
Bitcoin-Compatible Virtual Channels
Lukas Aumayr∗, Oğuzhan Ersoy†, Andreas Erwig‡, Sebastian Faust‡,

Kristina Hostáková§, Matteo Maffei∗, Pedro Moreno-Sanchez¶, Siavash Riahi‡
∗ TU Wien, {lukas.aumayr, matteo.maffei}@tuwien.ac.at

†TU Delft, o.ersoy@tudelft.nl
‡TU Darmstadt, {firstname.surname}@tu-darmstadt.de

§ETH Zürich, kristina.hostakova@inf.ethz.ch
¶IMDEA Software Institute, pedro.moreno@imdea.org

Abstract—Current permissionless cryptocurrencies such as
Bitcoin suffer from a limited transaction rate and slow confirma-
tion time, which hinders further adoption. Payment channels are
one of the most promising solutions to address these problems,
as they allow the parties of the channel to perform arbitrarily
many payments in a peer-to-peer fashion while uploading only
two transactions on the blockchain. This concept has been
generalized into payment channel networks where a path of
payment channels is used to settle the payment between two users
that might not share a direct channel between them. However,
this approach requires the active involvement of each user in the
path, making the system less reliable (they might be offline),
more expensive (they charge fees per payment), and slower
(intermediaries need to be actively involved in the payment).
To mitigate this issue, recent work has introduced the concept
of virtual channels (IEEE S&P’19), which involve intermediaries
only in the initial creation of a bridge between payer and payee,
who can later on independently perform arbitrarily many off-
chain transactions. Unfortunately, existing constructions are only
available for Ethereum, as they rely on its account model and
Turing-complete scripting language. The realization of virtual
channels in other blockchain technologies with limited scripting
capabilities, like Bitcoin, was so far considered an open challenge.

In this work, we present the first virtual channel protocols that
are built on the UTXO-model and require a scripting language
supporting only a digital signature scheme and a timelock func-
tionality, being thus backward compatible with virtually every
cryptocurrency, including Bitcoin. We formalize the security
properties of virtual channels as an ideal functionality in the
Universal Composability framework and prove that our protocol
constitutes a secure realization thereof. We have prototyped and
evaluated our protocol on the Bitcoin blockchain, demonstrating
its efficiency: for n sequential payments, they require an off-
chain exchange of 9+2n transactions or a total of 3524+695n
bytes, with no on-chain footprint in the optimistic case. This is
a substantial improvement compared to routing payments in a
payment channel network, which requires 8n transactions with
a total of 3026n bytes to be exchanged.

I. INTRODUCTION

Permissionless cryptocurrencies such as Bitcoin [24] have
spurred increasing interest over the last years, putting forward
a revolutionary, from both a technical and economical point
of view, payment paradigm. Instead of relying on a central
authority for transaction validation and accounting, Bitcoin
relies on its core on a decentralized consensus protocol for
these tasks. The consensus protocol establishes and maintains
a distributed ledger that tracks every transaction, thereby
enabling public verifiability. This approach, however, severely

limits the transaction throughput and confirmation time, which
in the case of Bitcoin is around ten transactions per second,
and confirmation of an individual transaction can take up
to 60 minutes. This is in stark contrast to central payment
providers that offer instantaneous transaction confirmation and
support orders of magnitude higher transaction throughput.
These scalability issues hinder permissionless cryptocurrencies
such as Bitcoin from serving a growing base of payments.

Within other research efforts [16, 31, 4], payment chan-
nels [7] have emerged as one of the most promising scalability
solutions. The most prominent example that is currently de-
ployed over Bitcoin is the so-called Lightning network [26],
which at the time of writing hosts deposits worth more
than 60M USD. A payment channel enables an arbitrary
number of payments between users while committing only
two transactions onto the blockchain. In a bit more detail,
a payment channel between Alice and Bob is first created
by a single on-chain transaction that deposits Bitcoins into a
multi-signature address controlled by both users. The parties
additionally ensure that they can get their Bitcoins back at a
mutually agreed expiration time. They can then pay to each
other (possibly many times) by exchanging authenticated off-
chain messages that represent an update of their share of coins
in the multi-signature address. The payment channel is finally
closed when a user submits the last authenticated distribution
of Bitcoins to the blockchain (or after the channel has expired).

Interestingly, it is possible to leverage a path of opened
payment channels from the sender to the receiver with enough
capacity to settle their payments off-chain, thereby creating a
payment channel network (PCN) [26, 22]. Assume that Alice
wants to pay Bob, and they do not have a payment channel
between each other but rather are connected through an inter-
mediary user Ingrid. Upon a successful off-chain update of the
payment channel between Alice and Ingrid, the latter would
update her payment channel with Bob to make the overall
transaction effective. The key challenge is how to perform
the sequence of updates atomically in order to prevent Ingrid
from stealing the money from Alice without paying Bob. The
standard technique for constructing PCNs requires the interme-
diary (e.g., Ingrid in the example from above) to be actively
involved in each payment. This has multiple disadvantages,
including (i) making the system less reliable (e.g., Ingrid might
have to go offline), (ii) increasing the latency of each payment,

(iii) augmenting its costs since each intermediary charges a fee
per transaction, and (iv) revealing possibly sensitive payment
information to the intermediaries [25, 29, 19].

An alternative approach for connecting multiple payment
channels was introduced by Dziembowski et al. [13]. They
propose the concept of virtual channels – an off-chain protocol
that enables direct off-chain transactions without the involve-
ment of the intermediary. Following our running example, a
virtual channel can be created between Alice and Bob using
their individual payment channels with Ingrid. Ingrid must
collaborate with Alice and Bob only to create such virtual
channel, which can then be used by Alice and Bob to perform
arbitrarily many off-chain payments without involving Ingrid.
Virtual channels offer strong security guarantees: each user
does not lose money even if the others collude. A salient
application of virtual payment channels is so-called payment
hubs [13]. Since establishing a payment channel requires a
deposit and active monitoring, the number of channels a user
can establish is limited. With payment hubs [13], users have
to establish just one payment channel with the hub and can
then dynamically open and close virtual channels between
each other on demand. Interestingly, since in a virtual channel
the hub is not involved in the individual payments, even
transactions worth fractions of cents can be carried out with
low latency.

The design of secure virtual channels is very challeng-
ing since, as previously mentioned, it has to account for
all possible compromise and collusion scenarios. For this
purpose, existing virtual channel constructions [13] require
smart contracts programmed over an expressive scripting lan-
guage and the account model, as supported in Ethereum. This
significantly simplifies the construction since the deposit of
a channel, and its distribution between the end-points are
stored in memory and can programmatically be updated. On
the downside, however, these requirements currently limit the
deployment of virtual channels to Ethereum.

It was an open question until now if virtual channels
could be implemented at all in UTXO-based cryptocurrencies
featuring only a limited scripting language, like Bitcoin and
virtually all other permissionless cryptocurrencies. We believe
that answering this question is important for several reasons.
First, by limiting the trusted computing base (i.e., the scripting
functionality supported by the underlying blockchain), we
reduce the on-chain complexity of the virtual channel protocol.
As bugs in smart contracts are manifold and notoriously hard
to fix, our construction eliminates an additional attack vector
by moving the complexity to the protocol level (rather than on-
chain as in the construction from [13]). Second, investigating
the minimal functionality that is required by the underlying
ledger to support complex protocols is scientifically interest-
ing. One may view this as a more general research direction of
building a lambda calculus for off-chain protocols. Concretely,
our construction shows that virtual channels can be built with
stateless scripts, while earlier constructions required stateful
on-chain computation. Finally, from a practical perspective,
our construction can be integrated into the Lightning Network

(the by far most prominent PCN), and thus our solution can
offer the benefits of virtual payment channels/hubs to a broad
user base.

A. Our contributions

In this work, we develop the first protocols for building
virtual channel hubs over cryptocurrencies that support limited
scripting functionality. Our construction requires only digital
signatures and timelocks, which are ubiquitously available
in cryptocurrencies and well characterized. We also provide
a comprehensive formal analysis of our constructions and
benchmarks of a prototype implementation. Concretely, our
contributions are summarized below.
• We present the first protocols for virtual channel hubs

that are built for the UTXO-model and require a scripting
language supporting only digital signature verification and
timelock functionality, being thus compatible with virtually
every cryptocurrency, including Bitcoin. Since in the Lightning
network currently only 10 supernodes are involved in more
than 25% of all channels, our technique can be used to reduce
the load on these nodes, and thereby help to reduce latency.
• We offer two constructions that differ on whether (i)

the virtual channel is guaranteed to stay off-chain for an
encoded validity period, or (ii) the intermediary Ingrid can
decide to offload the virtual channel (i.e., convert it into a
direct channel between Alice and Bob), thereby removing its
involvement in it. These two variants support different business
and functionality models, analogous to non-preemptible and
preemptible virtual machines in the cloud setting, with Ingrid
playing the role of the service provider.
• We formalize the security properties of virtual channels

as an ideal functionality in the UC framework [8], and prove
that our protocols constitute a secure realization thereof.
Since our virtual channels are built in the UTXO-model, our
ideal functionality and formalization significantly differs from
earlier work [13].
• We evaluate our protocol over two different PCN con-

structions, the Lightning Network (LN) [26] and Generalized
channels (GC) [2], which extend LN channels to support func-
tionality other than one-to-one payments. We show that for
virtual channels on top of GC, n sequential payment operations
require an off-chain exchange of 9 + 2 · n transactions or a
total of 3524 + 695 ·n bytes, as compared to 8 ·n transactions
or 3026 · n bytes when Ingrid routes the payment actively
through the PCN. This means a virtual channel is already
cheaper if two or more sequential payments are performed.
For virtual channels over LN, n transactions require an off-
chain exchange of 6292+2824 ·n bytes, compared to 4776 ·n
bytes when routed through an intermediary. We have interacted
with the Bitcoin blockchain to store the required transactions,
demonstrating the compatibility of our protocol.

To summarize, for the first time in Bitcoin, we enable off-
chain payments between users connected by payment channels
via a hub without requiring the continuous presence of any
intermediary. Hence, our solution increases the reliability and,

at the same time, reduces the latency and costs of Bitcoin
PCNs.

II. BACKGROUND

In this section, we first introduce notation and preliminaries
on UTXO-based blockchains. We then overview the basics of
payment and virtual channels, referring the reader to [1, 22, 21,
13] for further details. We finally discuss the main technical
challenges one needs to overcome when constructing Bitcoin-
compatible virtual channels.

A. UTXO-based blockchains

We adopt the notation for UTXO-based blockchains
from [2], which we shortly review below.

a) Attribute tuples: Let T be a tuple of values, which we
call in the following attributes. Each attribute in T is identified
by a unique keyword, e.g., attr and referred to as T.attr.

b) Outputs and transactions: We focus on blockchains
based on the Unspent Transaction Output (UTXO) model,
such as Bitcoin. In the UTXO model, coins are held in
outputs of transactions. Formally, an output θ is an attribute
tuple (θ.cash, θ.ϕ), where θ.cash denotes the amount of coins
associated with the output and θ.ϕ denotes the conditions that
need to be satisfied in order to spend the output. The condition
θ.ϕ can contain any set of operations (also called scripts)
supported by the considered blockchain. We say that a user P
controls or owns an output θ if θ.ϕ contains only a signature
verification w.r.t. the public key of P .

In a nutshell, a transaction in the UTXO model, maps
one or more existing outputs to a list of new outputs. The
existing outputs are called transaction inputs. Formally, a
transaction tx is an attribute tuple and consists of the fol-
lowing attributes (tx.txid, tx.Input, tx.Output, tx.TimeLock,
tx.Witness). The attribute tx.txid ∈ {0, 1}∗ is called the
identifier of the transaction. The identifier is calculated as
tx.txid := H([tx]), where H is a hash function which is
modeled as a random oracle and [tx] is the body of the trans-
action defined as [tx] := (tx.Input, tx.Output, tx.TimeLock).
The attribute tx.Input is a vector of strings which identify the
inputs of tx. Similarly, the outputs of the transaction tx.Output
is the vector of new outputs of the transaction tx. The attribute
tx.TimeLock ∈ N∪ {0} denotes the absolute time-lock of the
transaction, which intuitively means that transaction tx will
not be accepted by the blockchain before the round defined by
tx.TimeLock. The time-lock is by default set to 0, meaning
that no time-lock is in place. Lastly, tx.Witness ∈ {0, 1}∗
called the transaction’s witness, contains the witness of the
transaction that is required to spend the transaction inputs.

We use charts in order to visualize the transaction flow in
the rest of this work. We first explain the notation used in the
charts and how they should be read. Transactions are shown
using rectangles with rounded corners. Double edge rectangles
are used to represent transactions that are already published
on the blockchain. Single edge rectangles are transactions that
could be published on the blockchain, but they are not yet.
Each transaction contains one or more boxes (i.e., with squared

tx

x1

x2

> t2

pkB

+t3

pkA, pkB

tx′ x

ϕ1

ϕ2

ϕ3

Fig. 1: (Left) Transaction tx is published on the blockchain.
The output of value x1 can be spent by a transaction signed
w.r.t. pkB after round t2, and the output of value x2 can be
spent by a transaction signed w.r.t. pkA and pkB but only if at
least t3 rounds passed since tx was accepted by the blockchain.
(Right) Transaction tx′ is not published on the ledger. Its only
output, which is of value x, can be spent by a transaction
whose witness satisfies the output condition ϕ1 ∨ ϕ2 ∨ ϕ3.

corners) that represent the outputs of that transaction. The
amount of coins allocated to each output is written inside the
output box. In addition, the output condition is written on the
arrow coming from the output.

In order to be concise, we use the following abbreviations
for the frequently used conditions. Most outputs can only be
spent by a transaction that is signed by a set of parties. In
order to depict this condition, we write the public keys of all
these parties below the arrow. We use the command One–Sig
and Multi–Sig in the pseudocode. Other additional spending
conditions are written above the arrow. The output script can
have a relative time lock, i.e., a condition that is satisfied if and
only if at least t rounds are passed since the transaction was
published on the blockchain. We denote this output condition
writing the string “+t” above the arrow (and CheckRelative

in the pseudocode). In addition to relative time locks, an output
can also have an absolute time lock, i.e., a condition that is
satisfied only if t rounds elapsed since the blockchain was
created and the first transaction was posted on it. We write
the string “> t” above the arrow for this condition. Lastly, an
output’s spending condition might be a disjunction of multiple
conditions. In other words it can be written as ϕ = ϕ1∨· · ·∨ϕn
for some n ∈ N where ϕ is the output script. In this case, we
add a diamond shape to the corresponding transaction output.
Each of the subconditions ϕi is then written above a separate
arrow. An example is given in Figure 1.

B. Payment channels

A payment channel enables arbitrarily many transactions
between users while requiring only two on-chain transactions.
The first step when creating a payment channel is to deposit
coins into an output controlled by two users. Once the money
is deposited, the users can authorize new balance updates in a
peer-to-peer fashion while having the guarantee that all coins
are refunded at a mutually agreed time. In a bit more detail, a
payment channel has three operations: open, update and close.
We necessarily keep the description short and refer to [16, 2]
for further reading.

Open: Assume that Alice and Bob want to create a
payment channel with an initial deposit of xA and xB coins,
respectively. For that, Alice and Bob agree on a funding

transaction (that we denote by TXf) that sets as inputs two
outputs controlled by Alice and Bob holding xA and xB coins
respectively, and transfers them to an output controlled by
both Alice and Bob. When TXf is added to the blockchain,
the payment channel is effectively open.

Update: Assume now that Alice wants to pay α ≤ xA
coins to Bob. For that, they create a new commit transaction
TXc representing the commitment from both users to the new
balance of the channel. The commit transaction spends the
output of TXf into two new outputs: (i) one holding xA − α
coins controlled by Alice; and (ii) the other holding xB + α
coins controlled by Bob. Finally, parties exchange signatures
on the commit transaction, which serve as valid witnesses
for TXf. At this point, Alice (resp. Bob) could add TXc to
the blockchain. Instead, they keep it locally in their memory
and overwrite it when they agree on another commitment
transaction TXc representing a newer balance of the channel.
This, however, leads to the problem that there exist several
commitment transactions that can possibly be added to the
blockchain. Since all of them are spending the same output,
only one can be accepted by the blockchain. Since it is impos-
sible to prevent a malicious user from publishing an outdated
commit transaction, payment channels require a mechanism
that punishes such malicious behavior. This mechanism is
typically called revocation and enables that an honest user
can take all the coins locked in the channel if the dishonest
user publishes an outdated commitment transaction.

Close: Assume finally that Alice and Bob no longer wish
to use the channel. Then, they can collaboratively close the
channel by submitting the last commitment transaction TXc
that they have agreed on to the blockchain. After it is accepted,
the coins initially locked at the channel creation via TXf are
redistributed to both users according to the last agreed balance.
As aforementioned, if one of the users submits an outdated
commitment transaction instead, the counterparty can punish
the former through the revocation mechanism.

The Lightning Network [26] defines the state-of-the-art
payment channel construction for Bitcoin.

C. Generalized channels

The recent work of Aumayr et al. [2] proposes the concept
of generalized channels. Generalized channels improve and
extend payment channels (see Figure 2 for details) in two
ways. First, they extend the functionality of payment channels
by offering off-chain execution of any script that is supported
by the underlying ledger. Hence, one may view generalized
channels as state channels for blockchains with restricted
scripting functionality. Second, and more important for our
work, generalized channels significantly improve the on-chain
and off-chain communication complexity. More concretely,
this efficiency improvement is achieved by introducing a so-
called split transaction (that we denote as TXs) along with
a punish-then-split paradigm. In contrast to regular payment
channels that require one revocation process per output in the
commit transaction, the punish-then-split approach decouples
the revocation process from the number of outputs in the

TXf

xA + xB

TXc

xA + xB TXs ...

x1

xn

Punishment for A

Punishment for B

pkA, pkB

pkB

%A

pkA

%B

+∆

pkA, pkB

ϕ1

ϕn

Fig. 2: A generalized channel in the state ((x1, ϕ1),
. . . , (xn, ϕn)). The value of ∆ upper bounds the time needed
to publish a transaction on a blockchain. The condition %A
represents the verification of A’ revocation secret and %B
represents the verification of B’ revocation secret.

commit transaction. This allows moving from revocation for
each output to a single revocation for the entire channel.
As shown in Figure 2, the commit transaction (TXc) is only
responsible for the punishment, while the split transaction
(TXs) holds the actual outputs of the channel.

The efficiency of generalized channels is further improved
since they only require a single commit transaction per chan-
nel. This is in contrast to the payment channels used by
Lightning, which require two distinct commit transactions for
each channel user. We will discuss in Section III-D3 why the
punish-then-split paradigm (and requiring only one commit
transaction) is useful in order to improve the efficiency of our
virtual channels for Bitcoin.

To simplify terminology, we will use the term ledger
channel for all channels that are funded directly over the
blockchain.

D. Channel Networks

The aforementioned payment and generalized channels al-
low two parties to issue transactions between each other while
having to communicate with the blockchain only during the
creation and closure of the channel. This on-chain communi-
cation can further be reduced by using channel networks.

a) Payment Channel Networks (PCNs): A PCN is a
protocol that allows parties to connect multiple ledger channels
to form a payment channel network. In this network, a sender
can route a payment to a receiver as long as both parties
are connected by a path in the network. Suppose that Alice
and Bob are not directly connected via a ledger channel, but
instead both maintain a channel with an intermediary party
(Ingrid). In a nutshell, Alice can pay Bob by sending her
coins to Ingrid who then forwards them in her ledger channel
to Bob. Importantly, the protocol must achieve atomicity, i.e.,
either both transfers from Alice to Ingrid and from Ingrid to
Bob happen, or neither of them goes through. Current PCNs
such as the Lightning network use the HTLC-technique (hash-
time-lock transaction), which comes with several drawbacks
as mentioned in the introduction: (i) low reliability because
the success of payments relies on Ingrid being online; (ii)
high latency as each payment must be routed through Ingrid;

Alice Ingrid Bobα β

γ

Fig. 3: A virtual channel γ built over ledger channels α, β.

