities reported
in Figure 6.

4.3. Results and discussion

In this section, we present the results shown in Fig-
ure 6 and discuss their implications.

For every attack and a given number of compromised
nodes, the share of prone paths is relatively stable for all

payment amounts. This indicates that the payment amount
does not significantly affect the security of payments.

The three attacks differ in how quickly the share
of prone paths changes as the number of compromised
nodes increases. For value privacy, the effect of additional
highly-connected nodes being compromised is the most
profound: the share of prone paths is 50% if only the
5 most connected nodes are compromised and nearly
100% if the 100 most connected nodes are compromised.
We conclude thus that an adversary needs to corrupt only
2% of the nodes to (almost) completely nullify any value
privacy guarantee in the LN.

We observe that the average share of prone paths
decreases for relationship anonymity. Yet, the adversary
controlling the 100 most connected nodes can launch
the relationship anonymity attack on about 70% of the
paths. Interestingly, the adversary has fewer possibilities
to launch the wormhole attack. For instance, even with
100 most connected nodes corrupted, around 30% of the
paths are prone to the attack. While this is still a crucial
security issue, this reduction in the effectiveness of the
attack may be explained by the fact that the wormhole
attack is the most restrictive on path structure, and thus it
has the lowest share of vulnerable paths.

Increasing the number of compromised nodes results
in fewer vulnerable paths if compromised nodes are those
with the channels holding the highest capacity, as opposed
to highest degree nodes. This distinction is most pro-
found for relationship anonymity, e.g., there are around
50% for 50 highest degree corrupted nodes, but only
around 25% vulnerable paths for 50 highest capacity
corrupted nodes. This may be explained by the fact that
routing algorithms optimize for low path length. Note that
capacity of forwarding channels is not as important as
good connectivity, especially for payments of small and
medium amounts.

Finally, we consider random nodes compromised in-
stead of the most connected nodes. In contrast to the
previous results, we observe that less than 10% of paths
are prone to value privacy and nearly no path is prone to
relationship anonymity and wormhole attack. We conjec-
ture that this is because randomly selected nodes have few
connections (note the degree distribution in Figure 2), and
thus their compromise does not affect routing at large.

In summary, the results of this experiment show that
highly connected nodes and nodes with high capacity
links have a high impact on the security and privacy of
the LN. Assuming that paths are selected uniformly at
random from the set of available paths, an adversary that
selectively corrupts 100 (i.e., only 2%) of LN nodes can
effectively learn all the transaction values, the sender and
the receiver for the vast majority of transactions, as well as
carry out the wormhole attack in about 30% of the paths.
This shows that the security and privacy attacks shown in
theory are indeed crucial in practice.

Carrying out such an attack might not be infeasible in
the live network. We note that a large number of highly
connected LN nodes is controlled by an unknown entity
under the pseudonym LNBIG. It controls 23 out of top 50
highest connected nodes [14] and 40% of the network
capacity [17].

391

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Share of vulnerable paths for each attack, considering that highest degree nodes are compromised (top), highest capacity nodes are
compromised (middle), or random nodes are compromised (bottom).

4.4. Countermeasures

We assume in our study that every two nodes carry out
their transactions along a subset of paths chosen uniformly
at random from the set of all available paths between
them. However, LN nodes might implement different rout-
ing strategies. For instance, while routing through well-
connected nodes improves the chances to reach the re-
ceiver through a short, highly liquid path, the sender might
connect to low degree nodes. This would make the node
degree distribution more even at the cost of connectivity
and reduce the probability of choosing paths prone to the
attacks studied in this experiment. We envision thus that
there is a tradeoff between connectivity on the one hand
and security and privacy on the other, which constitutes a
venue for future work. A node may also route transactions
through a trusted proxy node, thus guaranteeing that the
first node in a path is not compromised. This would
mitigate the relationship anonymity and wormhole attacks
(if the total path length is bounded to contain at most three
intermediaries). As the LN protocol is still evolving, the
results of the experiments presented in this section should
be considered for the next design decisions.