(iii) high-cost as Ingrid may charge a fee for each payment
between Alice and Bob; and (iv) low privacy as Ingrid can
observe each payment that happens between Alice and Bob.
To mitigate these issues, virtual channels have been proposed.

b) Virtual Channels: An alternative solution to connect
two payment channels with each other is offered by the
concept of virtual channels [13]. Virtual channels allow Al-
ice and Bob to send payments between each other without
the involvement of the intermediary Ingrid. In some sense,
they thus mimic the functionality offered by ledger channels,
with the difference that they are not created directly over
the blockchain but instead over two ledger channels. More
concretely, as shown in Figure 3, a virtual channel γ between
Alice and Bob with intermediary Ingrid is constructed on
top of two ledger channels α and β. Ingrid is required to
participate in the initial creation and final closing of the
virtual channel. But importantly, Ingrid is not involved in
any balance updates that occur in the virtual channel. This
overcomes the four drawbacks mentioned above. While these
advantages over PCNs make virtual channels an attractive off-
chain solution, their design is far from trivial. Previous work
showed how to construct virtual channels over a ledger that
supports Turing complete smart contracts [13, 11, 12]. The
smart contract acts in the protocol as a trust anchor that parties
can fall back to in case of malicious behavior. Through a rather
complex protocol and careful smart contract design, existing
virtual channel constructions guarantee that honest parties in
the virtual channel will always get the coins they rightfully
own. Unfortunately, most cryptocurrencies (including Bitcoin)
do not offer Turing complete smart contracts, and hence
the constructions from prior work cannot be used. In this
work, we present a novel construction of virtual channels that
makes only minimal assumptions on the underlying scripting
functionality offered by the ledger.

III. VIRTUAL CHANNELS

In this section, we first give some notation before presenting
the necessary properties for virtual channels and discussing
design challenges. Finally, we present our protocol.

A. Definitions

We briefly recall some notation and definition for gener-
alized channels [2] and extend the definition to generalized
virtual channels. In order to make the distinction between the
two types of channels clearer, we call the former generalized
ledger channel (or ledger channels for short).

A generalized ledger channel as defined in [2] is a tuple
γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.st), where γ.id ∈ {0, 1}∗

is the identifier of the channel, γ.Alice, γ.Bob ∈ P are the
identities of the parties using the channel, γ.cash ∈ R≥0 is a
finite precision real number that represents the total amount
of coins locked in this channel and γ.st = (θ1, . . . , θn) is
the state of the channel. This state is composed of a list
of outputs. Recall that each output θi has two attributes:
the output value θi.cash ∈ R≥0 and the output condition
θi.ϕ : {0, 1}∗ × N × N → {0, 1}. For convenience, we
define a set γ.endUsers := {γ.Alice, γ.Bob} and a function
γ.otherParty : γ.endUsers → γ.endUsers, which on input
γ.Alice outputs γ.Bob and on input γ.Bob returns γ.Alice.

A generalized virtual channel (or for short virtual channel)
is defined as a tuple γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.st,
γ.Ingrid, γ.subchan, γ.fee, γ.val). The attributes γ.id, γ.Alice,
γ.Bob, γ.cash, γ.st are defined as in the case of ledger chan-
nels. The additional attribute γ.Ingrid ∈ P denotes the
identity of the intermediary of the virtual channel γ. The
set γ.endUsers and the function γ.otherParty are defined
as before. Additionally, we also define the set γ.users :=
{γ.Alice, γ.Bob, γ.Ingrid}. The attribute γ.subchan is a func-
tion mapping γ.endUsers to a channel identifier; namely, the
value γ.subchan(γ.Alice) refers to the identifier of the channel
between γ.Alice and γ.Ingrid (i.e., the id of α from the de-
scription above); similarly, the value γ.subchan(γ.Bob) refers
to the identifier of the channel between γ.Bob and γ.Ingrid
(i.e., β from the description above). The value γ.fee ∈ R≥0

represents the fee charged by γ.Ingrid for her service of
being an intermediary of γ. Finally, we introduce the attribute
γ.val ∈ N ∪ {⊥}. If γ.val 6= ⊥, then we call γ a virtual
channel with validity and the value of γ.val represents the
round number until which γ remains open. Channels with
γ.val = ⊥ are called virtual channels without validity.

B. Security and efficiency goals

We briefly recall the properties of generalized channels as
defined in [2] and state the additional properties that we require
from virtual channels.

a) Security goals: Generalized ledger channels must
satisfy three security properties, namely (S1) Consensus on
creation, (S2) Consensus on update and (S3) Instant finality
with punish. Intuitively, properties (S1) and (S2) guarantee that
successful creation of a new channel as well as successful
update of an existing channel happens if and only if both
parties agree on the respective action. Property (S3) states
that if a channel γ is successfully updated to the state γ.st
and γ.st is the last state that the channel is updated to, then
an honest party P ∈ γ.endUsers can either enforce this state
on the ledger or P can enforce a state where she gets all the
coins locked in the channel. We say that a state st is enforced
when a transaction with this state appears on the ledger.

Since virtual channels are generalized channels whose
funding transaction is not posted on the ledger yet, the above
stated properties should hold for virtual channels as well with
two subtle but important differences: (i) the creation of a
virtual channel involves three parties (Alice, Ingrid and Bob)
and hence consensus on creation for virtual channels can

only be fulfilled if all three parties agree on the creation; (ii)
the finality (i.e., offloading) of the virtual channel depends on
whether Alice is expected to offload the virtual channel within
a predetermined validity period (virtual channel with validity
VC-V) or the offload task is delegated to the intermediary
Ingrid without having a predefined validity period (virtual
channel without validity VC-NV). In order to account for
these two differences, virtual channels should also satisfy the
following properties:

(V1) Balance security: If γ is a virtual channel and γ.Ingrid
is honest, she never loses coins, even if γ.Alice and γ.Bob
collude.
(V2) Offload with punish: If γ is a virtual channel without
validity (VC-NV), then γ.Ingrid can transform γ to a ledger
channel. Party P ∈ γ.endUsers can initiate the transformation
which either completes or P can get financially compensated.
(V3) Validity with punish: If γ is a virtual channel with
validity (VC-V), then γ.Alice can transform γ to a ledger
channel. If γ is not transformed into a ledger channel or closed
before time γ.val, γ.Ingrid and γ.Bob can get financially
compensated.

We first note that the instant finality with punish property
(S3) does not provide any guarantees for Ingrid 6∈ γ.endUsers,
which is why we need to define (V1) for virtual channels.
Properties (V2) and (V3) point out the main difference be-
tween VC-NV and VC-V. In a VC-NV γ, Ingrid is able to
free her collateral from γ at any time by transforming the
channel between Alice and Bob from a virtual channel to a
ledger channel. Furthermore, in case Alice and Bob transform
the virtual channel to a ledger channel or even misbehave,
honest Ingrid is guaranteed that she will receive the collateral
back. In a VC-V γ, Ingrid cannot transform a virtual channel
into a ledger channel at any time she wants. Instead, there
is a pre-agreed point in time, defined by γ.val, until when
γ.endUsers have to close the virtual channel or transform it
into a ledger channel (Ingrid’s collateral is freed in both cases).
If γ.endUsers fail to do so, Ingrid can get her collateral back
through a punishment mechanism. Hence, γ.endUsers have a
guarantee that their VC-V will remain a virtual channel until
a certain round, after which they must ensure its closure or
transformation to avoid punishments.

b) Efficiency goals: Lastly, we define the following ef-
ficiency goals, which describe the number of rounds certain
protocol steps require:
(E1) Constant round creation: Successful creation of a
virtual channel takes a constant number of rounds.

L-Security V-Security Efficiency
S1 – S3 V1 V2 V3 E1 E2 E3

L 3 - - - 7 3 7
VC-V 3 3 7 3 3 3 3
VC-NV 3 3 3 7 3 3 3

TABLE I: Comparison of security and efficiency goals for
ledger channels (L), virtual channels with validity (VC-V) and
virtual channels without validity (VC-NV).

(E2) Optimistic update: For a channel γ, this property
guarantees that in the optimistic case when both parties in
γ.endUsers are honest, a channel update takes a constant
number of rounds.
(E3) Optimistic closure: In the optimistic case when all
parties in γ.users are honest, the closure of a virtual channel
takes a constant number of rounds.
Let us stress that property (E2) is common for all off-chain
channels (i.e., both ledger and virtual channels). The proper-
ties (E1) and (E3) capture the additional property of virtual
channels that in the optimistic case when all parties behave
honestly, the entire life-cycle of the channel is performed
completely off-chain.

We compare the security and efficiency goals for different
types of channels in Table I. We formalize these properties as
a UC ideal functionality in Appendix D1.

C. Design Challenges for Constructing Virtual Channels

The main challenges that arise when constructing Bitcoin-
compatible virtual channels stem from the need to ensure the
security properties (V1) - (V3) as presented in the previous
section. Namely, to guarantee balance security to the interme-
diary, we need to ensure that the virtual channel creation and
closure is reflected symmetrically and synchronously on both
underlying ledger channels. We identify this as a challenge
(C1). As we discuss in more detail below, this can be solved by
giving the intermediary the right of a “last say” in the virtual
channel creation and closure procedures. However, a malicious
intermediary could abuse such power and block virtual channel
closure indefinitely. Therefore, the second challenge (C2) is
to design a punishment mechanism that allows virtual channel
users to either enforce closure or claim financial compensation.
We provide some further details below.

a) Synchronous create and close (C1): The creation
and closure of a virtual channel are done by updating the
underlying ledger channels. In order to guarantee balance
security for the intermediary, we must ensure that updates on
both ledger channels are symmetric and either both of them
succeed or both of them fail. That is, if the intermediary Ingrid
loses coins in one ledger channel as a result of the virtual
channel construction, then she has the guarantee of gaining
the same amount of coins from the other ledger channel. Such
an atomicity property can be achieved by allowing Ingrid to be
the reacting party in both ledger channel update procedures.
Namely, Ingrid has to receive symmetric update requests from
both Alice and Bob before she confirms either of them.

As a result, Ingrid has the power to block a virtual channel
creation and closure. For a virtual channel creation, this is
not a problem. It simply represents the fact that Ingrid does
not want to be an intermediary, and hence Alice and Bob
have to find a different party. However, for virtual channel
closing, this power of the intermediary results in a violation
of the instant finality property for Alice and Bob, and requires
a more involved mechanism.

b) Enforcing virtual channel state (C2): In contrast to
standard ledger channels that rely on funding transactions that

are published on the ledger, the funding transactions of a
virtual channel are, in the optimistic case (i.e., when parties
are honest), kept off-chain. In case of misbehavior (e.g., when
malicious Ingrid refuses to close the virtual channel), however,
honest parties must be able to publish the virtual channel
funding transaction to the blockchain in order to enforce the
latest state of the virtual channel. Unfortunately, the funding
transactions can only be published if both of the underlying
channels are closed in a state which funds the virtual channel.
The fact that the virtual channel participants, Alice and Bob,
respectively have control over just one of the underlying ledger
channels further complicates this situation. For instance, one
of the underlying ledger channels may be updated or closed
maliciously at any time which would prevent the publishing
of the funding transaction on the ledger.

D. Virtual Channel Protocol

We now show how to build virtual channels on top of
generalized channels. We later discuss in Section III-D3 how
our construction can be built over other channels such as
Lightning and why generalized channels offer better efficiency.

As mentioned in the previous section, virtual channels
are created and closed through an update of the underlying
ledger channels. Hence, let us recall the update process of
ledger channels, depicted as UpdateChan in Figures 4 and 5,
before explaining our construction in more detail. The update
procedure consists of 4 steps, namely (1) the Initialization
step, during which parties agree on the new state of the
channel, (2) the Preparation step, where parties generate the
transactions with the given state, (3) the Setup during which
parties exchange their application-dependent data (e.g., for
building virtual channels), and finally (4) the Completion step
where parties commit to the new state and revoke the old one.
We refer the reader to [2] for more details.

1) High level protocol description: We are now prepared
to present a high-level description of our modular virtual
channel protocol and explain how to solve the main technical
challenges when designing virtual channels. In a nutshell, this
modular protocol gives a generic framework on how to design
virtual channels. Afterwards, we show how to instantiate this
modular protocol with our virtual channel construction without
validity. For the description of the instantiation with our
construction with validity, we refer the reader to Appendix D2.
We present the formal pseudocode for the modular protocol
as well as the instantiations with and without validity in
Appendix D3.

a) Create: Let γ be a virtual channel that A := γ.Alice
and B := γ.Bob want to create, using their generalized ledger
channels with I := γ.Ingrid. At a high level, the creation
procedure of a virtual channel is a synchronous update of
the underlying ledger channels. Given the ledger channels, we
proceed as follows (see Figure 4).

As a first step, each party P ∈ {A,B} initiates an update
of the respective ledger channel with I (step 1©) who, upon
receiving both update requests, checks if the requested states
(i.e., θA and θB) are consistent. The parties use the identifiers

A I B
α β

1©

2© U
p
d
a
te
C
h
a
n

U
p
d
a
te
C
h
a
n

UPDATE, θA UPDATE, θB

tidA, θA tidB , θBtidA tidB

3© Setup virtual channelSetup virtual channel

4©

5©

6© U
p
d
a
te
C
h
a
n

U
p
d
a
te
C
h
a
n

SETUP–OK SETUP–OK

UPDATE–OK UPDATE–OK

UPDATED UPDATEDUPDATED UPDATED

Fig. 4: Modular creation procedure of a virtual channel on top
of two ledger channels α and β.

tidA and tidB of their subchannels in order to build the
virtual channel (step 2©). Next, all three parties engage in
a setup phase, in which the structure of the virtual channel
is built (step 3©). More concretely, all three parties agree
on a funding transaction of the virtual channel which when
published on the blockchain transforms the virtual channel to
a ledger channel. When the setup phase is completed, i.e., the
virtual channel structure has been built, the parties complete
the ledger channel update procedures (step 4©). It is crucial
for the intermediary I to have the role of a reacting party
during both channel updates. This gives her the power to wait
until she is sure that both updates will complete successfully
and only then give her the final update agreement (step 5©).
Upon a successful execution, parties consider the channels as
updated (step 6©), which implies that the virtual channel γ
was successfully created.

b) Update: Updating the virtual channel essentially
works in the same way as the update procedure of a ledger
channel. As long as the update is successful or peacefully
rejected (meaning that the reacting party rejects the update),
the parties act as instructed in the ledger channel protocol. The
situation is more delicate when the update fails because one
of the parties misbehaved and aborted the procedure.

We note that aborts during a channel update might cause
a problematic asymmetry between the parties. For instance,
when one party already signed the new state of the channel
while the other one did not; or when one party already revoked
the old state of the channel but the other one did not. In
a standard ledger channel, these disputes are resolved by a
force close procedure, meaning that the honest party publishes
the latest valid state on the blockchain, thereby forcefully
closing the channel. Hence, within a finite number of rounds,
the dispute is resolved and the instant finality property is
preserved. We apply a similar technique for virtual channels.
The main difference is that a virtual channel is not funded
on-chain. Hence, we first need to offload the virtual channel
to the ledger. In other words, we first need to transform a

virtual channel into a ledger channel by publishing its funding
transaction on-chain. This process is discussed later in this
section. Once the funding transaction is published, the dispute
is handled in the same way as for ledger channels.

A I B
α β

1©

2©

3©

4©

U
p
d
a
te
C
h
a
n

U
p
d
a
te
C
h
a
n

UPDATE, θA UPDATE, θB

θA θB

UPDATE–OK UPDATE–OK

UPDATED UPDATEDUPDATED UPDATED

Fig. 5: Modular close procedure of a virtual channel on top
of two ledger channels α and β. For P ∈ {A,B}, ~θP :=
{(cP , One–SigpkP

), (cQ + γ.fee
2 , One–SigpkI

)} where γ.st =(
(cP , One–SigpkP

), (cQ, One–SigpkQ
)
)

.

c) Close: The closure of a virtual channel is done by
updating the underlying ledger channels α and β according to
the latest state of the virtual channel γ.st. To this end, each
party P ∈ {A,B} computes the new state for the ledger chan-
nel ~θP := {(cP , One–SigpkP

), (γ.cash − cP , One–SigpkI
)}

where cP is the latest balance of P in γ. All parties update
their ledger channels according to this state.

In a bit more detail, the closing procedure of a virtual
channel proceeds as follows (see Figure 5). Each party P
initiates an update of the underlying ledger channel with state
~θP (step 1©). Since both ledger channels must be updated
synchronously, I waits for both parties to initiate the update
procedure. Upon receiving the states from both parties (step
2©), I checks that the states are consistent and if so, she agrees
to the update of both ledger channels (step 3©). Finally, after all
parties have successfully revoked the previous ledger channel
state, the virtual channel is considered to be closed.

In the pessimistic case (if the states ~θA and ~θB are inconsis-
tent, revocation fails or I remains idle), parties must forcefully
close their virtual channel by publishing the funding transac-
tion (offloading) and closing the resulting ledger channel. This,
together with the fact that I plays the role of the reacting party
in its interactions with A and B, addresses the challenge (C1)
as mentioned in Section III-C.

d) Offload: During the offload procedure, parties try
to publish the funding transaction of the virtual channel γ
which effectively transforms the virtual channel into a ledger
channel. In a nutshell, during this procedure, parties try to
publish the commit and split transactions of both underlying
ledger channels and afterward the funding transaction of the
virtual channel. In case offloading is prevented by some form
of malicious behavior, parties can engage in the punishment
procedure to ensure that they do not lose any funds.

e) Punish: The concept of punishment in virtual chan-
nels is similar to that in ledger channels; namely in case that
the latest state of a channel cannot be posted on the ledger,

honest A or B are compensated by receiving all coins of
the virtual channel while honest I will not lose coins. If the
funding transaction of the virtual channel is posted on the
ledger, the virtual channel is transformed into a ledger channel
and parties can execute the regular punishment protocol for
ledger channels. In addition to the ledger channel’s punishment
procedure, parties can punish if the funding transaction of γ
cannot be published. Since this punishment, however, differs
for each concrete instantiation, we will explain it in more detail
for our protocol without validity in the following section (and
in Appendix D2 for the case with validity).

The offloading and punishment procedure together tackles
challenge (C2) from Section III-C.

2) Concrete Instantiation Without Validity: We now de-
scribe how the modular protocol explained above can be con-
cretely instantiated with our construction for virtual channels
without validity.

a) Create: In our construction without validity, A and B
must “prepare” the virtual channel during the setup procedure
(step 3© in create of the modular protocol). This is done by
executing the creation procedure of a regular ledger channel,
i.e., they create a funding transaction with inputs tidA and
tidB , as well as a commit and split transactions that spend
the funding transaction. Once all three transactions are created,
A and B sign them and exchange their signatures. Note that
this corresponds to a normal channel opening, with the mere
difference that the funding transaction is not published to the
blockchain. In order to complete the virtual channel setup, A
and B send the signed funding transaction to I who, upon
receiving both signatures, sends her own signature on the
transaction back to A and B. At this stage, the virtual channel
is prepared, however, the creation is not completed yet. In
order to finish the creation procedure, A, I , and B have to
finish the update of their respective ledger channels. Once this
is done, the virtual channel has been successfully created.

We illustrate the transaction structure prepared during the
creation process in Figure 6. The funding transaction of the
virtual channel TXf, which is generated during the create
procedure, takes as input coins from both, the ledger channel α
(represented by TXAs) and the ledger channel β (represented by
TXBs). Both ledger channels jointly contribute a total of 2c+ f
coins so that c coins are later used to setup the virtual channel
and the remaining c + f coins are I’s collateral and the fees
paid to I for providing the service for A and B.1 I’s collateral
and fees in the funding transaction TXf are the reason why I
has to proactively monitor the virtual channel as she has an
incentive to publish TXf in case any party misbehaves.

b) Offload: I is always able to offload the virtual channel
by herself (i.e., without having to cooperate with another party)
which guarantees that I can redeem her collateral at any time.
We note that P ∈ {A,B} can also initiate the offloading by
publishing the commit and split transaction of their respective
ledger channels. This forces I to publish the commit and split

1For simplicity we assume each of the parties contributes f/2 coins to I’s
total fees in addition to c/2 coins for funding the virtual channel.

TXf

c

c+ f

pkA, pkB

I
pkI

c+ f/2

TXAs

pkA, pkB , pkI

A
+(T + 4∆)

pkA

c+ f/2

TXBs

pkA, pkB , pkI

B
+(T + 4∆)

pkB

Fig. 6: Funding of a virtual channel γ without validity. T
upper bounds the number of off-chain communication rounds
between two parties for any operation in the ledger channel.

TXf

c

c+ f

pkA, pkB

I
pkI

c+ f/2

TXAs

pkA, pkB , pkI

c+ f/2

TXBs

pkA, pkB , pkI

Fig. 7: Transactions published after a successful offload.

transactions of the respective other ledger channel, since I
loses her collateral to P otherwise.

More precisely, if I wishes to offload the virtual channel
γ and retrieve her collateral and fees, she can close both of
her ledger channels with A and B (i.e., α and β) and publish
the funding transaction of the virtual channel i.e., TXf. This is
possible as I is part of both ledger channels. A or B, on the
other hand, are respectively part of only one ledger channel
and hence they cannot offload the virtual channel individually.
However, they can force I to offload by publishing the commit
and split transactions of their respective channel with I (we
will elaborate on this in the description of the punishment
mechanism). Figure 7 illustrates the transactions that are
posted on the blockchain in case of a successful offload. The
figure shows that the split transactions of both underlying
ledger channels have to be published such that eventually the
funding transaction of the virtual channel can be published
which completes the offloading procedure.

c) Punish: Party P ∈ {A,B} can punish I by taking
all the coins on their respective ledger channels if the funding
transaction of the virtual channel γ is not published on the
ledger. In other words, it is I’s responsibility to ensure that
the state of her ledger channels with A and B are not updated
while γ is open. Furthermore, upon one of the subchannels
being closed, I must close the other subchannel in order to
guarantee that both parties can post TXf.

Let us now get into more details. Assume that A’s ledger
channel with I is closed, but the funding transaction TXf
cannot be published on the blockchain. This means that I’s
channel with B (i.e., β) is still open or has been closed in
a different state such that TXf cannot be published. In other

c+ f/2

TXAs A
+(T + 4∆)

pkA

c+ f/2

TXBs

Fig. 8: Transactions published after A successfully executed
the punishment procedure. The grayed transaction TXBs indi-
cates that this transaction has not been published.

words, Ingrid acted maliciously by wrongfully closing β in
a different state or by not closing β at all. In this case, A
must be able to get all the coins from her channel with Ingrid.
This punishment works as follows: After A publishing the
split transaction of α, I is given a certain time period to close
her channel with B and publish the virtual channel’s funding
transaction TXf. If I fails to do so in the prescribed time period,
A receives all coins in her channel with I .

We note that in this scenario, B (instead of I) might have
been the malicious party by closing β in an outdated state,
thereby leaving I no option to publish TXf. However, in this
case, I can punish B via the punishment mechanism of the un-
derlying ledger channel and earn all the coins in β. Therefore,
I will remain financially neutral as she gets punished by A
but simultaneously compensated by B. Figure 8 illustrates the
transactions that are posted on the blockchain in the case of A
successfully executing the punishment mechanism. The case
where B executes the punishment mechanism is analogous.

3) Further discussion regarding our constructions: In the
following, we present further considerations regarding our
protocol, including remarks on concurrency, a discussion on
how the protocol can be built on top of Lightning channels,
and a brief description of our virtual channel construction with
validity that we detail in Appendix D2.

a) Concurrency: When creating a virtual channel, we
need to lock the underlying ledger channels α and β (i.e., no
further updates can be made on the ledger channels as long as
the virtual channel is open). This, however, is undesirable,
because in most cases the ledger channels will have more
coins available than what is needed for funding the virtual
channel. We emphasize that this issue can be easily addressed
(and hence supporting full concurrency) by using the channel
splitting technique discussed in [2]. This means that before
constructing the virtual channel Alice-Bob, parties would first
split each underlying ledger channel off-chain in two channels:
(i) one would contain the exact amount of coins for the virtual
channel and (ii) the other one would contain the remaining
coins that can be used in the underlying ledger channel.

b) Virtual channels over Lightning: We will now dis-
cuss how our virtual channel constructions can be built on
top of any ledger channel infrastructure that uses a revoca-
tion/punishment mechanism such as the Lightning Network

[26]. The main complication arises from the fact that ledger
channel constructions other than generalized channels require
two commit transactions per channel state (one for each party).
As depicted in Figure 9 (and unlike generalized channels in
Figure 2), Alice and Bob each have a commit transaction
TXAc and TXBc which spends the funding transaction TXf and
distributes the coins. Therefore, in such channel constructions,
it is a priori unclear which of these commit transactions will
be posted and accepted on the blockchain (note that only one
of them can be successfully published) and hence building
applications (e.g., virtual channels) on top of such ledger
channels becomes complex.

TXf

xA + xB

publishable by A

publishable by B

TXAc

xA

xB

TXBc
xB

xA

Punishment for A

Punishment for B

pkA, pkB
pkB

+∆

pkA

%A

pkB

pkA

+∆

pkB

%B

pkA

Fig. 9: A Lightning style payment channel where A has xA
coins and B has xB coins. ∆ upper bounds the time needed to
publish a transaction on a blockchain. condition %A represents
the verification of A’ revocation secret and h represents the
verification of B’ revocation secret.

In more detail, assume Alice and Bob want to build a
virtual channel γ on top of their respective Lightning ledger
channels with Ingrid, where both ledger channels consist of
two commit transactions respectively (i.e., (TXAc, TX

IA
c) for the

channel between Alice and Ingrid and (TXBc, TX
IB
c) for the

channel between Bob and Ingrid). All three parties now have to
make sure that the virtual channel can be funded (i.e., that the
funding transaction of γ can be published to the blockchain)
even in case of malicious behavior. To ensure this, parties
have to prepare the funding transaction of γ with respect to
all possible combinations of the commit transactions of the
respective underlying ledger channels. Since there are four
such combinations ((TXAc, TX

B
c), (TXAc, TX

IB
c), (TXIAc , TX

B
c) and

(TXIAc , TX
IB
c)), parties have to prepare four funding transactions

for γ. Hence, updating such a virtual channel requires repeat-
ing the update procedure for all four funding transactions.

As generalized channels require only a single commit
transaction per channel state building virtual channels on
top of generalized channels offers a significant efficiency
improvement in terms of off-chain communication complexity
(see Section V for the detailed comparison).

c) Virtual Channels With Validity: Note that so far we
described our protocol without validity where the virtual
channel can be offloaded by the intermediary whenever she
wants. The drawback of this construction is that Ingrid needs to

be proactive during the lifetime of the virtual channel, i.e., she
has to constantly monitor the channel for potential misbehavior
of Alice or Bob. This might be undesirable in scenarios where
Ingrid plays the role of the intermediary in not just one but
many different virtual channels at the same time (e.g., if Ingrid
is a channel hub). For this reason, we developed an alternative
solution which we call virtual channels with validity. In this
solution, each virtual channel has a predetermined time (which
we call validity) which indicates until when the channel has
to be closed again. If the channel is still open after this time,
Ingrid has to become proactive in order to receive her collateral
back. The obvious advantage of this approach is that Ingrid
can remain inactive until the validity of a channel expires. The
details of this protocol can be found in Appendix D2.

IV. SECURITY MODEL AND ANALYSIS

In order to model and prove the security of our virtual
channel protocols, we use the global UC framework (GUC) [9]
as in [2]. This framework allows for a global setup which
we utilize to model a public blockchain. More precisely, our
protocol uses a global ledger functionality L̂(∆,Σ), where ∆
upper bounds the blockchain delay, i.e., the maximum number
of rounds required to publish a transaction, and Σ is the
signature scheme used by the blockchain. In this section, we
only give a high-level idea behind our security analysis in the
UC framework and refer the reader to Appendices A, C, C2
and D1 for more details.

As a first step, we define the expected behavior of a
virtual channel protocol in the form of an ideal functionality
FV . The functionality defines the input/output behavior of a
protocol, its impact on the global setup (e.g., ledger) and the
possible ways an adversary can influence its execution (e.g.,
delaying messages). In order to prove that a concrete protocol
is a secure virtual channel protocol, one must show that the
protocol emulates the ideal functionality FV . This means that
any attack that can be mounted on the protocol can also be
mounted on the ideal functionality, hence the protocol is at
least as secure as the ideal specification given by FV .

The proof of emulation consists of two steps. First, one
must design a simulator, which simulates the actions of an
adversary on the real-world protocol by interacting with the
ideal functionality. Second, it must be shown that the execution
of the real-world protocol being attacked by a real-world
adversary is indistinguishable from the execution of the ideal
functionality communicating with the constructed simulator.
In UC, the ppt distinguisher who tries to distinguish these two
executions is called the environment.

The main challenge when designing a simulator is to make
sure that the environment sees transactions being posted on
the ledger in the same round in both worlds. In addition, our
simulator needs to ensure that the ideal functionality outputs
the same set of messages in the same round as the protocol.
We reduce the indistinguishability of the two executions to the
security of the cryptographic primitives used in our protocol.

One of the advantages of using UC is its composability. In
other words, one can use an ideal functionality in a black-

box way in other protocols. This simplifies the process of
designing new protocols as it allows to reuse existing results
and enables modular protocol designs. We utilize this nice
property of the UC framework and use the ideal functionality
of the generalized channel from [2] when designing our virtual
channel protocol.

We only mention the main security theorem here and
provide a high-level proof sketch here. We refer the reader
to Appendix F for the full proof.

Theorem 1: Let Σ be a signature scheme that is strongly
unforgeable against chosen message attacks. Then for any
ledger delay ∆ ∈ N, the virtual channel protocol without
validity as described in Section III-D working in FpreL(3, 1)-
hybrid, UC-realizes the ideal functionality FV (3).

We now give a proof sketch to show that the two properties
(V1) Balance security and (V2) Offload with punish hold for
honest parties. To this end, we analyze all possible cases in
which the underlying ledger channels are maliciously closed,
i.e., the cases when the virtual channel cannot be offloaded
anymore. Note that if the virtual channel is offloaded, it is
effectively transformed into a generalized ledger channel and
satisfies the security properties of generalized channels.

If all parties behave honestly (V1) and (V2) hold trivially as
I is always able to offload the virtual channel by publishing all
transactions TXAs, TXBs and TXf. Furthermore, neither A nor B
would ever lose their coins. Now consider the case where one
of the underlying channels, e.g., the channel between B and
I is closed in a different state such that TXf cannot be posted
on the blockchain anymore (the case for the channel between
A and I is analogous). As an honest A would not update her
channel with I as long as the virtual channel is open, there are
only two possible situations: (i) A is able to post TXAs which
allows her to punish I (see Figure 8), or (ii) I has maliciously
closed her channel with A in an outdated and revoked state. In
this case, A is able to punish I according to property (S3), i.e.,
instant finality with punish, of the underlying ledger channel
(see Section II and Figure 2 for more details on the punishment
of the underlying channel). Therefore, (V2) is satisfied for A,
since she can punish I and get financially compensated. Now
let us analyze the maliciously closed channel between B and
I , let us denote it β. If both parties are malicious, we do not
need to prove anything as (V1) and (V2) should only hold for
honest parties. In case B is honest, I must have closed β in
an old state which would allow B to punish I . Hence (V2)
holds and we do not need to prove (V1) as I is malicious.
Analogously, if I is honest, malicious B must have closed β
in an old state and hence I can punish B. Hence (V1) holds
and we do not need to prove (V2) for malicious B). Hence,
(V1) and (V2) hold for all honest parties.

V. PERFORMANCE EVALUATION

In this section, we first study the storage overhead on the
blockchain as well as the communication overhead between
users to use virtual channels. For each of these aspects,
we evaluate both constructions (i.e., with and without va-
lidity) built on top of both generalized channels as well as

Lightning channels and compare them. Finally, we evaluate
the advantages of virtual channels over ledger channels in
terms of routing communication overhead and fee costs. As
testbed [6], the transactions are created in Python using the
library python-bitcoin-utils and the Bitcoin Script
language. To showcase compatibility and feasibility, we de-
ployed these transactions successfully on the Bitcoin testnet.

A. Communication overhead

We analyze the communication overhead imposed by the
different operations, such as CREATE, UPDATE, OFFLOAD and
CLOSE, by measuring the byte size of the transactions that
need to be exchanged as well as the cost in USD necessary
for posting the transactions that need to be published on-
chain. The cost in USD is calculated by taking the price of
18803 USD per Bitcoin, and the average transaction fee of
104 satoshis per byte all of them at the time of writing. We
detail in Table II the aforementioned costs measured for both
virtual channel constructions building on top of generalized
channels and on top of Lightning channels.

Perhaps the most relevant difference to ledger channels in
practice is, in the CREATE and the optimistic CLOSE case, we
do not have any on-chain transactions. This implies no on-
chain fees for the opening and closing of virtual channels.

a) Virtual channels over generalized channels: For the
creation of a virtual channel (CREATE operation) on top of
generalized channels, we need to update both ledger channels
to a new state that can fund the virtual channel, requiring to
exchange 2 · 2 transactions with 1494 (VC-NV) or 1422 (VC-
V) bytes. Additionally, we need 640 bytes for TXf (VC-NV)
or 309 + 377 bytes for TXf and TXrefund (VC-V). Finally, for
both VC-NV and VC-V, we need the transactions representing
the state of the the virtual channel itself which requires 431
bytes for TXc and 264 bytes for TXs. This complete process
results in 7 (VC-NV) or 8 (VC-V) transactions with a total
of 2829 (VC-NV) or 2803 (VC-V) bytes. Forcefully closing
(CLOSE(pess) operation) and offloading (OFFLOAD operation)
requires the same set of transactions as with CREATE, minus the
commitment and the split transaction (695 bytes) of the virtual
channel in the latter case, both on-chain. Finally, we observe
that the UPDATE and the optimistic CLOSE(opt) operation
require 2 transactions (695 bytes) for both constructions, as
they are designed as an update of a ledger channel.

b) Virtual channels over Lightning channels: Building
virtual channels on top of Lightning channels yields the
following results. Instead of one commitment and one split
transaction per ledger channel, we now need two commitment
transactions per ledger channel, each of size 580 (VC-NV) or
546 (VC-V) bytes. Due to the fact that in both ledger channels,
either commitment transaction can be published, we now need
four TXf of 640 bytes each (VC-NV) or two TXf of 309 and
four TXrefund of 377 bytes (VC-V). For every TXf, we need two
commitment transactions of 353 bytes (in total, 8 ·353 in VC-
NV or 4 · 353 in VC-V). For OFFLOAD, only one commitment
transaction per ledger channel needs to be published, along

Generalized Channels Lightning Channels
VC-NV VC-V VC-NV VC-V

Operations on-chain off-chain on-chain off-chain on-chain off-chain on-chain off-chain
txs size cost # txs size # txs size cost # txs size # txs size cost # txs size # txs size cost # txs size

CREATE 0 0 0 7 2829 0 0 0 8 2803 0 0 0 16 7704 0 0 0 14 5722
UPDATE 0 0 0 2 695 0 0 0 2 695 0 0 0 8 2824 0 0 0 4 1412
OFFLOAD 5 2134 41.73 0 0 6 2108 41.22 0 0 3 1800 35.20 0 0 4 1778 34.77 0 0
CLOSE (opt) 0 0 0 4 1390 0 0 0 4 1390 0 0 0 4 1412 0 0 0 4 1412
CLOSE (pess) 7 2829 55.32 0 0 8 2803 54.81 0 0 4 2153 42.10 0 0 5 2131 41.67 0 0

TABLE II: Evaluation of the virtual channels. For each operation we show: the number of on-chain and off-chain transactions
(# txs) and their size in bytes. For on-chain transactions, cost is in USD and estimates cost of publish them on the ledger.

with one TXf (for VC-NV) and TXf plus TXrefund (for VC-
V). CLOSE(pess), needs to publish a commitment transaction
in addition to OFFLOAD, resulting in 2153 (VC-NV) or 2131
(VC-V) bytes.

B. Comparison to payment channel networks

In this section we compare virtual channels to multi-hop
payments in a payment channel network (PCN). In a PCN,
users route their payments via intermediaries. During the
routing of a transaction tx, each intermediary party locks
tx.cash coins as a “promise to pay” in their channels, a
payment commitment that can technically be implemented as
a Hash-Time Lock Contract (HTLC), e.g. as in the Lightning
Network [26]. We now evaluate the difference in communi-
cation overhead and fee costs compared to virtual channels,
summarize them in Table III and illustrate them in Figure 10.

a) Routing communication overhead: When perform-
ing a payment between Alice and Bob via an intermediary
Ingrid in a multi-hop payment over generalized channels, the
participants need to update both generalized channels with
a “promise to pay”, which require 2 transactions or 818
bytes per channel when implemented as HTLC. If they are
successful, both generalized channels need to be updated again
to “confirm the payment” (again, 2 transactions or 695 bytes
per channel). This whole process results in 8 transactions
or 2 · 818 + 2 · 695 = 3026 off-chain bytes that need to
be exchanged. Generically, if the parties want to perform n
sequential payments, they need to exchange 8 · n transaction
with a total of 3026 · n bytes.

Assume now that Alice and Bob were to perform the pay-
ment over a virtual channel without validity instead and that
this virtual channel is not yet created. As shown in Table II,
they need to open the virtual channel for 2829 bytes, where
they set the balance of the virtual channel already to the correct
state after the payment, and then close it again for 1390 bytes,
resulting in a total of 4219 off-chain bytes. However, if we
again consider n sequential payments, the result would be
9 + 2 ·n transactions or 3524 + 695 ·n bytes, which supposes
a reduction of 2331 ·n−3524 bytes with respect to relying on
generalized channels only. This means that a virtual channel is
already cheaper if only two (or more) sequential transactions
are performed. We obtain similar results if we consider virtual
channels with validity instead. For Lightning channels, the
overhead is larger for both the multi-hop payment and the
VC setting (Table III).

b) Fee costs: In a multi-hop payment tx in a PCN, the
intermediary user Ingrid charges a base fee (BF) for being

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·104

Number of payments (n)

O
ve

rh
ea

d
in

by
te

s

Routing communication overhead

GC:VC-NV LN:VC-NV
GC:VC-V LN:VC-V
GC:PCN LN:PCN

Fig. 10: Pictorial illustration of Table III.

Overhead in bytes fees
1 paym. 2 paym. n payments tx.cash in n payments

GC: PCN 3026 6052 3026 · n BF · n+ FR · tx.cash
GC: VC-NV 4219 4914 3524 + 695 · n

BF+ FR · tx.cashGC: VC-V 4193 4888 3498 + 695 · n
LN: PCN 4776 9552 4776 · n BF · n+ FR · tx.cash
LN: VC-NV 9116 11940 6292 + 2824 · n
LN: VC-V 5722 7134 4310 + 1412 · n BF+ FR · tx.cash

TABLE III: Comparison of virtual channels (VC) to multi-hop
payments (PCN) showing the overhead in bytes for a different
number of payments and the difference in fees.

online and offering the routing service and relative fee (FR)
for locking the amounts of coins (tx.cash) and changing the
balance in the channel, so that fee(tx) := BF + FR · tx.cash.
Note that at the time of writing, the fees are BF = 1 satoshi
and FR = 0.000001.

In a virtual channel setting, γ.Ingrid can charge a base fee
to collaborate to open and close the virtual channel, and also
a relative fee to lock collateral coins in the virtual channel.
However, no fees per payment are charged by Ingrid as she
does not participate in them (and even does not know how
many end-users performed)1. Let us now investigate the case
of paying tx.cash in n micropayments of equal value. In PCN
case, the total cost would be

∑n
i=1 BF+FR · tx.cashn = BF ·n+

FR·tx.cash. Whereas, in the virtual case, the parties first create
a virtual channel γ with balance tx.cash, and they will handle
the micropayments in γ. Thereby, the cost would be only the

opening cost of the virtual channel, for which we assumed
BF + FR · tx.cash. Thus, if Alice and Bob would make more
than one transaction, i.e., n > 1, it is beneficial to use virtual
channels for reducing the fee costs by BF · (n− 1).

c) Summary: We find that the best construction in prac-
tice is the combination of virtual channels on top of gener-
alized channels, as this yields the least overhead after only
two or more sequential payments. However, building virtual
channels over LN channels also yields less overhead than
multi-hop PCN payments over LN.