Routing protocols for the LN is an active research
area [16], [32], [37], [48], [49], [51], [54], [56], [61]–[63].
Our results suggest that, although largely omitted so far,
the security and privacy attacks here studied are a crucial
variable to consider when designing routing protocols.

5. HTLC limit in the Lightning Network

In this section, we describe a limitation in the LN
design stemming from the way it manages concurrent

payments. A payment channel, even with sufficient ca-
pacity, can hold only a certain number of concurrent pay-
ments (governed by HTLCs), leading to capacity under-
utilization. We study the effect of this limitation. First,
we evaluate how the number of concurrent payments
in LN is mainly bounded by the number of concurrent
HTLCs allowed at each channel. Second, we show how a
malicious node can abuse this limitation to isolate parts of
the network, which ultimately results in a network-wide
DoS attack. We provide estimates for the cost of such an
attack, showing that it is within range for a moderately
resourceful attacker. We finally discuss countermeasures.

5.1. Background

Bitcoin Core, the reference Bitcoin implementation,
imposes a 100 KB transaction size limit [4], [7]. An
LN channel cannot contain more than 966 unsettled
HTLCs [10]. This limit ensures that both counterparties
can close the channel using one standard Bitcoin transac-
tion. We refer to this limitation as the HTLC limit.

Despite the perceived focus on micropayments, LN
does not fully support transactions of very small value. Ev-
ery HTLC makes the potential closing transaction larger,
and the on-chain fees higher. Redeeming very small out-
puts on-chain can be more expensive than their value.
Therefore BOLT specifications prescribe that nodes ne-
gotiate the dust limit before opening a channel, and do
not create HTLCs for payments below this limit (see
trimmed HTLCs [13]). Out of the three most popular LN
implementations, c-lightning and Eclair use the default
dust limit of 546 satoshis. LND estimates the dust limit
dynamically. We thus assume 546 satoshis as dust limit.

392

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

5.2. The HTLC limit effect on LN scalability

In this section, we estimate the effect of the HTLC
limit on the number of concurrent channel updates.

Let D be the dust limit. We only consider amounts
higher than D. Let C be the total network capacity (i.e.,
the sum of the individual capacities of all channels). Let
aavg be the average transaction amount. Then, we say that
the limit on concurrent updates based solely on capacity
is defined as ucap := C/aavg. In contrast, the limit on
concurrent updates considering the HTLC limit is uHTLC =
N ∗ 966, where N is the number of channels. We remark
here that uHTLC does not depend on transaction amounts.

Given those two values, we define the effective update
rate ureff as the ratio between the actual limit on concur-
rent transactions when considering the HTLC limit and
the theoretical limit based solely on capacity:

ureff =
min(ucap, uHTLC)

ucap

Note that the effective update rate ureff depends on the
average transaction amount, as shown in Figure 7. Starting
from D, there is a gap between the effective number
of concurrent updates and what could be theoretically
possible in the absence of the HTLC limit. We observe
that 2677 satoshis (0.25 USD) is the borderline amount:
for higher average transaction amounts, the limiting factor
for the number of concurrent channel updates is channel
capacity. For amounts between D and 2677 satoshis, the
limiting factor is the HTLC limit.

Affected channels. The ureff is an aggregated measure-
ment that does not shed light on how the issue affects
individual channels. Given that, we now study how many
channels are affected by the HTLC limit. The number
of affected channels depends on the average transaction
amount aavg. For high values of aavg, it is more likely
that the effective update rate of a channel is limited by
its capacity, whereas the HTLC limit would determine
the update rate cap for small values of aavg. We quantify
this as follows. Given a fixed average transaction amount
aavg, we consider a channel affected by the HTLC limit
if uHTLC,aavg < ucap,aavg , i.e, ueff,aavg < 100% (Figure 8).