VI. RELATED WORK

In this section, we position this work in the landscape of
the literature for off-chain payments protocols.

a) Payment Channels: Started from the Lightning Chan-
nels construction [26], the idea of 2-party payment channels
has been largely used in academia and industry as a building
block for more complex off-chain payment protocols. More
recently, Aumayr et al. [2] have proposed a novel construction
for 2-party payment channels that overcome some of the
drawbacks of the original Lightning channels. While their
benefit in terms of scalability is out of any doubt by now,
payment channels are limited to payments between two users
and consequently its overall utility.

A concurrent work [18] has also proposed a virtual channel
construction over Bitcoin. However, their construction uses
decreasing time-locks instead of a punishment mechanism in
order to guarantee that only the latest state can be posted
on the blockchain. As a consequence, their construction only
allows a fixed number of transactions to be made during the
lifetime of the virtual channel. This is quite restrictive as it
requires users to close and open new virtual channels more
frequently which goes against the purpose of virtual channels.
Note that one cannot simply increase the time-lock as this
would essentially lock the coins of the users for a longer
period of time. Furthermore, our constructions are generalized
virtual channels, i.e., they are not limited to just payments, but
rather allow to run any Bitcoin script off-chain. In addition,
we propose a modular approach compared to the monolithic
construction in [18]. Finally, our work proposes two protocols,
which each have their advantages in different use cases.

b) Payment Channel Networks (PCN) and Payment
Channel Hub (PCH): A PCN allows a payment between two
users that do not share a payment channel but are however
connected through a path of payment channels. The notion of
PCN started with the deployment of Lightning Network [26]
for Bitcoin and Raiden Network [30] for Ethereum and has
been widely studied in academia to research into different
aspects such as privacy [22, 21], routing of payments [27], col-
lateral management [14] and others. Similar to PCN, different
constructions for PCH exist [28, 17, 5] that allow a payment
between two users through a single intermediary, the payment
hub. PCNs and PCHs, however, share the drawback that each
payment between two users require the active involvement
of the intermediary (or several intermediaries in the case of
PCH), which reduces the reliability (e.g., the intermediary can

go offline) and increases the cost of the payment (e.g., each
intermediary charges a fee for the payment).

c) State Channels: Several works [12, 11, 23, 10] have
shown how to leverage the highly expressive scripting lan-
guage available at Ethereum to construct (multi-party) state
channels. A state channel allows the involved parties to carry
out off-chain computations, possibly other than payments.
Closer to our work, Dziembowski et al. [13] showed how to
construct a virtual channel leveraging two payment channels
defined in Ethereum. These approaches are, however, highly
tight to the functionality provided by the Ethereum scripting
language and their constructions cannot be reused in other
cryptocurrencies. In this work, we instead show that virtual
channels can be constructed from digital signatures and time-
lock mechanism only, which makes virtual channels accessible
for virtually any cryptocurrency system available today.

VII. CONCLUSION

Current PCNs route payments between two users through
intermediate nodes, making the system less reliable (interme-
diaries might be offline), expensive (intermediaries charge a
fee per payment), and privacy-invasive (intermediate nodes
observe every payment they route). To mitigate this, recent
work has introduced the concept of virtual channels, which
involve intermediaries only in the creation of a bridge between
payer and payee, who can later on independently perform
arbitrarily many off-chain transactions. Unfortunately, existing
constructions are only available for Ethereum, as they rely on
its account model and Turing-complete scripting language.

In this work, we present the first virtual channel construc-
tions that are built on the UTXO-model and require a scripting
language supported by virtually every cryptocurrency, includ-
ing Bitcoin. Our two protocols provide a tradeoff on who
can offload the virtual channel, similar to the preemptible
vs. non-preemptible virtual machines in the cloud setting. In
other words, our virtual channel construction without validity
is more suitable for intermediaries who can monitor the
blockchain regularly, such as payment channel hubs, but can
also close the virtual channel at anytime if desired. Our virtual
channel protocol with validity however, is more suitable for
light intermediaries who do not wish to be active during the
lifetime of the virtual channel but cannot close the virtual
channel before its validity has expired. We formalize the
security properties of virtual channels in the UC framework,
proving that our protocols constitute a secure realization
thereof. We have prototyped our protocols and evaluated their
efficiency: for n sequential payments in the optimistic case,
they require 9 + 2 · n off-chain transactions for a total of
3524 + 695 · n bytes, with no on-chain footprint.

As mentioned in the introduction of this work, the task
of designing secure virtual channels has been proven to be
challenging even on a cryptocurrency like Ethereum [13]
which supports smart contract execution. Unsurprisingly, this
task becomes even more complex when building virtual chan-
nels for blockchains that support only a limited scripting
language as it is not possible to take advantage of the full

computation power of Turing complete smart contracts. Due
to these significantly differing underlying assumptions (smart
contracts vs. limited scripting languages), the virtual channel
protocols based on Ethereum [13] and the protocols presented
in this work are incomparable. We emphasize that we view
our virtual channel constructions as complementary to the one
presented in [13], as we do not aim to improve the construction
of [13] but rather extend the concept of virtual channels to a
broader class of blockchains.

We conjecture that it is possible to recursively build virtual
channels on top of any two underlying channels (either ledger,
virtual or a combination of them), requiring to adjust the
timings for offloading channels: users of a virtual channel at
layer k should have enough time to offload the (virtual/ledger)
channels at layers 1 to k − 1. Additionally, we envision
that while virtual channels without validity might serve as
a building block at any layer of recursion, virtual channels
with validity period may be more suitable for the top layer as
they have a predefined expiration time after which they would
require to offload in any case all underlying layers. We plan to
explore the recursive building of virtual channels in the near
future. Additionally, we conjecture that virtual channels help
with privacy, but we leave a formalization of this claim as
interesting future work, as it involves a quantitative analysis
that falls off the scope of this work.

ACKNOWLEDGMENTS

This work was partly supported by the German Research
Foundation (DFG) Emmy Noether Program FA 1320/1-1,
by the DFG CRC 1119 CROSSING (project S7), by the
German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902), by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center
for Applied Cybersecurity ATHENE, by the European Re-
search Council (ERC) under the European Unions Horizon
2020 research (grant agreement No 771527-BROWSEC), by
the Austrian Science Fund (FWF) through PROFET (grant
agreement P31621) and the Meitner program (grant agreement
M 2608-G27), by the Austrian Research Promotion Agency
(FFG) through the Bridge-1 project PR4DLT (grant agreement
13808694) and the COMET K1 projects SBA and ABC, by
the Vienna Business Agency through the project Vienna Cy-
bersecurity and Privacy Research Center (VISP), by CoBloX
Labs and by the ERC Project PREP-CRYPTO 724307.

REFERENCES

[1] A. M. Antonopoulos. Mastering Bitcoin: Unlocking
Digital Crypto-Currencies. 1st. OReilly Media, Inc.,
2014. ISBN: 1449374042.

[2] L. Aumayr et al. Generalized Bitcoin-Compatible Chan-
nels. Cryptology ePrint Archive, Report 2020/476.
https://eprint.iacr.org/2020/476. 2020.

[3] C. Badertscher et al. “Bitcoin as a Transaction Ledger:
A Composable Treatment”. In: CRYPTO 2017, Part I.
Ed. by J. Katz and H. Shacham. Vol. 10401. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 324–356.

[4] S. Bano et al. “SoK: Consensus in the Age of
Blockchains”. In: AFT 2019, pp. 183–198.

[5] E. Ben-Sasson et al. “Zerocash: Decentralized Anony-
mous Payments from Bitcoin”. In: IEEE SP. 2014,
pp. 459–474.

[6] Bitcoin-Compatible Virtual Channels: Github reposi-
tory. https://github.com/utxo-virtual-channels/vc. 2020.

[7] Bitcoin Wiki: Payment Channels. https://en.bitcoin.it/
wiki/Payment channels. 2018.

[8] R. Canetti. “Universally Composable Security: A New
Paradigm for Cryptographic Protocols”. In: 42nd FOCS.
IEEE Computer Society Press, Oct. 2001, pp. 136–145.

[9] R. Canetti et al. “Universally Composable Security with
Global Setup”. In: TCC 2007. Ed. by S. P. Vadhan.
Vol. 4392. LNCS. Springer, Heidelberg, Feb. 2007,
pp. 61–85.

[10] M. M. T. Chakravarty et al. “Hydra: Fast Isomorphic
State Channels”. In: IACR Cryptol. ePrint Arch. 2020
(2020), p. 299. URL: https://eprint.iacr.org/2020/299.

[11] S. Dziembowski et al. “General State Channel Net-
works”. In: ACM CCS. 2018, pp. 949–966.

[12] S. Dziembowski et al. “Multi-party Virtual State Chan-
nels”. In: EUROCRYPT 2019, Part I. 2019, pp. 625–
656.

[13] S. Dziembowski et al. “Perun: Virtual Payment Hubs
over Cryptocurrencies”. In: IEEE SP. 2019, pp. 106–
123.

[14] C. Egger et al. “Atomic Multi-Channel Updates with
Constant Collateral in Bitcoin-Compatible Payment-
Channel Networks”. In: ACM CCS. 2019, pp. 801–815.

[15] O. Goldreich. Foundations of Cryptography: Volume
1. New York, NY, USA: Cambridge University Press,
2006. ISBN: 0521035368.

[16] L. Gudgeon et al. “SoK: Layer-Two Blockchain Proto-
cols”. In: FC 2020. 2020, pp. 201–226.

[17] E. Heilman et al. “TumbleBit: An Untrusted
Bitcoin-Compatible Anonymous Payment Hub”.
In: NDSS 2017. The Internet Society, 2017.

[18] M. Jourenko et al. “Lightweight Virtual Payment Chan-
nels”. In: CANS 2020. 2020, pp. 365–384.

[19] G. Kappos et al. “An Empirical Analysis of Privacy
in the Lightning Network”. In: CoRR abs/2003.12470
(2020). arXiv: 2003.12470. URL: https://arxiv.org/abs/
2003.12470.

[20] J. Katz et al. “Universally Composable Synchronous
Computation”. In: TCC 2013. Ed. by A. Sahai.
Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013,
pp. 477–498. DOI: 10.1007/978-3-642-36594-2 27.

[21] G. Malavolta et al. “Anonymous Multi-Hop Locks for
Blockchain Scalability and Interoperability”. In: NDSS.
2019.

[22] G. Malavolta et al. “Concurrency and Privacy with
Payment-Channel Networks”. In: ACM CCS 17. Ed. by
B. M. Thuraisingham et al. ACM Press, 2017, pp. 455–
471.

[23] A. Miller et al. “Sprites and State Channels: Payment
Networks that Go Faster Than Lightning”. In: FC 2019.
2019, pp. 508–526.

[24] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. http://bitcoin.org/bitcoin.pdf. 2009.

[25] U. Nisslmueller et al. “Toward Active and Passive
Confidentiality Attacks on Cryptocurrency Off-chain
Networks”. In: ICISSP. Ed. by S. Furnell et al. 2020,
pp. 7–14.

[26] J. Poon and T. Dryja. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. Draft version
0.5.9.2, available at https://lightning.network/lightning-
network-paper.pdf. Jan. 2016.

[27] S. Roos et al. “Settling Payments Fast and Private:
Efficient Decentralized Routing for Path-Based Trans-
actions”. In: NDSS. 2018.

[28] E. Tairi et al. A2L: Anonymous Atomic Locks for Scal-
ability and Interoperability in Payment Channel Hubs.
In press.

[29] S. Tikhomirov et al. “A Quantitative Analysis of Se-
curity, Anonymity and Scalability for the Lightning
Network”. In: IEEE EuroS&P. 2020, pp. 387–396.

[30] Update from the Raiden team on development progress,
announcement of raidEX. https://tinyurl.com/z2snp9e.
Feb. 2017.

[31] A. Zamyatin et al. SoK: Communication Across Dis-
tributed Ledgers. In press.

APPENDIX

A. On the usage of the UC-Framework

To formally model the security of our construction, we use
a synchronous version of the global UC framework (GUC) [9]
which extends the standard UC framework [8] by allowing for
a global setup. Since our model is essentially the same as in
[2], which in turn follows [11, 12], parts of this section are
taken verbatim from there.

a) Protocols and adversarial model: We consider a
protocol π that runs between parties from the set P =
{P1, . . . , Pn}. A protocol is executed in the presence of an
adversary A that takes as input a security parameter 1λ

(with λ ∈ N) and an auxiliary input z ∈ {0, 1}∗, and who
can corrupt any party Pi at the beginning of the protocol
execution (so-called static corruption). By corruption we mean
that A takes full control over Pi and learns its internal state.
Parties and the adversary A receive their inputs from a special
entity – called the environment E – which represents anything
“external” to the current protocol execution. The environment
also observes all outputs returned by the parties of the protocol.
In addition to the above entities, the parties can have access
to ideal functionalities H1, . . . ,Hm. In this case we say that
the protocol π works in the (H1, . . . ,Hm)-hybrid model and
write πH1,...,Hm .

b) Modeling time and communication: We assume a
synchronous communication network, which means that the
execution of the protocol happens in rounds. Let us emphasize
that the notion of rounds is just an abstraction which simplifies
our model and allows us to argue about the time complexity of
our protocols in a natural way. We follow [12], which in turn
follows [20], and formalize the notion of rounds via an ideal
functionality F̂clock representing “the clock”. On a high level,
the ideal functionality requires all honest parties to indicate
that they are prepared to proceed to the next round before the
clock is “ticked”. We treat the clock functionality as a global
ideal functionality using the GUC model. This means that all
entities are always aware of the given round.

We assume that parties of a protocol are connected via au-
thenticated communication channels with guaranteed delivery
of exactly one round. This means that if a party P sends
a message m to party Q in round t, party Q receives this
message in beginning of round t + 1. In addition, Q is sure
that the message was sent by party P . The adversary can see
the content of the message and can reorder messages that
were sent in the same round. However, it can not modify,
delay or drop messages sent between parties, or insert new
messages. The assumptions on the communication channels
are formalized as an ideal functionality FGDC . We refer the
reader to [12] its formal description.

While the communication between two parties of a protocol
takes exactly one round, all other communication – for exam-
ple, between the adversary A and the environment E – takes
zero rounds. For simplicity, we assume that any computation
made by any entity takes zero rounds as well.

c) Handling coins: We model the money mechanics
offered by UTXO cryptocurrencies, such as Bitcoin, via a
global ideal functionality L̂ using the GUC model. Our
functionality is parameterized by a delay parameter ∆ which
upper bounded in the maximal number of rounds it takes to
publish a valid transaction, and a signature scheme Σ. The
functionality accepts messages from a fixed set of parties P .

The ledger functionality L̂ is initiated by the environment E
via the following steps: (1) E instructs the ledger functionality
to generate public parameter of the signature scheme pp; (2) E
instructs every party P ∈ P to generate a key pair (skP , pkP)
and submit the public key pkP to the ledger via the message
(register, pkP); (3) sets the initial state of the ledger meaning
that it initialize a set TX defining all published transactions.

Once initialized, the state of L̂ is public and can be
accessed by all parties of the protocol, the adversary A and
the environment E . Any party P ∈ P can at any time post
a transaction on the ledger via the message (post, tx). The
ledger functionality waits for at most ∆ rounds (the exact
number of rounds is determined by the adversary). Thereafter,
the ledger verifies the validity of the transaction and adds it
to the transaction set TX. The formal description of the ledger
functionality follows.

Ideal Functionality L̂(∆,Σ)

The functionality accepts messages from all parties that are
in the set P and maintains a PKI for those parties. The
functionality maintains the set of all accepted transactions TX
and all unspent transaction outputs UTXO. The set V defines
valid output conditions.
Initialize public keys: Upon (register, pkP)

τ0←−↩ P and it is
the first time P sends a registration message, add (pkP , P) to
PKI.
Post transaction: Upon (post, tx)

τ0←−↩ P , check that |PKI| =
|P|. If not, drop the message, else wait until round τ1 ≤ τ0 +∆
(the exact value of τ1 is determined by the adversary). Then
check if:
1) The id is unique, i.e. for all (t, tx′) ∈ TX, tx′.txid 6= tx.txid.
2) All the inputs are unspent and the witness satisfies all the

output conditions, i.e. for each (tid , i) ∈ tx.Input, there
exists (t, tid , i, θ) ∈ UTXO and θ.ϕ(tx, t, τ1) = 1.

3) All outputs are valid, i.e. for each θ ∈ tx.Output it holds
that θ.cash > 0 and θ.ϕ ∈ V .

4) The value of the outputs is not larger than the value of the
inputs. More formally, let I := {utxo := (t, tid , i, θ) |
utxo ∈ UTXO ∧ (tid , i) ∈ tx.Input}, then it must hold that∑
θ′∈tx.Output θ

′.cash ≤
∑

utxo∈I utxo.θ.cash
5) The absolute time-lock of the transaction has expired, i.e. it

must hold that tx.TimeLock ≤ now.
If all the above checks return true, add (τ1, tx) to TX, re-
move the spent outputs from UTXO, i.e., UTXO := UTXO \ I
and add the outputs of tx to UTXO, i.e., UTXO := UTXO ∪
{(τ1, tx.txid, i, θi)}i∈[n] for (θ1, . . . , θn) := tx.Output. Else,
ignore the message.

Let us emphasize that our ledger functionality is fairly
simplified. In reality, parties can join and leave the blockchain
system dynamically. Moreover, we completely abstract from
the fact that transactions are published in blocks which are
proposed by parties and the adversary. Those and other fea-
tures are captured by prior works, such as [3], that provide
a more accurate formalization of the Bitcoin ledger in the
UC framework [8]. However, interaction with such ledger
functionality is fairly complex. To increase the readability of
our channel protocols and ideal functionality, which is the
main focus on our work, we decided for this simpler ledger.

d) The GUC-security definition: Let π be a protocol
with access to the global ledger L̂(∆,Σ), the global clock
F̂clock and ideal functionalities H1, . . . ,Hm. The output of an
environment E interacting with a protocol π and an adversary
A on input 1λ and auxiliary input z is denoted as

EXE
L̂(∆,Σ),F̂clock ,H1,...,Hm

π,A,E (λ, z).

Let φF be the ideal protocol for an ideal functionality F
with access to the global ledger L̂(∆,Σ) and the global clock
F̂clock . This means that φF is a trivial protocol in which the
parties simply forward their inputs to the ideal functionality
F . The output of an environment E interacting with a protocol
φF and a adversary S (sometimes also call simulator) on input
1λ and auxiliary input z is denoted as

EXE
L̂(∆,Σ),F̂clock

φF ,S,E (λ, z).

We are now ready to state our main security definition
which, informally, says that if a protocol π UC-realizes an

ideal functionality F , then any attack that can be carried
out against the real-world protocol π can also be carried out
against the ideal protocol φF .

Definition 1: A protocol π working in a (H1, . . . ,Hm)-
hybrid model UC-realizes an ideal functionality F with respect
to a global ledger L̂ := L̂(∆,Σ) and a global clock F̂clock if
for every adversary A there exists an adversary S such that
we have {

EXEL̂,F̂clock ,H1,...,Hm

π,A,E (λ, z)
}

λ∈N,
z∈{0,1}∗

c
≈
{

EXEL̂,F̂clock

φF ,S,E (λ, z)
}

λ∈N,
z∈{0,1}∗

(where “
c
≈” denotes computational indistinguishability of dis-

tribution ensembles, see, e.g., [15]).
To simplify exposition, we omit the session identifiers sid
and the sub-session identifiers ssid. Instead, we will use
expressions like “message m is a reply to message m′”. We
believe that this approach improves readability.

B. Adaptor Signatures

Adaptor signatures have been introduced and used in the
cryptocurrencies community for some time, but have been
formalized for the first time in [2]. These signatures not only
allow for authentication as normal signatures schemes do, but
also reveal a secret value upon publishing. Here we recall
the definition of an adaptor signature scheme from [2]. In
a nutshell, an adaptor signature is generated in two phases.
First a pre-signature is computed w.r.t. some statement Y of
a hard relation R e.g. Y = gy where g is the generator of the
group G in which computing the discrete logarithm is hard.
We define LR to be the associated language for R defined as
LR := {Y | ∃y s.t. (Y, y) ∈ R}. This pre-signature can be
adapted to a full signature given a witness y for the statement
Y , i.e. (Y, y) ∈ R. Furthermore, given the pre-signature and
the adapted full signature one can extract a witness y. We now
recall the definition for adaptor signature schemes from [2].