The effect of the HTLC limit over time. We study the
effect of the HTLC limit on the LN using our historical
snapshots LNHist. For each monthly snapshot and four
assumed average transaction amounts, we calculate the
share of channels affected by the HTLC limit (Figure 9).
As expected, the HTLC limit becomes a more pressing
issue with smaller transaction amounts, if they are higher

Figure 7. Ratio between the current limit on concurrent channel updates
and the theoretically possible capacity-based limit.

Figure 8. Share of channels affected by the HTLC limit for different
transaction amounts.

Figure 9. Historic share of HTLC-limited channels.

than the dust limit. We also observe that the share of
affected channels has been increasing in the early months
of LN and has remained stable since mid-2019.

We finally study how the borderline amount has
changed over time. As Figure 10 shows, the HTLC
limit finds its inflexion point in transaction amount at
approximately 2500 satoshis, with the borderline amount
stabilizing in mid-2019, after the initial growth.

5.3. Depleting the Lightning Network

The HTLC limit opens up the possibility of a network-
wide DoS attack. An adversary connects to both end-
points of the target channel and forwards multiple small
payments to itself, but does not finalize them. After
966 HTLCs are added, the channel loses its ability to
forward payments, until some HTLCs expire. The attacker
can thereby deplete a channel, making it unusable.

The cost for this attack depends on the minimum
transaction amount. We assume it equal to the dust limit
of 546 satoshis (the default value in 2 out of 3 major
implementations).

We calculate the total capital requirements for an at-
tacker to block the complete LN. To block all 31084 chan-
nels, the attacker would send, in the worst case, 966 trans-
actions of 546 satoshis to each channel. This brings the

Figure 10. Historic borderline amounts.

393

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

Figure 11. Effectiveness of targeting highest-capacity channels.

total capital requirements to approximately 163.9482 BTC
(1.56M USD).

Each HTLC defines a timeout, after which the funds
are returned to the sender, if the receiver provides no
preimage. From our dataset, we see that HTLC timeouts
are long: 75.44 blocks on average. At a block creation
rate of 10 minutes per block, this implies that an average
HTLC can block the capacity for around 12 hours. This
implies that the attacker can render channels useless for
around 12 hours using the same HTLC parameters as
regular LN users. While this rough upper bound estimate
suggests a rather high attack cost, the following optimiza-
tions make it more affordable.

Targeting highest-capacity channels. The attack impact
can be maximized by targeting highest-capacity channels.
For example, it requires 0.05 BTC to block 10 top chan-
nels with combined capacity of 17.91 BTC (Figure 11).

Real HTLC limit. Our calculations above are based
on the maximum number of concurrent HTLCs (483)
as defined by BOLT specifications. LN implementations
may choose lower default values for this parameter. In
particular, Eclair and c-lightning enforce a lower default
HTLC limit (30). This means that in the real network
the attacker needs to create fewer HTLCs to block chan-
nels between c-lightning and Eclair nodes as opposed
to theoretical calculations and LND nodes (which by
default support 483 concurrent HTLCs per channel). LND
makes up 91% of the nodes in the network, and Eclair is
another 1% [41]. That brings real average HTLC limit to
442.23 and lowers the attack cost by 8.44%.

Multi-hop transactions. The estimation above assumes
single-hop transactions. An attacker can leverage multi-
hop transactions to multiply the effect of the committed
capital, connecting to both ends of a 20-hop [11] pay-
ment path and performing a payment to itself that never
gets completed. This is similar to capacity-based griefing
attacks [34], but with much lower capital requirements.

Optimizing the attack based on communities. The
attacker may wish to prevent different parts of the network
from transacting to each other. To evaluate this possibility,
we first divide the network into communities using the
Clauset-Newman-Moore greedy modularity maximization
algorithm [18]. Then we consider a scenario where the
attacker tries to block the channels that connect com-
munities rather than channels within communities. For a
chosen number N of the largest communities, we calculate
how many channels the attacker has to block to split
the network into at least N + 1 parts: the N largest
communities and the rest of the network (Figure 12). We

Figure 12. Number of channels to cut to isolate the largest communities.

observe, e.g., that the attacker needs to block 4670 chan-
nels (13% of all channels) to isolate the largest commu-
nity from the rest of the network, locking up 25 BTC
(238k USD) – or just around 2.8% of the total LN
capacity.

5.4. Discussion

Our simplistic model does not fully reflect all the
details of transaction handling. In particular, we do not
account for the fact that transactions take multiple hops
(and multiple failed paths) before succeeding, nor do
we reflect the unequal forwarding ability of a unit of
capacity at a well-connected node, as opposed to a poorly
connected one. We also do not account for non-public
channels, which may account for 28% of all channels [53].
Yet, our approach allows us to calculate the effect of the
HTLC limit, as both estimations (capacity-based limit and
HTLC limit) are calculated under the same assumptions.
Our estimation shows that the HTLC limit reduces the
number of concurrent channel updates for payments under
certain average transaction amount.

The fact that the HTLC limit manifests itself at
low transaction amounts negatively affects scalability and
some of the potential LN applications, such as paying
for online content [50], which involve transactions with
small amounts. Our calculations show that for payments
of 1000 satoshis (0.095 USD), the network-wide rate of
concurrent channel updates is 60% lower than it could
have been based solely on capacity limitations.

The low value for the default minimum transaction
amount and the reduced number of in-flight transactions
open a DoS attack vector with a moderate cost for the
adversary. Note that the capital in the attacker’s channels
will be recouped after the HTLCs time out. Moreover,
the unequal distribution of connectivity in the current LN
paves the way for optimized attacks where the attacker
focuses on high-capacity or inter-community channels to
disrupt the seamless transfer of value across the network.

5.5. Countermeasures

One of the limiting factors for transaction throughput
is the total available capacity. This limitation is overcome
by opening new channels, a countermeasure that will be
naturally implemented with the growing LN adoption. The
issue of the HTLC limit is more challenging as it comes
from the limitations of the Bitcoin and Lightning pro-
tocols themselves. Therefore, more fundamental changes
are needed to reduce the information required to carry

394

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

out the functionality encoded in HTLCs. One countermea-
sure involves replacing HTLC with AMHL [39]. While
an HTLC requires including a digital signature, a hash
value and a timelock, an AMHL contract only requires a
digital signature and a timelock while providing the same
functionality.

This countermeasure would reduce the number of
bytes required per in-flight transaction and increase the
number of payments handled concurrently. While not
removing the limitation on the number of concurrent trans-
actions, this countermeasure raises this limit, reducing its
negative effect on LN scalability.

6. Related work

Multiple research works have shed light on various as-
pects of payment-channel networks, such as security [35],
[39], [42], privacy [34], [38], [45], [46], concurrency [38],
routing [37], [51], [54], [56], liquidity [23], [43], effi-
ciency [24], [25], [57], interoperability [44] and incentive
compatibility [29]. Most of these works lack a quantitative
analysis of the impact of their findings in the current LN.

A group of papers more closely related to ours con-
veys experimental analyses of various aspects of the LN.
Herrera-Joancomartı́ et al. [34] describe an adversarial
strategy to determine the current balance of a channel in
the network. Tang et al. [58] study the tradeoffs between
balance privacy and routing effectiveness. Martinazzi [40]
and Seres et al. [55] study the evolution of topological
aspects of the LN graph. Conoscenti et al. [19] study the
dependency of the LN on payment hubs and the rebal-
ancing mechanisms that ameliorate the effect of depleted
channels. Tochner et al. [60] analyze a DoS attack vector
based on route hijacking. Pérez-Solà et al. [52] introduce
the LockDown attack where the adversary prevents an
LN node from transacting by depleting the capacity in all
its channels. In comparison, our HTLC depletion attack
achieves the same result (a victim node can not forward
payments), but exploits the HTLC limit at each channel
rather than its capacity. Finally, concurrently to our re-
search, Mizrahi and Zohar [41] study the HTLC limit and
its effects. Their work, however, does not account for the
way LN handles payments below the dust limit.