Definition 2 (Adaptor Signature Scheme): An adaptor sig-
nature scheme wrt. a hard relation R and a signature scheme
Σ = (Gen,Sign,Vrfy) consists of four algorithms ΞR.Σ =
(pSign,Adapt, pVrfy,Ext) defined as:
pSignsk (m,Y): is a PPT algorithm that on input a secret key

sk , message m ∈ {0, 1}∗ and statement Y ∈ LR, outputs
a pre-signature σ̃.

pVrfypk (m,Y ; σ̃): is a DPT algorithm that on input a public
key pk , message m ∈ {0, 1}∗, statement Y ∈ LR and
pre-signature σ̃, outputs a bit b.

Adapt(σ̃, y): is a DPT algorithm that on input a pre-signature
σ̃ and witness y, outputs a signature σ.

Ext(σ, σ̃, Y): is a DPT algorithm that on input a signature σ,
pre-signature σ̃ and statement Y ∈ LR, outputs a witness
y such that (Y, y) ∈ R, or ⊥.

We now briefly recall the properties that an adaptor signa-
ture scheme must satisfy and refer the reader to [2] for the
formal definitions.

a) Correctness: An adaptor signature should not only
satisfy the standard signature correctness, but it must also
satisfy pre-signature correctness. This property guarantees
that if a pre-signature is generated honestly (wrt. a statement
Y ∈ LR), it can be adapted into a valid signature such that a
witness for Y can be extracted.

b) Existential unforgeablity under chosen message attack
for adaptor signatures: Unforgeability for adaptor signatures
is very similar to the normal definition of existential unforge-
ability under chosen message attacks for digital signatures,
but it additionally requires that producing a forged signature
σ for a message m is hard even if the adversary is given
a pre-signature on the challenge message m w.r.t. a random
statement Y ∈ LR.

c) Pre-signature adaptability: Intuitively it is required
that any valid pre-signature w.r.t. Y (even when produced by
a malicious signer) can be completed into a valid signature
using the witness y where (Y, y) ∈ R.

d) Witness extractability: In a nutshell, this property
states that given a valid signature/pre-signatue pair (σ, σ̃) for
a message m with respect to a statement Y , one can extract
the corresponding witness y.

C. Ledger channels

For completeness, we recall the ledger channel ideal func-
tionality FL from [2]. We then show that we cannot use this
ideal functionality in a black-box way and instead we intro-
duce a wrapped ledger channel functionality FpreL. Finally,
we present a protocol ΠpreL that realizes FpreL.

1) Ledger Channel Functionality: We now recall the ideal
functionality for ledger channels FL(T, k) from [2]. This
functionality is parameterized by T ∈ N that upper bounds
the number of consecutive off-chain communication rounds
between parties and a parameter k ∈ N that defined the number
of ways a channel can be closed (i.e., number of commit
transactions per update).

Following [2], the pseudocode presented below excludes
several checks that one would expect the functionality to make.
We formalize all the missing checks in form of a functionality
wrapper in Appendix E. Moreover, in order to simplify the
notation in the functionality description, we write m

t
↪−→ P

as a short hand form for “send the message m to party P in
round t.” and m

t←−↩ P for “receive a message m from party
P in round t”.

Ideal Functionality FL(T, k)

We abbreviate Q := γ.otherParty(P) for P ∈ γ.endUsers.

Create

Upon (CREATE, γ, tidP)
τ0←−↩ P , let S define T1 ≤ T and:

Both agreed: If already received (CREATE, γ, tidQ)
τ←−↩ Q,

where τ0 − τ ≤ T1, wait if in round τ1 ≤ τ + ∆ + T1 a
transaction tx, with tx.Input = (tidP , tidQ) and tx.Output =
(γ.cash, ϕ), appears on the ledger L̂. If yes, set Γ(γ.id) :=

(γ, tx) and (CREATED, γ.id)
τ1
↪−→ γ.endUsers. Else stop.

Wait for Q: Else store the message and stop.

Update

Upon (UPDATE, id , ~θ, tstp)
τ0←−↩ P , let S define T1, T2 ≤ T ,

parse (γ, tx) := Γ(id) and proceed as follows:
1) In round τ1 ≤ τ0 + T , let S set | ~tid | = k. Then

(UPDATE–REQ, id , ~θ, tstp, ~tid)
τ1
↪−→ Q and (SETUP, id , ~tid)

τ1
↪−→ P .

2) If (SETUP–OK, id)
τ2≤τ1+tstp
←−−−−−−−↩ P , then (SETUP–OK, id)

τ2+T1
↪−−−−→ Q. Else stop.

3) If (UPDATE–OK, id)
τ2+T1←−−−−↩ Q, then (UPDATE–OK, id)

τ2+2T1
↪−−−−−→ P . Else distinguish:
• If Q honest or if instructed by S, stop (update rejected).
• Else execute L–ForceClose(id) and stop.

4) If (REVOKE, id)
τ2+2T1←−−−−−↩ P , (REVOKE–REQ, id)

τ2+2T1+T2
↪−−−−−−−→

Q. Else execute L–ForceClose(id) and stop.

5) If (REVOKE, id)
τ2+2T1+T2←−−−−−−−↩ Q, set γ.st = ~θ and Γ(id) :=

(γ, tx). Then (UPDATED, id , ~θ)
τ2+2T1+2T2
↪−−−−−−−−→ γ.endUsers

and stop. Else distinguish:
• If Q honest, execute L–ForceClose(id) and stop.
• If Q corrupt, and wait for ∆ rounds. If tx still unspent,

then set ~θold := γ.st, γ.st := {~θold , ~θ} and Γ(id) :=
(γ, tx). Execute L–ForceClose(id) and stop.

Close

Upon (CLOSE, id)
τ0←−↩ P , let S define T1 ≤ T and distinguish:

Both agreed: If you received (CLOSE, id)
τ←−↩ Q, where τ0 −

τ ≤ T1, let (γ, tx) := Γ(id) and distinguish:
• If in round τ1 ≤ τ + T1 + ∆ a transaction tx′, with
tx′.Output = γ.st and tx′.Input = tx.txid, appears on
L̂, set Γ(id) := (⊥, tx), (CLOSED, id)

τ1
↪−→ γ.endUsers and

stop.
• If tx is still unspent in round τ + T1 + ∆, output (ERROR)

τ+T1+∆
↪−−−−−→ γ.endUsers and stop.

Wait for Q: Else wait for at most T1 rounds to receive
(CLOSE, id)

τ≤τ0+T1←−−−−−−↩ Q (in that case option “Both agreed”
is executed). If such message is not received, execute
L–ForceClose(id) in round τ0 + T1.

Punish (executed at the end of every round τ0)

For each (γ, tx) ∈ Γ check if L̂ contains tx′ with tx′.Input =
tx.txid. If yes, then distinguish:
Punish: For P ∈ γ.endUsers honest, the following must hold:

in round τ1 ≤ τ0 + ∆, a transaction tx′′ with tx′′.Input =
tx′.txid and tx′′.Output = (γ.cash, One–SigpkP

) appears on

L̂. Then send (PUNISHED, id)
τ1
↪−→ P , set Γ(id) := ⊥ and

stop.
Close: Either Γ(id) = (⊥, tx) before round τ0 + ∆ (channels

was peacefully closed) or in round τ1 ≤ τ0 +2∆ a transaction
tx′′, with tx′′.Output ∈ γ.st and tx′′.Input = tx′.txid,
appears on L̂ (channel is forcefully closed). In the latter case,
set Γ(id) := (⊥, tx) and (CLOSED, id)

τ1
↪−→ γ.endUsers.

Error: Otherwise (ERROR)
τ0+2∆
↪−−−−→ γ.endUsers.

Subprocedure L–ForceClose(id)

Let τ0 be the current round and (γ, tx) := Γ(id). If within ∆
rounds tx is still an unspent transaction on L̂, then (ERROR)
τ0+∆
↪−−−→ γ.endUsers and stop. Else, latest in round τ0 + 3∆,
m ∈ {CLOSED, PUNISHED, ERROR} is output via Punish.

2) Wrapped ledger channel functionality: For technical rea-
son we cannot use the ledger channel functionality FL(T, k)
for building virtual channels in a black-box way. The main
problem comes from the offloading feature of virtual channels.
In order to overcome these issues, we present FpreL(T, k),
an ideal functionality that extends FL(T, k) to support the
preparation of generalized channels ahead of time and later
registration of such prepared generalized channels. Techni-
cally, the functionality extension is done by wrapping the
original functionality. Before we present the functionality
wrapper FpreL(T, k) formally, let us explain each of its parts
on high level.

a) Generalized channels: The functionality treats mes-
sages about standard generalized channels exactly as the
functionality FL(T, k) presented earlier in this section.

b) Creation: In order to pre-create a generalized channel
γ, both end-users of the channel must send the message
(PRE–CREATE, γ, TXf, i, tofl) to the ideal functionality. Here
TXf||i identifies the funding of the channel and tofl ∈ N rep-
resents the maximal number of round it should take to publish
the channel funding transaction on-chain. If the functionality
receives such a message from both parties within T rounds,
it stores the channel γ, the funding identifier and the waiting
time to a special channel set Γpre , and informs both parties
about the successful pre-creation.

c) Update: The update process works similarly as for
standard ledger channel with one difference. If the update
process fails at some point (e.g., one of the parties does
not revoke), the functionality does not call L–ForceClose
since there is no ledger channel to be forcefully closed.
Instead, it calls a subprocedure called Wait–if–Register
which add a flag “in–dispute” to the channel and waits for
at most tofl rounds if the prepared channel is turned into a
standard generalized channel (i.e., the corresponding funding
transaction is added to the blockchain). If not, then it adds
the new channel state back into the set of prepared (not yet
full-fledged) channel states.

d) Register: The ideal functionality constantly monitors
the ledger. Once the funding transaction of one of the channels
in preparation appears on-chain, the functionality moves the
information about the channel from the channel space Γpre to
the channel space Γ. Moreover, if the channel in preparation
was marked as “in–dispute”, then it immediately calls
L–ForceClose.

The formal functionality description on the functionality
wrapper FpreL(T, k) follows. Again, for the sake of readabil-
ity, we exclude several natural checks from the functionality
description. These checks are formalized in Appendix E.

Wrapped Ledger Channel Functionality FpreL(T, k)

We abbreviate Q := γ.otherParty(P) for P ∈ γ.endUsers.

Ledger Channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK,
REVOKE or CLOSE message, then behave exactly as the func-
tionality FL(T, k).

Pre-Create

Upon (PRE–CREATE, γ, TXf, i, tofl)
τ0←−↩ P , let S define T1 ≤ T

and:
Both agreed: If already received (PRE–CREATE, γ, TXf, i, tofl)
τ←−↩ Q, where τ0 − τ ≤ T1, check that TXf.Output[i].cash =
γ.cash. If yes, set Γpre(γ.id) := (γ, TXf, tofl) and
(PRE–CREATED, γ.id)

τ0
↪−→ γ.endUsers. Else stop.

Wait for Q: Else store the message and stop.

Pre-Update

Upon (PRE–UPDATE, id , ~θ, tstp)
τ0←−↩ P , let S define T1, T2 ≤

T , parse (γ, TXf, t) := Γpre(id) and proceed as follows:
1) In round τ1 ≤ τ0 + T , let S set | ~tid | = k.

Then (PRE–UPDATE–REQ, id , ~θ, tstp, ~tid)
τ1
↪−→ Q and

(PRE–SETUP, id , ~tid)
τ1
↪−→ P .

2) If (PRE–SETUP–OK, id)
τ2≤τ1+tstp
←−−−−−−−↩ P , then

(PRE–SETUP–OK, id)
τ2+T1
↪−−−−→ Q. Else stop.

3) In round τ2 + T1 distinguish:

• If (PRE–UPDATE–OK, id)
τ2+T1←−−−−↩ Q, then

(PRE–UPDATE–OK, id)
τ2+2T1
↪−−−−−→ P .

• If not and Q honest or if instructed by S,
(PRE–UPDATE–REJECT, id)

τ2+2T1
↪−−−−−→ P .

• Else execute Wait–if–Register(id) and stop.

4) If (PRE–REVOKE, id)
τ2+2T1←−−−−−↩ P , (PRE–REVOKE–REQ, id)

τ2+2T1+T2
↪−−−−−−−→ Q. Else execute Wait–if–Register(id) and
stop.

5) If (PRE–REVOKE, id)
τ2+2T1+T2←−−−−−−−↩ Q, set γ.st = ~θ

and ΓV (id) := (γ, TXf). Then (PRE–UPDATED, id , ~θ)
τ2+2T1+2T2
↪−−−−−−−−→ γ.endUsers and stop. Else
Wait–if–Register(id) and stop.

Register – executed in every round

Let t0 be the current round. For every (γ, TXf) ∈ Γpre check if
TXf appears on the ledger L̂. If yes, then Γpre(γ.id) = ⊥ and
Γ(γ.id) = (γ, TXf).

Subprocedure Wait–if–Register(id)

Let τ0 be the current round and (γ, TXf, tofl) := Γpre(id).
1) Set Γpre(id) := (γ, TXf, tofl , in–dispute).
2) Wait for tofl rounds. If after this time, Γpre(id) 6= ⊥,

then set ~θold := γ.st, γ.st := {~θold , ~θ} and Γpre(id) :=
(γ, TXf, tofl , in–dispute).

3) Realizing the wrapped functionality: While [2] presents
a protocol ΠL that realizes the ideal functionality FL, it does
not say anything about our wrapped functionality FpreL. In
order to have such protocol, we design a protocol wrapper

around the protocol ΠL and prove that such wrapped protocol,
which we denote ΠpreL realizes the ideal functionality FpreL.
Note that, just like ΠL, ΠpreL uses the adaptor signature
primitive that we recalled in Appendix B.

Let us stress that the protocol wrapper very closely follows
the protocol for ledger channels. Below we stress the main
difference and thereafter we formally define the protocol for
completeness.

a) Pre-Create: The only difference between the pre-
create and create is that in pre-create TXf is neither generated
by the parties nor posted on the ledger and is given as an input
from the environment. Intuitively this is a funding transactions
that might be posted in the future. Hence such channels are
called pre-created or prepared channels.

b) Pre-Update: During the pre-update procedure, parties
update the state of the pre-created channel as in normal
ledger channels, but parties cannot directly force-close the
channel since the funding transaction is not posted on the
ledger yet. Hence in case of dispute parties first have to
post this transaction on the ledger this is captured in calls
to Wait–if–Register sub-procedure.

c) Register: This is a new procedure in order to capture
the situation during which the funding transaction of a pre-
created channel is posted on the ledger. In this case the pre-
created channel is transformed into a normal ledger channel
and is added to the list of ledger channels. Furthermore if this
channel was in dispute, it is directly force closed.

To summarize, parties upon receiving one of the
PRE–UPDATE, PRE–SETUP–OK, PRE–UPDATE–OK or
PRE–REVOKE messages, behave as in the protocol ΠL

with the following changes:
• Use the channel space ΓPpre instead of ΓP .
• Add tofl rounds to the absolute time lock of new TXc.
• Replace calls to L–ForceCloseP by calls to
Wait–if–RegisterP which marks a channel to be
in dispute.

• In case the reacting party peacefully rejects the update,
output PRE–UPDATE–REJECT before you stop.

• When the protocol instructs you to output a m-message,
where m ∈ {UPDATE–REQ, SETUP, SETUP–OK, UPDATE–OK,
REVOKE–REQ, UPDATED}, then output PRE–m.
We are now prepared to present the formal description of the

protocol. As for the ideal functionalities, we exclude several
natural checks that parties have to make. We present all these
checks in form of a protocol wrapper in Appendix E.

Wrapped Ledger Channel Protocol ΠpreL

Below, we abbreviate Q := γ.otherParty(P) for P ∈
γ.endUsers.

Ledger channels

Upon receiving a CREATE, UPDATE, SETUP–OK, UPDATE–OK,
REVOKE or CLOSE message, then behave exactly as in the
protocol ΠL.

Pre-Create

Party P upon (PRE–CREATE, γ, TXf, i, tofl)
t0←−↩ E :

1) If TXf.Output[i].cash 6= γ.cash, then ignore the message.
2) Set id := γ.id, generate (RP , rP) ← GenR, (YP , yP) ←

GenR and send (createInfo, id , TXf, i, tofl ,RP ,YP)
t0
↪−→

Q.
3) If (createInfo, id , TXf, i, tofl ,RQ,YQ)

t0+1
←−−−↩ Q, create:

[TXc] := GenCommit([TXf], IP , IQ, 0)

[TXs] := GenSplit([TXc].txid‖1, γ.st)

for IP := (pkP ,RP ,YP), IQ := (pkQ,RQ,YQ). Else
stop.

4) Compute sPc ← pSignskP
([TXc],YQ), sPs ←

SignskP
([TXs]) and send (createCom, id , sPc , s

P
s)

t0+1
↪−−−→ Q.

5) If (createCom, id , sQc , s
Q
s)

t0+2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],

YP ; sQc) = 1 and VrfypkQ
([TXs]; s

Q
s) = 1, set

TXc := ([TXc], {SignskP
([TXc]),Adapt(s

Q
c , yP)})

TXs := ([TXs], {sPs , sQs })
ΓPpre(γ.id) := (γ, TXf, (TXc, rP ,RQ,YQ, s

P
c), TXs, tofl).

and send (PRE–CREATED, id)
t0+2
↪−−−→ E .

Pre-Update

Party P upon (PRE–UPDATE, id , ~θ, tstp)
tP0←−↩ E

1) Generate (RP , rP) ← GenR, (YP , yP) ← GenR and send

the message (updateReq, id , ~θ, tstp,RP ,YP)
tP0
↪−→ Q.

Party Q upon (updateReq, id , ~θ, tstp,RP ,YP)
t
Q
0←−↩ P

2) Generate (RQ, rQ)← GenR and (YQ, yQ)← GenR.
3) Extract TXf and tofl from ΓPpre(id).
4) Set tlock := tQ0 + tstp + 4 + ∆ + tofl and

[TXc] := GenCommit([TXf], IP , IQ, tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ)

where IP := (pkP ,RP ,YP), IQ := (pkQ,RQ,YQ).
5) Sign sQs ← SignskQ

([TXs]), send (updateInfo, id ,RQ,

YQ, s
Q
s)

t
Q
0

↪−→ P , (PRE–UPDATE–REQ, id , ~θ, tstp, TXs.txid)
t
Q
0 +1

↪−−−→ E .

Party P upon (updateInfo, id , hQ, YQ, s
Q
s)

tP0 +2
←−−−↩ Q

6) Extract TXf and tofl from ΓQpre(id).
7) Set tlock := tP0 + tstp + 5 + ∆ + tofl , and

[TXc] := GenCommit([TXf], IP , IQ, tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ),

for IP := (pkP ,RP ,YP) and IQ := (pkQ,RQ,YQ).
If it holds that VrfypkQ

([TXs]; s
Q
s) = 1, (PRE–SETUP, id ,

TXs.txid)
tP0 +2
↪−−−→ E . Else stop.

8) If (PRE–SETUP–OK, id)
tP1 ≤t

P
0 +2+tstp

←−−−−−−−−−↩ E , compute the val-
ues sPc ← pSignskP

([TXc],YQ), sPs ← SignskP
([TXs]) and

send the message (updateComP, id , sPc , s
P
s)

tP1
↪−→ Q. Else

stop.

Party Q

9) If (updateComP, id , sPc , s
P
s)

t
Q
1 ≤t

Q
0 +2+tstp

←−−−−−−−−−↩ P , s.t.
pVrfypkP

([TXc],YQ; sPc) = 1 and VrfypkP
([TXs]; s

P
s) = 1,

output (PRE–SETUP–OK, id)
t
Q
1

↪−→ E . Else stop.

10) If (PRE–UPDATE–OK, id)
t
Q
1←−↩ E , pre-sign sQc ←

pSign([TXc],YP) and send (updateComQ, id , sQc)
t
Q
1

↪−→ P .

Else send the message (updateNotOk, id , rQ)
t
Q
1

↪−→ P and
stop.