7. Conclusions

The Lightning Network (LN) has emerged as the most
widely deployed solution for the scalability issue affecting
current blockchains such as Bitcoin. Despite its conceptual
appeal and growing adoption, several works [38], [39]
have identified security, anonymity and scalability limi-
tations. A quantitative analysis of their impact, however,
is missing and this paper aims at filling this gap.

We quantitatively study for the first time the proneness
of the current Lightning Network to the wormhole attack
as well as attacks against value privacy and relationship
anonymity. We observe that a moderately resourceful ad-
versary controlling only 2% of the total node count can
carry out these attacks with high success probability.

We also quantitatively analyze the negative effect on
scalability produced by the limit on concurrent payments
in the LN. We calculate that the limited concurrency in the

LN implies that an adversary can block the complete LN
investing around 1.6M USD (18.5% of the network capac-
ity), and this cost can be substantially reduced by targeting
highly valuable channels (e.g., high-capacity channels or
those connecting the biggest communities in the network).

Acknowledgments. This work was partly supported by
by the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research (grant agreement
No 771527-BROWSEC), by PROFET (grant agreement
P31621), by the Austrian Research Promotion Agency
through the Bridge-1 project PR4DLT (grant agreement
13808694); by COMET K1 SBA, ABC, by Chaincode
Labs and by the Austrian Science Fund (FWF) through
the Meitner program (project agreement M 2608-G27).

References

[1] 2017. https://github.com/ACINQ/eclair.

[2] 2017. https://github.com/nayutaco/ptarmigan.

[3] c-lightning, 2017. https://github.com/ElementsProject/lightning.

[4] How is a ”standard” bitcoin transaction defined?, 2017. https://
bitcoin.stackexchange.com/q/52528/31712.

[5] lit, 2017. https://github.com/mit-dci/lit.

[6] Lnd, 2017. https://github.com/lightningnetwork/lnd.

[7] Max standard tx weight, 2017. https://github.com/bitcoin/bitcoin/
blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/
policy.h#L24.

[8] Raiden network: high speed asset transfers for Ethereum, 2017.
http://raiden.network/.

[9] Rust-lightning, 2017. https://github.com/rust-bitcoin/rust-lightning.

[10] Bolt 2: Peer protocol for channel management, 2019.
https://github.com/lightningnetwork/lightning-rfc/blob/
78bc516f96efd7e0f8734e73e171dff57005f6bf/02-peer-protocol.
md#rationale-7.

[11] Bolt 4: Onion routing protocol, 2019. https://github.com/
lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md.

[12] Lightning network specifications, 2019. https://github.com/
lightningnetwork/lightning-rfc.

[13] Bolt3 - trimmed outputs, 2020. https:
//github.com/lightningnetwork/lightning-rfc/blob/
dcbf8583976df087c79c3ce0b535311212e6812d/03-transactions.
md#trimmed-outputs.

[14] 1ML. Lightning nodes - top channel count, 2019. https://1ml.com/
node?order=channelcount.

[15] 1ML. Litecoin Lightning network, 2019. https://1ml.com/litecoin/.

[16] Vivek Kumar Bagaria, Joachim Neu, and David Tse. Boomerang:
Redundancy improves latency and throughput in payment net-
works. CoRR, abs/1910.01834, 2019.

[17] The Block. Person behind 40% of LN’s capacity: ”i have no doubt
in bitcoin and the lightning network”, 2019. https://bit.ly/39dDpbF.

[18] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding
community structure in very large networks. Physical review E,
70(6):066111, 2004.

[19] Marco Conoscenti, Antonio Vetrò, and Juan Carlos De Martin.
Hubs, rebalancing and service providers in the lightning network.
IEEE Access, 7:132828–132840, 2019.

[20] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari
Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi,
Emin Gün Sirer, et al. On scaling decentralized blockchains. In
Financial Cryptography and Data Security, pages 106–125, 2016.

[21] Leigh Cuen. Lightning labs launches beta with
twitter ceo backing, 2019. https://www.coindesk.com/
a-version-of-bitcoins-lightning-network-is-ready-for-real-money.

395

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

[22] Coin Dance. Bitcoin nodes summary, 2019. https://coin.dance/
nodes.

[23] Pranav Dandekar, Ashish Goel, Ramesh Govindan, and Ian Post.
Liquidity in credit networks: a little trust goes a long way. In
Conference on Electronic Commerce (EC), pages 147–156, 2011.

[24] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. el-
too: A simple layer2 protocol for bitcoin. White paper:
https://blockstream. com/eltoo. pdf, 2018.

[25] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei.
Atomic multi-channel updates with constant collateral in bitcoin-
compatible payment-channel networks. In Conference on Com-
puter and Communications Security, CCS, pages 801–815, 2019.

[26] Electrum, 2019. https://electrum.org/.

[27] Electrum. The next release of electrum will support light-
ning payments, 2019. https://twitter.com/ElectrumWallet/status/
1183706431473815552.

[28] EmelyanenkoK. Payment channel congestion via spam-attack,
2017. https://github.com/lightningnetwork/lightning-rfc/issues/182.

[29] Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and
Christof Weinhardt. Towards an economic analysis of routing in
payment channel networks. In SERIAL@Middleware, pages 2:1–
2:6. ACM, 2017.

[30] fiatjaf. history of the open network, 2019. https://ln.bigsun.xyz/.

[31] Evangelos Georgiadis. How many transactions per second can
bitcoin really handle ? theoretically. Cryptology ePrint Archive,
Report 2019/416, 2019. https://eprint.iacr.org/2019/416.

[32] Cyril Grunspan and Ricardo Pérez-Marco. Ant routing algorithm
for the lightning network. CoRR, abs/1807.00151, 2018.

[33] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick
McCorry, and Arthur Gervais. Sok: Off the chain transactions.
Cryptology ePrint Archive, Report 2019/360, 2019. https://eprint.
iacr.org/2019/360.

[34] Jordi Herrera-Joancomartı́, Guillermo Navarro-Arribas, Alejan-
dro Ranchal Pedrosa, Cristina Pérez-Solà, and Joaquı́n Garcı́a-
Alfaro. On the difficulty of hiding the balance of lightning network
channels. In AsiaCCS, pages 602–612. ACM, 2019.

[35] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. A compos-
able security treatment of the lightning network. Cryptology ePrint
Archive, Report 2019/778, 2019. https://eprint.iacr.org/2019/778.

[36] lpd. Lightning peach node in rust, 2019. https://github.com/
LightningPeach/lpd.

[37] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo
Maffei. Silentwhispers: Enforcing security and privacy in decen-
tralized credit networks. In NDSS. The Internet Society, 2017.

[38] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo
Maffei, and Srivatsan Ravi. Concurrency and privacy with
payment-channel networks. In CCS, pages 455–471, 2017.

[39] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind,
Aniket Kate, and Matteo Maffei. Anonymous multi-hop locks for
blockchain scalability and interoperability. In NDSS, 2019.

[40] Stefano Martinazzi. The evolution of lightning network’s topology
during its first year and the influence over its core values. CoRR,
abs/1902.07307, 2019.

[41] Ayelet Mizrahi and Aviv Zohar. Congestion attacks in payment
channel networks. CoRR, abs/2002.06564, 2020.

[42] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim
Pecina. Privacy preserving payments in credit networks: Enabling
trust with privacy in online marketplaces. In Network and Dis-
tributed System Security Symposium, NDSS, 2015.