Party P

11) In round tP1 + 2 distinguish the following cases:

• If (updateComQ, id , sQc)
tP1 +2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],

YP ; sQc) = 1, output (PRE–UPDATE–OK, id)
tP1 +2
↪−−−→ E .

• If (updateNotOk, id , rQ)
tP1 +2
←−−−↩ Q, s.t. (RQ, rQ) ∈ R,

add ΘP (id) := ΘP (id)∪([TXc], rQ,YQ, s
P
c), output the

message (PRE–UPDATE–REJECT)
tP1 +2
↪−−−→ E and stop.

• Else, execute the procedure Wait–if–RegisterP (id)
and stop.

12) If (PRE–REVOKE, id)
tP1 +2
←−−−↩ E , parse ΓPpre(id) as (γ,

TXf, (TXc, r̄P , R̄Q, ȲQ, s̄
P
Com), TXs) and update the chan-

nel space as ΓPpre(id) := (γ, TXf, (TXc, rP ,RQ,YQ, s
P
c),

TXs), for TXs := ([TXs], {sPs , sQs }) and TXc := ([TXc],
{SignskP

([TXc]),Adapt(s
Q
c , yP)})., and send (revokeP,

id , r̄P)
tP1 +2
↪−−−→ Q. Else, execute Wait–if–RegisterP (id)

and stop.

Party Q

13) Parse ΓQpre(id) as (γ, TXf, (TXc, r̄Q, R̄P , ȲP , s̄
Q
Com), TXs).

If (revokeP, id , r̄P)
t
Q
1 +2

←−−−↩ P , s.t. (R̄P , r̄P) ∈

R, (PRE–REVOKE–REQ, id)
t
Q
1 +2

↪−−−→ E . Else execute
Wait–if–RegisterQ(id) and stop.

14) If (PRE–REVOKE, id)
t
Q
1 +2

←−−−↩ E as a reply, set

ΘQ(id) :=ΘQ(id) ∪ ([TXc], r̄P , ȲP , s̄
Q
Com)

ΓQpre(id) :=(γ, TXf, (TXc, rQ,RP ,YP , s
Q
c), TXs),

for TXs := ([TXs], {sPs , sQs }), TXc := ([TXc],
{SignskQ

([TXc]),Adapt(s
P
c , yQ)}), and send (revokeQ, id ,

r̄Q)
t
Q
1 +2

↪−−−→ P . In the next round (PRE–UPDATED, id)
t
Q
1 +3

↪−−−→ E and stop. Else, in round tQ1 + 2, execute
Wait–if–RegisterQ(id) and stop.

Party P

15) If (revokeQ, id , r̄Q)
tP1 +4
←−−−↩ Q s.t. (R̄Q, r̄Q) ∈

R, then set ΘP (id) := ΘP (id) ∪ ([TXc], r̄Q, ȲQ,

s̄PCom) and (PRE–UPDATED, id)
tP1 +4
↪−−−→ E . Else execute

Wait–if–RegisterP (id) and stop.

Register

Party P in every round t0: For each id ∈ {0, 1}∗ s.t.
ΓPpre(id) 6= ⊥:
1) Parse ΓPpre(id) := (γ, TXf, (TXc, rP ,RQ,YQ, s

P
c),

TXs, tofl , x)
2) If TXf appeared on-chain in this round, then

a) Set Γ(id) := (γ, TXf, (TXc, rP ,RQ,YQ, s
P
c), TXs).

b) Set ΓPpre(id) := ⊥
c) If x = in–dispute, then call L–ForceCloseP (id).

Subprocedures

GenCommit([TXf], (pkP ,RP ,YP), (pkQ,RQ,YQ), t) :
Let (c, Multi–SigpkP ,pkQ

) := TXf.Output[1] and denote

ϕ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP
,

ϕ2 := Multi–SigToKey(RP),ToKey(YP),pkQ
,

ϕ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ
.

Return [tx], where tx.Input = TXf.txid‖1, tx.Output :=
(c, ϕ1 ∨ϕ2 ∨ϕ3) and set tx.TimeLock to t if t > now and to
0 otherwise.

GenSplit(tid , ~θ):
Return [tx], where tx.Input := tid and tx.Output := ~θ.

Wait–if–RegisterP (id):
Let t0 be the current round. Let X := ΓPpre(id). Then set
ΓPpre(id) := (X, in–dispute).

Theorem 2: Let Σ be a signature scheme that is existentially
unforgeable against chosen message attacks, R a hard relation
and ΞR,Σ a secure adaptor signature scheme. Then for any
ledger delay ∆ ∈ N, the protocol ΠpreL UC-realizes the ideal
functionality FpreL(3, 1).

D. Virtual Channels

In this section we first describe and present the ideal
functionality FV that describes the ideal behavior of vir-
tual channels. We then give a high level description of our
construction of virtual channels with validity, before giving
the full formal protocol description of our virtual channel
constructions.

1) Ideal functionality for virtual channels: FV can be
viewed as an extension of the ledger channel functionality
FL defined in [2] and here presented in Appendix C. The
functionality FV is parameterized by a parameter T which
upper bounds the maximum number of off-chain communi-
cation rounds between two parties required for any of the
operations in FL. The ideal functionality FV communicates
with the parties P , the simulator S and the ledger L̂ (see
Appendix A). It maintains a channel space Γ where it stores all
currently opened ledger channels (together with their funding

transaction tx) and virtual channels. Before we define FV
formally, we describe it at a high level.

a) Messages related to ledger channels: For any message
related to a ledger channel, FV behaves as the functionality
FL. That is, the corresponding code of FL is executed when
a message about a ledger channel γ is received. For the rest
of this section, we discuss the behavior of FV upon receiving
a message about a virtual channel.

b) Create: The creation of a virtual channel is equivalent
to synchronously updating two ledger channels. Therefore, if
all parties, namely γ.Alice, γ.Bob and γ.Ingrid, follow the
protocol, i.e., update their ledger channels correctly, a virtual
channel is successfully created. This is captured in the “All
agreed” case of the functionality. Hence, if all parties send
the CREATE message, the functionality returns CREATED to
γ.users, keeps the underlying ledger channels locked and adds
the virtual channel to its channel space Γ.

On the other hand, the creation of the virtual channel
fails if after some time at least one of the parties does not
send CREATE to the functionality. There are three possible
situations: (i), the update is peacefully rejected and parties
simply abort the virtual channel creation, (ii) both channels are
forcefully closed, in order to prevent a situation where one of
the channels is updated and the other one is not, (iii) if γ.Ingrid
has not published the old state of one of her channels to the
ledger after ∆ rounds, it forcefully closes the ledger channels
using the new state i.e., where γ.Ingrid behaves maliciously
and can publish both the old and new states, while γ.Alice or
γ.Bob can only publish the new state.

c) Update: The update procedure for the virtual channel
works in the same way as for ledger channels except in case
of any disputes during the execution, the functionality calls
V–ForceClose instead of L–ForceClose.

d) Offload: We consider two types of offloading de-
pending on whether the virtual channel is with or without
validity. In the first case, offloading is initiated by one of
the γ.endUsers before round γ.val, while for channels without
validity, Ingrid can initiate the offloading at any time. Since
offloading a virtual channel requires closure of the underlying
subchannels, the functionality merely checks if either funding
transaction of γ.subchan has been spent until round T1 +∆. If
not, the functionality outputs a message (ERROR). As in to [2],
the ERROR message represents an impossible situation which
should not happen as long as one of the parties is honest.

e) Close - channels without validity: Upon receiving
(CLOSE, id) from all parties in γ.users within T1 ≤ 6T rounds
(where the exact value of T1 is specified by S), all parties
have peacefully agreed on closing the virtual channel, which
is indicated by the “All Agreed” case. In this case the final
balance of the parties is reflected on their underlying channels.
When the update of Γ is completed, the ideal functionality
sends CLOSED to all users. Due to the peaceful closure in this
“All Agreed” case, the functionality defines property (E3).

If one of the (CLOSE, id) messages was not received within
T1 rounds (“Wait for others” case), the closing procedure fails.
The following cases my happen: (i) the update procedure of an

underlying ledger channel was aborted prematurely by γ.Alice
or γ.Bob which would cause the virtual channel to be force-
fully closed. (ii) γ.Ingrid refuses to revoke her state during
the update of either one of the underlying ledger channels
where the functionality waits ∆ rounds and if γ.Ingrid has not
published the old state to the ledger the functionality forcefully
closes the ledger channels using the new state.

f) Close - channels with validity.: This procedure starts
in round γ.val− (4∆ + 7T) to have enough time to forcefully
close the channel if necessary. If within T1 ≤ 6T rounds
(where the exact value of T1 is specified by S) all γ.users
agreed on closing the channel or if the simulator instructs the
functionality to close the channel, the same steps as in the
all agreed case for channels without validity are executed.
Otherwise, after T1 rounds, the functionality executes the
forceful closure of the virtual channel.

g) Punish: The punishment procedure is executed at the
end of each round. It checks for every virtual channel γ if
any of γ.subchan has just been closed and distinguishes if
the consequence of closure was offloading or punishment.
If after T1 rounds (T1 is set by S) two transactions tx1

and tx2 are published on the ledger, where tx1 refunds the
collateral γ.cash+γ.fee to γ.Ingrid and tx2 funds γ on-chain,
then the virtual channel has been offloaded and the message
(OFFLOADED) is sent to γ.users. If after T1 rounds, only one
transaction tx is on the ledger, which assigns γ.cash coins to
a single honest party P and spends the funding transaction of
only one of γ.subchan, the functionality sends (PUNISHED) to
P . Otherwise, the functionality outputs (ERROR) to γ.users.

h) Notation: In the functionality description, we use
the notion of rooted transactions that we now explain (see
Figure 11 for a concrete example). UTXO based blockchains
can be viewed as a directed acyclic graph, where each node
represents a transaction. Nodes corresponding to transactions
txi and txj are connected with an edge if at least one of the
outputs of txi is an input of txj , i.e, txi is (partially) funding
txj . We denote the transitive reachability relation between
nodes, which constitutes a partial order, as ≤. We say that
a transaction tx is rooted in the set of transactions R if

1) ∀txi ≤ tx.∃txj ∈ R.txj ≤ txi ∨ txi ≤ txj ,
2) ∀txi, txj ∈ R.txi 6= txj , txi 6≤ txj and
3) tx /∈ R.

tx1 tx3

tx2

tx4

tx5

tx6

tx8

tx7

Fig. 11: The root sets of transaction tx8 are {tx1},
{tx2, tx3, tx4}, {tx5, tx6}, {tx4, tx5} and {tx2, tx3, tx6}.

As in the case of ledger channel functionalities, the formal
description of FV excludes several checks that one would

expect the functionality to make. These checks are formalized
in form of a functionality wrapper in Appendix E.

Ideal Functionality FV (T)

Below we abbreviate A := γ.Alice, B := γ.Bob, I = γ.Ingrid.
For P ∈ γ.endUsers, we denote Q := γ.otherParty(P).

For messages about ledger channels, behave as FL(T, 1).

Create

Upon (CREATE, γ)
τ←−↩ P , let S define T1 ≤ 8T . If P ∈

γ.endUsers, then define a set S, where S := {idP } :=
γ.subchan(P), otherwise define S as S := {idP , idQ} :=
γ.subchan. Lock all channels in S and distinguish:

All agreed: If you already received both (CREATE, γ)
τ1←−↩ Q1

and (CREATE, γ)
τ2←−↩ Q2, where Q1, Q2 ∈ γ.users \ {P} and

τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed as:
1) Let S define ~θA and ~θB and set (idA, idB) := γ.subchan.
2) Execute UpdateState(idA, ~θA), UpdateState(idB , ~θB),

set Γ(γ.id) := γ, send (CREATED, γ)
τ3
↪−→ γ.endUsers, stop.

Wait for others: Else wait for at most T1 rounds to receive
(CREATE, γ)

τ1≤τ+T1←−−−−−−↩ Q1 and (CREATE, γ)
τ2≤τ+T1←−−−−−−↩ Q2

where Q1, Q2 ∈ γ.users\{P} (in that case option “All agreed”
is executed). If at least one of those messages does not arrive
before round τ + T1, do the following. For all id i ∈ S, let
(γi, txi) := Γ(id i) and distinguish the following cases:
• If S sends (peaceful–reject, id i), unlock id i and stop.
• If γ.Ingrid is honest or if instructed by S, execute
L–ForceClose(id i) and stop.

• Otherwise wait for ∆ rounds. If txi still unspent, then set
~θold := γi.st, γi.st := {~θold , ~θ} and Γ(id i) := (γi, txi).
Execute L–ForceClose(id i) and stop.

Update

Upon (UPDATE, id , ~θ, tstp)
τ0←−↩ P , where P ∈ γ.endUsers,

behave as FL(T, 1) yet replace the calls to L–ForceClose in
FL(T, 1) with calls to V–ForceClose.

Offload

Upon (OFFLOAD, id)
τ0←−↩ P , execute Offload(id).

Close

Channels without validity:
Upon (CLOSE, id)

τ←−↩ P , where γ(id).val = ⊥, let S
define T1 ≤ 6T . If P ∈ γi.endUsers, define a set S,
where S := {idP } := γi.subchan(P), else define S as
S := {idP , idQ} := γi.subchan and distinguish:

All agreed: If you received both messages (CLOSE, id)
τ1←−↩

Q1 and (CLOSE, id)
τ2←−↩ Q2, where Q1, Q2 ∈ γ.users \ {P}

and τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed
as follows:

1) Let γ := Γ(id), (idA, idB) := γ.subchan.
2) Parse γ.st = {(cA, One–SigA), (cB , One–SigB)} and set

~θA := ((cA, One–SigA), (cB + γ.fee/2, One–SigI)),
~θB := ((cA + γ.fee/2, One–SigI), (cB , One–SigB)),

3) Unlock both subchannels and execute
UpdateState(idA, ~θA) and UpdateState(idB , ~θB).
Set Γ(id) := ⊥ and send (CLOSED, γ)

τ3
↪−→ γ.endUsers.

Wait for others: Else wait for at most T1 rounds to receive
(CLOSE, γ)

τ1≤τ+T1←−−−−−−↩ Q1 and (CLOSE, γ)
τ2≤τ+T1←−−−−−−↩ Q2 where

Q1, Q2 ∈ γ.users \ {P} (in that case option “All agreed” is
executed). For all id i ∈ S let (γi, txi) := Γ(id i), if such
messages are not received until round τ +T1, set ~θold := γ′.st
and distinguish:
• If γ.Ingrid is honest or if instructed by S, execute
V–ForceClose(id i) and stop.

• Else wait for ∆ rounds. If txi still unspent, set
γi.st := {~θold , ~θ} and Γ(id i) := (γi, txi). Execute
L–ForceClose(id i) and stop.

Channels with validity:
For every γ ∈ Γ s.t. γ.val 6= ⊥, in round τ0 := γ.val− (4∆ +
7T) proceed as follows: let S set T1 ≤ 6T and distinguish:
Peaceful close: If all parties in γ.users are honest or if in-
structed by S, execute steps (1)–(3) of the “All agreed” case
for channels without validity with τ3 := τ0 + T1.
Force close: Else in round τ3 execute V–ForceClose(γ.id).

Punishment (executed at the end of every round)

For every id , where γ := Γ(id) is a virtual channel, set
(idA, idB) := γ.subchan. If this is the first round when
Γ(idA) = (⊥, txA) or Γ(idB) = (⊥, txB), i.e., one of the
subchannels was just closed, then let S set t1 ≤ T ′, where
T ′ := τ0 + T + 5∆ if γ.val = ⊥ and T ′ := γ.val + 3∆ if
γ.val 6= ⊥, and distinguish the following cases:
Offloaded: Latest in round t1 the ledger L̂ contains both
• a transaction tx1 rooted at {txA, txB} with an output

(γ.cash + γ.fee, One–SigI). In this case (OFFLOADED, id)
τ1
↪−→ I , where τ1 is the round tx1 appeared on L̂.

• a transaction tx2 with an output of value γ.cash and rooted
at {txA, txB}, if γ.val = ⊥, and rooted at {txA}, if
γ.val 6= ⊥. Let τ2 be the round when tx2 appeared on L̂.
Then output (OFFLOADED, id)

τ2
↪−→ γ.endUsers, set γ′ = γ,

γ′.Ingrid = ⊥, γ′.subchan = ⊥, γ.val = ⊥ and define
Γ(id) := (γ′, tx2).

Punished: Else for every honest party P ∈ γ.users, check
the following: the ledger L̂ contains in round τ1 ≤ t1 a
transaction tx rooted at either txA or txB with (γ.cash +
γ.fee/2, One–SigP) as output. In that case, output (PUNISHED,

id)
τ1
↪−→ P . Set Γ(id) = ⊥ in the first round when PUNISHED

was sent to all honest parties.
Error: If the above case is not true, then (ERROR)

t1
↪−→ γ.users.

V–ForceClose(id): Let τ0 be the current round and γ :=

Γ(id). Execute subprocedure Offload(id). Let T ′ := τ0 +
2T + 8∆ if γ.val = ⊥ and T ′ := γ.val + 3∆ if γ.val 6= ⊥.
If in round τ1 ≤ T ′ it holds that Γ(id) = (γ, tx), execute
subprocedure L–ForceClose(id).
Subprocedure Offload(id): Let τ0 be the current round, γ :=
Γ(id), (idα, idβ) := γ.subchan, (α, txA) := Γ(idα) and
(β, txB) := Γ(idβ). If within ∆ rounds, neither txA nor txB

is spent, then output (ERROR)
τ0+∆
↪−−−→ γ.users.

Subprocedure UpdateState(id , ~θ): Let (α, tx) := Γ(id). Set
α.st := ~θ and update Γ(id) := (α, tx).

2) Virtual Channels With Validity: We now briefly present
our virtual channel protocol with validity. We focus mainly on

the creation of the virtual channel as this illustrates the main
structural differences to our construction without validity. For
the full formal protocol description, we refer the reader to
Appendix D3.

a) Create: Unlike the without validity case, the struc-
ture of the construction with validity is not symmetric (see
Figure 12). The output of the ledger channel between A and
I is used as the input for the funding transaction of the virtual
channel TXf, whereas the output of the channel between B
and I is used for the so-called refund transaction TXrefund.
A can create TXf on her own from the last state of her

ledger channel with I . As a second step, A and B can already
create the transactions required for the virtual channel γ. Addi-
tionally, I and B create the refund transaction which returns
I’s collateral if the virtual channel is offloaded. Finally, the
created transactions are signed in reverse order. In particular,
B signs TXrefund so that I is ensured that she can publish it and
receive her collateral and fees. Then, I signs TXf and provides
the signature to A, effectively authorizing her to publish TXf,
thereby allowing A to offload the virtual channel.

TXf

c

f/2

pkA, pkB

TXrefund

c+ f

pkI

I
pkI

c+ f/2

TXAs

pkA, pkI

I
> γ.val

pkI

c+ f/2

TXBs pkI , pkB

B
> γ.val + 2∆

pkB

Fig. 12: Funding of a virtual channel γ with validity γ.val.

b) Offload: In our virtual channel with validity, only A
can offload the virtual channel γ by publishing the commit
and split transaction of her ledger channel with I . Although I
and B are not able to offload the virtual channel, they have the
guarantee that after round γ.val either the channel is offloaded
or closed or they can punish A and get reimbursed.

c) Punish: Recall that after a successful offload, the pun-
ishment mechanisms of generalized channels apply. We now
discuss other malicious behaviors specific to this construction.
In this protocol, only A can post the funding transaction of
the virtual channel. If the virtual channel is not closed or
offloaded by γ.val, A is punished. A loses her coins to I and
I loses her coins to B. Therefore, though B cannot offload
the channel, he will get reimbursed from his ledger channel
with I and I will get reimbursed regardless of whether the
virtual channel is offloaded or not. At the time val, if the
virtual channel is not honestly closed or the funding is not
published, I submits the punishment transaction to reimburse
her collateral. Therefore, at time val+∆, either the punishment
or the funding transaction is posted. If the virtual channel is
offloaded, I can publish the refund transaction within ∆ to
get her coins back.

We mention here only for our virtual channel construction
with validity. We refer the reader to Appendix F2 for the full
proof.