[43] Pedro Moreno-Sanchez, Navin Modi, Raghuvir Songhela, Aniket
Kate, and Sonia Fahmy. Mind your credit: Assessing the health of
the ripple credit network. In WWW, pages 329–338, 2018.

[44] Pedro Moreno-Sanchez, RandomRun, Duc Viet Le, Sarang
Noether, Brandon Goodell, and Aniket Kate. DLSAG: non-
interactive refund transactions for interoperable payment channels
in monero. IACR Cryptol. ePrint Arch., 2019:595, 2019.

[45] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. Pathshuffle:
Credit mixing and anonymous payments for ripple. PoPETs,
2017(3):110, 2017.

[46] Pedro Moreno-Sanchez, Muhammad Bilal Zafar, and Aniket Kate.
Listening to whispers of ripple: Linking wallets and deanonymizing
transactions in the ripple network. PoPETs, 2016(4):436–453,
2016.

[47] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[48] Olaoluwa Osuntokun. Amp: Atomic multi-path payments
over lightning, 2019. https://lists.linuxfoundation.org/pipermail/
lightning-dev/2018-February/000993.html.

[49] René Pickhardt. Just in time routing (jit-routing) and a channel
rebalancing heuristic as an add on for improved routing suc-
cess in bolt 1.0, 2019. https://lists.linuxfoundation.org/pipermail/
lightning-dev/2019-March/001891.html.

[50] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning network:
Scalable off-chain instant payments, 2016. http://lightning.network/
lightning-network-paper.pdf.

[51] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy,
and Olaoluwa Osuntokun. Flare: An approach to routing in
lightning network. 2016.

[52] Cristina Prez-Sol, Alejandro Ranchal-Pedrosa, Jordi Herrera-
Joancomart, Guillermo Navarro-Arribas, and Joaquin Garcia-
Alfaro. Lockdown: Balance availability attack against lightning
network channels. Cryptology ePrint Archive, Report 2019/1149,
2019. https://eprint.iacr.org/2019/1149.

[53] BitMEX Research. Lightning network (part 7) proportion
of public vs private channels, 2020. https://blog.bitmex.com/
lightning-network-part-7-proportion-of-public-vs-private-channels/.

[54] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Gold-
berg. Settling payments fast and private: Efficient decentralized
routing for path-based transactions. In NDSS, 2018.

[55] István András Seres, László Gulyás, Dániel A. Nagy, and Péter
Burcsi. Topological analysis of bitcoin’s lightning network. CoRR,
abs/1901.04972, 2019.

[56] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mo-
hammad Alizadeh, Giulia C. Fanti, and Pramod Viswanath. Rout-
ing cryptocurrency with the spider network. In HotNets, pages
29–35. ACM, 2018.

[57] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l:
Anonymous atomic locks for scalability and interoperability in
payment channel hubs. IACR Cryptol. ePrint Arch., 2019:589,
2019.

[58] Weizhao Tang, Weina Wang, Giulia C. Fanti, and Sewoong Oh.
Privacy-utility tradeoffs in routing cryptocurrency over payment
channel networks. CoRR, abs/1909.02717, 2019.

[59] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo Maffei.
Project accompanying website, 2019. https://sites.google.com/
view/lightning-privacy.

[60] Saar Tochner, Stefan Schmid, and Aviv Zohar. Hijacking routes
in payment channel networks: A predictability tradeoff. CoRR,
abs/1909.06890, 2019.

[61] ZmnSCPxj. Improving lightning network pathfinding latency
by path splicing and other real-time strategy game techniques,
2019. https://lists.linuxfoundation.org/pipermail/lightning-dev/
2019-August/002095.html.

[62] ZmnSCPxj. Outsourcing route computation with trampo-
line payments, 2019. https://lists.linuxfoundation.org/pipermail/
lightning-dev/2019-April/001950.html.

[63] ZmnSCPxj. Proposal: routetricks plugin, 2019. ZmnSCPxj.

396

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 02,2021 at 13:15:31 UTC from IEEE Xplore. Restrictions apply.