Theorem 3: Let Σ be a signature scheme that is strongly
unforgeable against chosen message attacks. Then for any
ledger delay ∆ ∈ N, the virtual channel protocol with validity
as described in Appendix D2 working in FpreL(3, 1)-hybrid,
UC-realizes the ideal functionality FV (3).

3) Formal Virtual Channel Protocol: We now formally
describe the protocol ΠV (T) that was discussed on a high
level in Section III-D and Appendix D2. Since our goal is
to prove that ΠV (T) UC-realizes FV (T), we need to discuss
about how parties deal with instructions about ledger channels
as well as virtual channels.

a) Ledger Channels: As a first step, we discuss how
parties deal with messages about ledger channels or prepared
ledger channels. On a high level, parties simply forward these
instructions to the hybrid ideal functionality FpreL(T, 1). If
the functionality sends a reply, the party forwards this reply to
the environment. In addition to the message forwarding, parties
stores information about the ledger channels in a channel space
ΓL. More precisely, once a ledger channel is created or pre-
created, party adds this channel to ΓL. Once an existing ledger
channel is updated or pre-updated, the party updates the latest
state of the channel stored in ΓL.

There is one technicality that we need to take care of.
There are two different situations in which a party of a
virtual channel protocol instructs the hybrid ideal functionality
FpreL(T, 1) to pre-cerate (resp. pre-update) a channel γ:

1) Party receives a pre-create, resp. pre-update, instruction
from the environment. As discussed above, in this case
the party acts as a dummy party and forward the message
to FpreL(T, 1).

2) Party is creating, resp. updating, a virtual channel and
hence is sending pre-create, resp. pre-update, messages
to FpreL(T, 1).

Let us stress that while channels pre-created via option (1)
exist in both the real and ideal world, channels pre-created via
option (2) exist only in the real world. This is because the pre-
creation of these channels was not initiated by the environment
but by the parties of the virtual channel protocol. Hence, we
need to make sure that the environment cannot “accidentally”
update a channel pre-created via (2) since this would help the
environment distinguish between the real and ideal world.

To this end, party in the case (1) modifies the identifier of
the channel by adding a prefix “ledger”. More precisely, if the
environment makes a request about a channel with identifier
id it forwards the instruction to the hybrid functionality
but replaces id with ledger‖id . Analogously, if the hybrid
functionality replies to this message, the party removes the
prefix. This ensure that the environment cannot directly make
any change on the ledger channels pre-created via option (2).

b) Virtual Channels: We now present the formal pseu-
docode for our virtual channel protocols ΠV (T). As for ledger
channels, the description excludes several checks that parties

have to make. We formalize all these checks in form of a
functionality wrapper in Appendix E.

Create: The creation of a virtual channel was described
on a high level in Section III-D. The main idea is to update the
two subchannels of the virtual channel and pre-create a new
ledger channel corresponding to the virtual channel. Impor-
tantly, the update of the subchannel needs to be synchonized
in order to ensure that either both updates complete (in which
case the virtual channel is created) or both updates are rejected
(in which case the virtual channel creation fails).

Since large part of the creation process is the same for
channel with and without validity, our formal description is
modularized.

Create a virtual channels - modular

Below we abbreviate FpreL := FpreL(T, 1), A := γ.Alice,
B := γ.Bob, I = γ.Ingrid. For P ∈ γ.endUsers, we denote
Q := γ.otherParty(P).

Party P ∈ {A,B}

Upon receiving (CREATE, γ)
tP0←−↩ E proceed as follows:

1) Let idα := γ.subchan(P) and compute

θP := GenVChannelOutput(γ, P).

2) Send (UPDATE, idα, θP , tstp)
tP0
↪−→ FpreL.

3) Upon receiving (SETUP, idα, tidP)
tP1 ≤t

P
0 +T

←−−−−−−↩ FpreL,
engage in the subprotocol SetupVChannel with input
(γ, tidP).

Party I

Upon receiving (CREATE, γ)
tI0←−↩ E proceed as follows:

1) Set idα = γ.subchan(A), idβ = γ.subchan(B) and
generate

θA := GenVChannelOutput(γ,A)

θB := GenVChannelOutput(γ,B)

2) If in round tI1 ≤ tI0 + T you have received
both (UPDATE–REQ, idα, θA, tstp, tidA) ←−↩ FpreL and
(UPDATE–REQ, idβ , θB , tstp, tidB) ←−↩ FpreL, then engage
in the subprotocol SetupVChannel with inputs (γ, tidA,
tidB). Else stop.

Party P ∈ {A,B}

Wait until tP2 := tP1 + tstp. If the subprotocol completed

successfully, then send (SETUP–OK, idα)
tP2
↪−→ FpreL. Else stop.

Party I

If in round tI2 ≤ tI1 + tstp + T you receive both
(SETUP–OK, idα)) ←−↩ FpreL and (SETUP–OK, idβ)) ←−↩ FpreL,
send (UPDATE–OK, idα)

t2
↪−→ FpreL and (UPDATE–OK, idβ)

t2
↪−→

FpreL. Otherwise stop.

Party P ∈ {A,B}

1) If you receive (UPDATE–OK, idα)
tP2 ≤t

P
1 +2T

←−−−−−−−↩ FpreL, reply

with (REVOKE, idα)
tP2 +T
↪−−−→ FpreL. Otherwise stop.

Party I

If in round tI3 ≤ tI2 + 4T you have received both
(REVOKE–REQ, idα) ←−↩ FpreL and (REVOKE–REQ, idβ) ←−↩

FpreL, reply (REVOKE, idα)
tI3
↪−→ FpreL and (REVOKE, idβ)

tI3
↪−→

FpreL and update ΓI(γ.id) from (⊥, x) to (γ, x). Otherwise
stop.

Party P ∈ {A,B}

Upon receiving (UPDATED, idα)
tP3 ≤t

P
2 +3T

←−−−−−−−↩ FpreL, mark γ as
created, i.e. update ΓP (γ.id) from (⊥, x) to (γ, x), and output

(CREATED, γ.id)
tP3
↪−→ E .

Function GenVChannelOutput(γ, P)

Return θ, where θ.cash = γ.cash+ γ.fee/2 and θ.ϕ is defined
as follows

θ.ϕ =

Multi–Sigγ.users ∨ (One–SigP ∧ CheckRelative(T+4∆)),

if γ.val = ⊥
Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ.val),

if γ.val 6= ⊥ ∧ P = A

Multi–SigB,I ∨ (One–SigB ∧ CheckLockTimeγ.val+2∆),

if γ.val 6= ⊥ ∧ P = B

Subprotocol SetupVChannel

Let t0 be the current round.

Channels without validity

Party P ∈ {A,B} on input (γ, tidP)

1) Create the body of the funding transactions:

TX
γ
f .Input :=(tidP , tidQ)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.cash + γ.fee, One–SigpkI
))

2) Send (PRE–CREATE, γ, TXf, 1, tofl)
t0
↪−→ FpreL, where tofl =

2T + 8∆.
3) If (PRE–CREATED, γ.id)

t1≤t0+T
←−−−−−−↩ FpreL, then sign the

funding transaction, i.e. sPf ← SignskP
([TXγf]) and send

(createFund, γ.id, sPf , [TX
γ
f])

t1
↪−→ I . Else stop.

Party I on input (γ, tidA, tidB)

4) If you receive (createFund, γ.id, sAf , [TX
γ
f])

t2≤t0+T+1
←−−−−−−−↩ A

and (createFund, γ.id, sBf , [TX
γ
f])

t2←−↩ B, verify the funding

transaction and signatures of A and B, i.e. check:

VrfypkA
([TXγf]; sAf) = 1

VrfypkB
([TXγf], sBf) = 1

(tidA, tidB) = TX
γ
f .Input

(γ.cash + γ.fee, One–SigpkI
) ∈ TX

γ
f .Output.

5) If all checks pass, sign the funding transaction, i.e. compute

sIf := SignskI
([TXγf]),

TX
γ
f := {([TXγf], sAf , s

B
f , s

I
f)}.

Store ΓI(γ.id) := (⊥, TXγf). Then send
(createFund, γ.id, sBf , s

I
f)

t2
↪−→ A and

(createFund, γ.id, sAf , s
I
f)

t2
↪−→ B, and consider procedure

successfully completed. Else stop.

Party P ∈ {A,B}

6) Upon receiving (createFund, γ.id, sQf , s
I
f)

t1+1
←−−−↩ I , ver-

ify all signatures, i.e. check:

VrfypkQ
([TXγf]; sQf) = 1

VrfypkI
([TXγf], sIf) = 1.

If all checks pass define TXγf := {([TXγf], sPf , s
Q
f , s

I
f)} and

set ΓP (γ.id) := (⊥, TXγf , tidP) and consider procedure
successfully completed. Else stop.

Channels with validity

Party A on input (γ, tidA)

1) Send (createInfo, γ.id, tidA)
t0
↪−→ B

2) In round t1 := t0 + 1, create the body of the funding
transaction:

TX
γ
f .Input :=(tidA)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.fee/2, One–SigpkI
))

3) Send (PRE–CREATE, γ, TXf, 1, tofl)
t1
↪−→ FpreL, for tofl =

γ.val + 3∆.
4) If (PRE–CREATED, γ.id)

t2≤t1+T
←−−−−−−↩ FpreL, then goto step

(10). Else stop.

Party B on input (γ, tidB)

5) If (createInfo, γ.id, tidA)
t1:=t0+1
←−−−−−−↩ A, then create the

body of the funding and refund transactions:

TX
γ
f .Input :=(tidA)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.fee/2, One–SigpkI
))

TX
γ
refund.Input :=(TXγf .txid||2, tidB)

TX
γ
refund.Output :=(γ.cash + γ.fee, One–SigpkI

).

Else stop.
6) Send (PRE–CREATE, γ, TXf, 1, tofl)

t1
↪−→ FpreL, for tofl =

γ.val + 3∆.

7) If (PRE–CREATED, γ.id)
t2≤t1+T
←−−−−−−↩ FpreL, then

compute a signature on the refund transaction,
i.e., sBRef ← SignskB

([TXγrefund]) and define
ΓB(γ.id) := (⊥, [TXγf], tidB). Then, send (createFund,

γ.id, sBRef, [TX
γ
refund], [TX

γ
f])

t2
↪−→ I and consider procedure

successfully completed. Else stop.

Party I on input (γ, tidA, tidB)

8) If (createFund, γ.id, sBRef, [TX
γ
refund], [TX

γ
f])

t3≤t0+T+2
←−−−−−−−↩

B, verify the fund and refund transactions and signature
of B, i.e. check:

VrfyskB
([TXγrefund]; s

B
Ref) = 1.

[TXγrefund].Input = (TXγf .txid||2, tidB),

[TXγrefund].Output = (γ.cash + γ.fee, One–SigpkI
),

[TXγf].Output[2] = (γ.fee/2, One–SigpkI
)

If all checks pass, then sign the fund and refund transactions,
i.e. compute

sIRef := SignskI
([TXγrefund]), s

I
f := SignskI

([TXγf]),

TX
γ
refund := {([TXγrefund], s

I
Ref, s

B
Ref)}.

Else stop.
9) Store ΓI(γ.id) := (⊥, [TXγf], TXγrefund, tidA, tidB), send

the message (createFund, γ.id, sIf)
t3
↪−→ A, and consider

procedure successfully completed.

Party A

10) If you receive (createFund, γ.id, sIf)
t2+2
←−−−↩ I , verify the

signature, i.e. check VrfypkI
([TXγf]; sIf) = 1. If the check

passes, compute a signature on the fund transaction:

sAf := SignskA
([TXγf]),

TX
γ,A
f := {([TXγf], sIf , s

A
f)}.

and set ΓA(γ.id) := (⊥, TXγ,Af , tidA). Then consider pro-
cedure successfully completed. Else stop.

Update: As discussed in Section III-D, in order to update
a virtual channel, parties update the corresponding prepared
channel. This is does in a black-box way via the hybrid
functionality FpreL. Hence, parties act as dummy parties as
forward update instructions (modified by adding PRE–) to
the hybrid functionality FpreL and forward the replies of the
functionality (modified by removing PRE–) to the environment.
In case the update fails, party offload the channel which allows
to resolve disputes on-chain.

Update

Below we abbreviate FpreL := FpreL(T, 1).

Initiating party P :

1) Upon (UPDATE, id , ~θ, tstp)
t0←−↩ E , (PRE–UPDATE, id , ~θ, tstp)

t0
↪−→ FpreL.

2) If (PRE–SETUP, id , tidP)
t1≤t0+T
←−−−−−−↩ FpreL, (SETUP, id ,

tidP)
t1
↪−→ E . Else stop.

3) If (SETUP–OK, id)
t2≤t1+tstp
←−−−−−−↩ E , (PRE–SETUP–OK, id)

t2
↪−→

E . Else stop.
4) Distinguish the following three cases:

• If (PRE–UPDATE–OK, id)
t3≤t2+T
←−−−−−−↩ FpreL,

(UPDATE–OK, id)
t3
↪−→ E .

• If (PRE–UPDATE–REJECT, id)
t3≤t2+T
←−−−−−−↩ FpreL, then stop.

• Else execute the procedure OffloadP (id) and stop.
5) If (REVOKE, id)

t3←−↩ E , (PRE–REVOKE, id)
t3
↪−→ FpreL. Else

execute OffloadP (id) and stop.

6) If (PRE–UPDATED, id)
t4≤t3+T
←−−−−−−↩ FpreL, update the channel

space, i.e., let γ := ΓP (id), set γ.st := ~θ and Γ(id) := γ.
Then (UPDATED, id)

t4
↪−→ FpreL. Else execute OffloadP (id)

and stop.

Reacting party Q

1) Upon (PRE–UPDATE–REQ, id , ~θ, tstp, tid)
τ0←−↩ FpreL,

(UPDATE–REQ, id , ~θ, tstp, tid)
τ0
↪−→ E .

2) If (PRE–SETUP–OK, id)
τ1≤τ0+tstp+T
←−−−−−−−−−↩ FpreL, (SETUP–OK,

id)
τ1
↪−→ E . Else stop.

3) If (UPDATE–OK, id)
τ1←−↩ E , (PRE–UPDATE–OK, id)

τ1
↪−→

FpreL. Else stop.

4) If (PRE–REVOKE–REQ, id)
τ2≤τ1+T
←−−−−−−↩ FpreL, (REVOKE–REQ,

id)
τ2
↪−→ E . Else execute OffloadQ(id) and stop.

5) If (REVOKE, id)
τ2←−↩ E , (PRE–REVOKE, id)

τ2
↪−→ FpreL. Else

execute OffloadQ(id) and stop.

6) Upon (PRE–UPDATED, id)
τ3≤τ2+T
←−−−−−−↩ FpreL, update the

channel space, i.e., let γ := ΓQ(id), set γ.st := ~θ and
Γ(id) := γ. Then (UPDATED, id)

τ3
↪−→ E .

Offload: As a next step, we define the offloading process
which transforms a virtual channel into a ledger channel.
Let us stress that offloading can be triggered either by the
environment via a message OFFLOAD or internally by parties
when executing an update or close. To avoid code repetition,
we define a procedure OffloadP (id) and instruct parties upon
receiving (OFFLOAD, id)

t0←−↩ E to simply call OffloadP (id).
Since channels with validity are constructed in a different

way than channel without validity, the procedure is defined
for the two cases separately.

Subprocedure OffloadP (id)

Below we abbreviate FpreL := FpreL(T, 1), A := γ.Alice and
B := γ.Bob and I = γ.Ingrid. For P ∈ γ.endUsers, we denote
Q := γ.otherParty(P). Let t0 be the current round.

Channels without validity

P ∈ {A,B}

1) Extract γ and TX
γ
f from ΓP (id) and tidP , tidQ from TX

γ
f .

Then define idα := γ.subchan(P) and send (CLOSE, idα)
t0
↪−→ FpreL.

2) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−↩ FpreL, then

continue. Else set ΓP (γ.id) = ⊥ and stop.

3) Let T2 := t1 + T + 3∆ and distinguish:
• If in round t2 ≤ T2 a transaction with tidQ appeared on
L̂, then (post, TXγf)

t2
↪−→ L̂.

• Else in round T2 create the punishment transaction
TXpun as TXpun.Input := tidP , TXpun.Output :=
(γ.cash + γ.fee/2, One–SigpkP

) and TXpun.Witness :=

SignskP
([TXpun]). Then (post, TXpun)

T2
↪−→ L̂.

4) Let T3 := t2 + ∆ and distinguish the following two cases:
• The transaction TX

γ
f was accepted by L̂ in t3 ≤ T3, then

update ΓPL(id) := ΓP (id) and set m := offloaded.
• The transaction TXpun was accepted by L̂ in t3 ≤ T3,

then set m := punished.
5) Set ΓP (id) = ⊥ and return m in round t3.

Party I

1) Extract γ and TX
γ
f from ΓI(id) and tidA, tidB from TX

γ
f .

Then define idα := γ.subchan(A), idβ := γ.subchan(B)

and send the messages (CLOSE, idα)
t0
↪−→ FpreL and

(CLOSE, idβ)
t0
↪−→ FpreL.

2) If you receive both messages (CLOSED, idα)
tA1 ≤t0+T+3∆
←−−−−−−−−−↩

FpreL and (CLOSED, idβ)
tB1 ≤t0+T+3∆
←−−−−−−−−−↩ FpreL, publish

(post, TXγf)
t1
↪−→ L̂, where t1 := max{tA1 , tB1 }. Otherwise

set ΓI(id) = ⊥ and stop.
3) Once TX

γ
f is accepted by L̂ in round t2 ≤ t1 + ∆, then

ΓI(id) = ⊥ and return “offloaded”.

Channels with validity

Party A

1) Extract γ, tidA and TX
γ
f from ΓA(id). Let idα :=

γ.subchan(A) and send (CLOSE, idα)
t0
↪−→ FpreL.

2) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−↩ FpreL, then

post (post, TXγ,Af)
t2
↪−→ L̂. Otherwise, set ΓA(γ.id) = ⊥

and stop.
3) Once TX

γ
f is accepted by L̂ in round t2 ≤ t1 + ∆, then

update ΓAL(id) := ΓA(id), ΓA(id) := ⊥ and return
“offloaded”.

Party B

1) Extract γ, tidB and [TXγf] from ΓB(id). Let idβ :=

γ.subchan(B) and send (CLOSE, idβ)
t0
↪−→ FpreL.

2) If you receive (CLOSED, idβ)
t1≤t0+T+3∆
←−−−−−−−−−↩ FpreL, then

continue. Otherwise, set ΓB(γ.id) = ⊥ and stop.
3) Create the punishment transaction TXpun as TXpun.Input :=

tidB , TXpun.Output := (γ.cash + γ.fee/2, One–SigpkB
)

and set the value TXpun.Witness := SignskB
([TXpun]). Then

wait until round t2 := max{t1, γ.val + 2∆} and send
(post, TXpun)

t2
↪−→ L̂.

4) Let T3 := t2 + ∆ and distinguish the following two cases:
• A transaction with identifier TX

γ
f .txid was accepted by

L̂ in t3 ≤ T3, then define ΓBL (id) := ΓB(id) and set
m := offloaded.

• The transaction TXpun was accepted by L̂ in t3 ≤ T3, set
m := punished.

5) Set ΓB(id) := ⊥ and return m in round t3.

Party I

1) Extract γ, tidA, tidB , TXγrefund and [TXγf] from ΓI(id). Then
define idα := γ.subchan(A), idβ := γ.subchan(B) and
send (CLOSE, idα)

t0
↪−→ FpreL and (CLOSE, idβ)

t0
↪−→ FpreL.

2) If you receive both messages (CLOSED, idα)
tA1 ≤t0+T+3∆
←−−−−−−−−−↩

FpreL and (CLOSED, idβ)
tB1 ≤t0+T+3∆
←−−−−−−−−−↩ FpreL, then con-

tinue. Otherwise, set ΓI(γ.id) = ⊥ and stop.
3) Create the punishment transaction TXpun as TXpun.Input :=

tidA, TXpun.Output := (γ.cash+γ.fee/2, One–SigpkI
) and

set the value TXpun.Witness := SignskI
([TXpun]). Then wait

until round t2 := max{tA1 , γ.val} and send (post, TXpun)
t2
↪−→ L̂.

4) Let T3 := t2 + ∆ and distinguish the following two cases:
• A transaction with identifier TX

γ
f .txid was accepted by

L̂ in t′3 ≤ T3, send (post, TXγrefund)
t4
↪−→ L̂ where t4 :=

max{tB1 , t′3}. Once TX
γ
refund is accepted by L̂ in round

t5 ≤ t4+∆, then define m := offloaded and ΓI(γ.id) =
⊥.

• The transaction TXpun was accepted by L̂ in t′′3 ≤ T3,
then define m := punished and ΓI(γ.id) = ⊥.

5) Return m in round t6 where t6 := max{t5, t′′3}.

Close: In order to close a virtual channel, parties first try
to adjust the balances in the sunchannel according to the latest
valid state of the virtual channel. This is done by updating
the subchannels in a synchonous way, as was done during
virtual channel creation. In case this process fails, parties close
the channel forcefully. This means that parties first offload
the channel and then immediately close the offloaded ledger
channel.

Close a virtual channel

Below we abbreviate FpreL := FpreL(T, 1), A := γ.Alice and
B := γ.Bob and I = γ.Ingrid. For P ∈ γ.endUsers, we denote
Q := γ.otherParty(P).

Party P ∈ {A,B}

Upon receiving (CLOSE, id)
tP0←−↩ E or in round tP0 := γ.val −

(4∆ + 7T) if γ.val 6= ⊥, proceed as follows:
1) Extract γ, TXγf from ΓP (id).
2) Parse γ.st =

(
(cP , One–SigpkP

), (cQ, One–SigpkQ
)
)
.

3) Compute the new state of the channel idα := γ.subchan(P)
as

~θP := {(cP , One–SigpkP
), (cQ +

γ.fee

2
, One–SigpkI

)}

Then, send (UPDATE, idα, ~θP , 0)
tP0
↪−→ FpreL.

4) Upon (SETUP, idα, tidP)
tP1 ≤t

P
0 +T

←−−−−−−↩ FpreL, send

(SETUP–OK, idα)
tP1
↪−→ FpreL.

Party I

Upon receiving (CLOSE, id)
tI0←−↩ E or in round tI0 := γ.val −

(4∆ + 7T), proceed as follows:

1) Extract γ, TXγf from ΓI(id).
2) Let idα = γ.subchan(A), idβ = γ.subchan(B) and c :=

γ.cash
3) If in round tI1 ≤ tI0 + T you received both

(UPDATE–REQ, idα, tidA, ~θA, 0) ←−↩ FpreL and
(UPDATE–REQ, idβ , tidB , ~θB , 0) ←−↩ FpreL check that
for some cA, cB s.t. cA + cB = c it holds

~θA = {(cA, One–SigpkA
), (cB + γ.fee/2, One–SigpkI

)}
~θB = {(cB , One–SigpkB

), (cA + γ.fee/2, One–SigpkI
)}

If not, then stop.
4) If in round tI2 ≤ tI1 +T you receive both (SETUP–OK, idα))
←−↩ FpreL and (SETUP–OK, idβ)) ←−↩ FpreL, send

(UPDATE–OK, idα)
tI2
↪−→ FpreL and (UPDATE–OK, idβ)

tI2
↪−→

FpreL. If not, then stop.

Party P ∈ {A,B}

If you receive (UPDATE–OK, idα)
tP2 ≤t

P
1 +2T

←−−−−−−−↩ FpreL, reply with

(REVOKE, idα)
tP2
↪−→ FpreL. Otherwise execute OffloadP (id)

and stop.

Party I

If in round tI3 ≤ tI2 +2T you received both (REVOKE–REQ, idα)
←−↩ FpreL and (REVOKE–REQ, idβ) ←−↩ FpreL, reply

(REVOKE, idα)
tI3
↪−→ FpreL and (REVOKE, idβ)

tI3
↪−→ FpreL and

set ΓI(id) := ⊥.

Party P ∈ {A,B}

If you receive (UPDATED, idα)
tP3 ≤t

P
2 +2T

←−−−−−−−↩ FpreL, set

ΓP (id) := ⊥. Then output (CLOSED, id)
tP3
↪−→ E and stop. Else

execute OffloadP (id) and stop.

Punish: Finally, we formalize the actions taken by parties
in every round. On a high level, in addition to triggering
the hybrid ideal functionality to take the every-round actions
for ledger channel (which include blockchain monitoring for
outdated commit transactions), parties also need to make
several check for virtual channel. Namely, channel users that
tried to offload the virtual channel by closing their subchannel)
monitor whether the other subchannel was closed as well.
If yes, then they can publish the funding transaction and
complete the offload and otherwise apply the punishment
mechanism.

Punish virtual channel

Below we abbreviate FpreL := FpreL(T, 1), A := γ.Alice and
B := γ.Bob and I = γ.Ingrid. For P ∈ γ.endUsers, we denote
Q := γ.otherParty(P).
Upon receiving (PUNISH)

τ0←−↩ E , do the following:
• Forward this message to the hybrid ideal functionality

(PUNISH)
τ0
↪−→ FpreL. If (PUNISHED, id)

τ1←−↩ FpreL, then
(PUNISHED, id)

τ1
↪−→ E .

• Execute both subprotocols Punish and Punish–Validity.

Punish

Party P ∈ {A,B}

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be
extracted from ΓP (id) do the following:
1) Extract TXγf from ΓP (id) and tidP , tidQ from TX

γ
f . Check

if tidP appeared on L̂. If not, then stop.
2) Denote T2 := t1 + T + 3∆ and distinguish:
• If in round t2 ≤ T2 the transaction with tidQ appeared

on L̂, then (post, TXγf)
t2
↪−→ L̂.

• Else in round T2 create the punishment transaction TXpun
as

TXpun.Input := tidP

TXpun.Output := (γ.cash + γ.fee/2, One–SigpkP
)

TXpun.Witness := SignskP
([TXpun]),

and (post, TXpun)
T2
↪−→ L̂.

3) Let T3 := t2 + ∆ and distinguish the following two cases:
• The transaction TX

γ
f was accepted by L̂ in t3 ≤ T3, then

ΓPL(id) := ΓP (id), ΓP (id) = ⊥ and m := OFFLOADED.
• The transaction TXpun was accepted by L̂ in t3 ≤ T3,

then define ΓP (γ.id) = ⊥ and set m := PUNISHED.

4) Output (m, id)
t3
↪−→ E .

Party I

For every id ∈ {0, 1}∗, such that γ with γ.val = ⊥ can be
extracted from ΓI(id) do the following:
1) Extract TXγf from ΓI(id) and tidA, tidB from TX

γ
f . Check

if for some P ∈ {A,B} a transaction with identifier tidP
appeared on L̂. If not, then stop.

2) Denote idα := γ.subchan(Q) and send (CLOSE, idα)
t0
↪−→

FpreL.

3) If you receive (CLOSED, idα)
t1≤t0+T+3∆
←−−−−−−−−−↩ FpreL and tidQ

appeared on L̂, (post, TXγf)
t1
↪−→ L̂. Otherwise set ΓI(id) =

⊥ and stop.
4) Once TX

γ
f is accepted by L̂ in round t2, such that t2 ≤

t1 + ∆, set ΓI(id) = ⊥ and output (OFFLOADED, id)
t2
↪−→

E .

Punish–Validity

Party A

For every id ∈ {0, 1}∗, such that γ with γ.val 6= ⊥ can be
extracted from ΓA(id) do the following:
1) Extract TX

γ
f from ΓA(id) and tidA from TX

γ
f . If tidA

appeared on L̂, then send (post, TXγf)
t1
↪−→ L̂. Else stop.

2) Once TX
γ
f is accepted by L̂ in round t2 ≤ t1 + ∆, set

ΓAL(id) := ΓA(id), ΓA(id) := ⊥ and output (OFFLOADED,

id)
t2
↪−→ E .

Party B

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be
extracted from ΓB(id) do the following:

1) Extract tidB and [TXγf] from ΓB(id). Check if tidB or
[TXγf].txid appeared on L̂. If not, then stop.

2) If a transaction TX
γ
f appeared on L̂, update set ΓBL (id) :=

ΓB(id) and ΓB(id) := ⊥. Then output (OFFLOADED, id)
t1
↪−→ E and stop.

3) If tidB appeared on L̂, create the punishment transaction
TXpun as

TXpun.Input := tidB

TXpun.Output := (γ.cash + γ.fee/2, One–SigpkB
)

TXpun.Witness := SignskB
([TXpun]).

Then wait until round t2 := max{t1, γ.val+2∆} and send
(post, TXpun)

t2
↪−→ L̂.

4) If transaction TXpun was accepted by L̂ in t3 ≤ t2 +∆, then

define ΓB(γ.id) = ⊥ and output (PUNISHED, id)
t3
↪−→ E .

Party I

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can be
extracted from ΓI(id) do the following:
1) Extract tidA, tidB , TXγrefund and [TXγf] from ΓI(id). Check

if tidA or tidB appeared on L̂ or t1 = γ.val− (3∆ + T).
If not, then stop.

2) Distinguish the following cases:
• If t1 = γ.val− (3∆ +T), define idα := γ.subchan(A),
idβ := γ.subchan(B) and send (CLOSE, idα)

t1
↪−→ FpreL

and (CLOSE, idβ)
t1
↪−→ FpreL.

• If tidB appeared on L̂, send (CLOSE, idα)
t1
↪−→ FpreL.

3) If a transaction with identifier tidA appeared on L̂ in round
t2 ≤ t1 + T + 3∆, create the punishment transaction TXpun
as

TXpun.Input := tidA

TXpun.Output := (γ.cash + γ.fee/2, One–SigpkI
)

TXpun.Witness := SignskI
([TXpun]).

Then wait until round t3 := max{t2, γ.val} and send (post,

TXpun)
t3
↪−→ L̂.

4) Distinguish the following two cases:
• The transaction TX

γ
f .txid was accepted by L̂ in t4 ≤

t3 + ∆, send (post, TXγrefund)
t5
↪−→ L̂ where t5 :=

max{γ.val + ∆, t4}. Once TX
γ
refund is accepted by L̂

in round t6 ≤ t5 + ∆, set ΓI(γ.id) = ⊥ and output
(OFFLOADED, id)

t6
↪−→ E and stop.

• The transaction TXpun was accepted by L̂ in t4 ≤ t3 +∆,

then set ΓI(γ.id) = ⊥ and output (PUNISHED, id)
t4
↪−→

E .

E. Wrappers for Missing Checks

In the previous sections, we provided simplified descriptions
of the ideal functionalities FL, FpreL and FV as well as
of the protocols ΠpreL and ΠV . The simplification stems
from the fact that we excluded several natural checks in the
ideal functionalities and protocols. In this section, we present
wrappers that includes these missing checks.

1) Wrapper for Ideal Functionalities: In order to simplify
the exposition, the formal descriptions of the channel ideal
functionalities FL, FpreL and FV are simplified. Namely, they

exclude several natural checks that one would expect an ideal
functionality to make when it receives a message from a party.
The purpose of the checks is to avoid the functionality from
accepting malformed messages. To provide some intuition, we
present several examples of such restrictions:
• A party sends a malformed message (e.g. missing or

additional parameters)
• A party request creation of a virtual channel but one of

the two subchannels does not exists or does not have
enough funds for virtual channel creation.

• Parties try to update the same channel twice in parallel.
We now list all checks formally in the wrapper below which
can be seen as an extension to the wrapper provided by [2]
for FL.

Functionality wrapper: Wchecks(T)

The wrapper is defined for F ∈ {FV (T),FpreL(T),FL(T)}.
Below, we abbreviate A := γ.Alice, B := γ.Bob and I :=
γ.Ingrid.
Create: Upon (CREATE, γ, tid)

τ0←−↩ P , where P ∈ γ.users,
check if: Γ(γ.id) = ⊥, F .Γpre(γ.id) = ⊥ and there is no
channel γ′ with γ.id = γ′.id being created or pre-created;
γ is valid according to the definition given in Section III-A;
γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0. Depending on the type of channel, make the following
additional checks:
ledger channel: There exists (t, id , i, θ) ∈ L̂.UTXO such that

θ = (cP , One–SigP) for (id , i) := tid ;a

virtual channel:
• If P ∈ γ.endUsers, then α := F .Γ(idP) 6= ⊥ for
idP := γ.subchan(P); α.endUsers = {P, I}; there is
no other virtual channel being created over α and α is
currently not being updated; both P and I have enough
funds in α.

• If P = I , then α := F .Γ(idA) 6= ⊥ for idA :=
γ.subchan(A); β := F .Γ(idB) 6= ⊥ for idB :=
γ.subchan(B); α.endUsers = {A, I}; β.endUsers =
{B, I}; there is no other virtual channel being created
over α or β; A and I have enough funds in α and B
and I have enough funds in β.

• If γ.val 6= ⊥, then γ.val ≥ τ0 + 4∆ + 15T .
If one of the above checks fails, drop the message. Else proceed
as F .
Pre-Create: Upon (PRE–CREATE, γ, TXf, i, tofl)

τ0←−↩ P , check if:
P ∈ γ.users, F .Γpre(γ.id) = ⊥, F .Γpre(γ.id) = ⊥ and there
is no channel γ′ with γ.id = γ′.id being created or pre-created;
γ is valid according to the definition given in Section III-A;
γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0 and TXf is not a published transaction on L̂. If one of the
above checks fails, drop the message. Else proceed as F .
(Pre)-Update: Upon (m, id , ~θ, tstp)

τ0←−↩ P , check if: γ :=
Γ(id) 6= ⊥ if m = UPDATE and γ := Γpre(id) 6= ⊥
if m = PRE–UPDATE. In both cases additionally check:
P ∈ γ.endUsers; there is no other update being preformed
on γ; let ~θ = (θ1, . . . θ`) = ((c1, ϕ1), . . . , (c`, ϕ`)), then∑
j∈[`] ci = γ.cash and ϕj ∈ L̂.V for each j ∈ [`]. If not,

drop the message. Else proceed as F .
Upon ((PRE–)SETUP–OK, id)

τ2←−↩ P check if: you accepted
a message ((PRE–)UPDATE, id , ~θ, tstp)

τ0←−↩ P , where t2 −

t0 ≤ tstp + T and the message is a reply to the mes-
sage ((PRE–)SETUP, id , tid) sent to P in round τ1 such that
τ2 − τ1 ≤ tstpb. If not, drop the message. Else proceed as F .
Upon ((PRE–)UPDATE–OK, id)

τ0←−↩ P , check if the message is a
reply to the message ((PRE–)SETUP–OK, id) sent to P in round
τ0. If not, drop the message. Else proceed as F .
Upon ((PRE–)REVOKE, id)

τ0←−↩ P , check if the message is a
reply to either the message ((PRE–)UPDATE–OK, id) sent to P
in round τ0 or the message ((PRE–)REVOKE–REQ, id) sent to P
in round τ0. If not, drop the message. Else proceed as F .
Offload: Upon receiving (OFFLOAD, id)

τ0←−↩ P make the fol-
lowing checks: γ := Γ(id) 6= ⊥ is a virtual channel and
P ∈ γ.users. If one of the checks fails, then drop the message.
Otherwise proceed as the functionality F .
Close: Upon (CLOSE, id)

τ0←−↩ P , check if γ := Γ(id) 6= ⊥ and
P ∈ γ.endUsers. If γ is a virtual channel, additionally check
that γ.val = ⊥. If not, drop the message. Else proceed as F .
All other messages are dropped.

aIn case more channels are being created at the same time, then none
of the other creation requests can use of the tid .

bSee Appendix A what we formally meant by “reply”.

2) Wrapper for Protocols: Similar to the descriptions of our
ideal functionality, the description of our channel protocols,
the protocol ΠpreL presented in Appendix C3 and the protocol
ΠV , exclude many natural checks that we would want an
honest party to make. Let us give a few examples of requests
which an honest party drops if received from the environment:
• The environment sends a malformed message to a party
P (e.g. missing or additional parameters);

• A party P receives an instruction to create a channel γ
but P 6∈ γ.endUsers;

• A party P receives an instruction to create a virtual
channel on top of a ledger channel that does not exist,
does not belong to part P or is not sufficiently funded.

• Parties request to create a channel with validity whose
validity time already expired (or is about to expire).

We define all these check as a wrapper WchecksP that can be
seen as a extension of the wrapper provided by [2] for their
ledger channel protocol.

Protocol wrapper: WchecksP

The wrapper is defined for Π ∈ {ΠV (T),ΠpreL(T)}. Below,
we abbreviate A := γ.Alice, B := γ.Bob and I := γ.Ingrid.

Party P

Create: Upon (CREATE, γ, tid)
τ0←−↩ E check if: P ∈

γ.endUsers; ΓP (γ.id) = ⊥, ΓPpre(γ.id) = ⊥ and there is no
channel γ′ with γ.id = γ′.id being created or pre-created;
γ is valid according to the definition given in Section III-A;
γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0. Depending on the type of channel, make the following
additional checks:
ledger channel: There exists (t, id , i, θ) ∈ L̂.UTXO such that

θ = (cP , One–SigP) for (id , i) := tid ;a

virtual channel:
• If P ∈ γ.endUsers, then α := ΓP (idP) 6= ⊥ for

idP := γ.subchan(P); α.endUsers = {P, I}; there is
no other virtual channel being created over α and α is
currently not being updated; both P and I have enough
funds in α.

• If P = I , then α := ΓP (idA) 6= ⊥ for idA :=
γ.subchan(A); β := ΓP (idB) 6= ⊥ for idB :=
γ.subchan(B); α.endUsers = {A, I}; β.endUsers =
{B, I}; there is no other virtual channel being created
over α or β; A and I have enough funds in α and B
and I have enough funds in β.

• If γ.val 6= ⊥, then γ.val ≥ τ0 + 4∆ + 15T .
If one of the checks fails, drop the message. Else proceed as
in Π.
Pre-Create: Upon (PRE–CREATE, γ, TXf, i, tofl)

τ0←−↩ E , check
if: P ∈ γ.users, ΓPpre(γ.id) = ⊥, ΓPpre(γ.id) = ⊥ and there is
no channel γ′ with γ.id = γ′.id being created or pre-created;
γ is valid according to the definition given in Section III-A;
γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for cP , cQ ∈

R≥0 and TXf is not a published transaction on L̂. If one of the
above checks fails, drop the message. Else proceed as in Π.
(Pre)-Update: Upon (m, id , ~θ, tstp)

τ0←−↩ E check if: γ :=

ΓP (id) 6= ⊥ if m = UPDATE and γ := ΓPpre(id) 6= ⊥
if m = PRE–UPDATE. In both cases, check that there is no
other update being preformed on γ; let ~θ = (θ1, . . . θ`) =
((c1, ϕ1), . . . , (c`, ϕ`)), then

∑
j∈[`] ci = γ.cash and ϕj ∈

L̂.V for each j ∈ [`]. If on of the checks fails, drop the message.
Else proceed as in Π.
Upon ((PRE–)SETUP–OK, id)

τ2←−↩ E check if: you accepted
a message ((PRE–)UPDATE, id , ~θ, tstp)

τ0←−↩ E , where t2 −
t0 ≤ tstp + T and the message is a reply to the message
((PRE–)SETUP, id , ~tid) you sent in round τ1 such that τ2−τ1 ≤
tstp

b. If not, drop the message. Else proceed as in Π.
Upon ((PRE–)UPDATE–OK, id)

τ0←−↩ E , check if the message is a
reply to the message ((PRE–)SETUP–OK, id) you sent in round
τ0. If not, drop the message. Else proceed as in Π.
Upon ((PRE–)REVOKE, id)

τ0←−↩ E , check if the
message is a reply to either ((PRE–)UPDATE–OK, id) or
((PRE–)REVOKE–REQ, id) you sent in round τ0. If not, drop
the message. Else proceed as in Π.
Offload: Upon receiving (OFFLOAD, id)

τ0←−↩ E make the fol-
lowing checks: γ := Γ(id) 6= ⊥ is a virtual channel and
P ∈ γ.users. If one of the checks fails, then drop the message.
Else proceed as in Π.
Close: Upon (CLOSE, id)

τ0←−↩ E , check if γ := ΓP (id) 6= ⊥,
P ∈ γ.endUsers. If γ is a virtual channel, additionally check
that γ.val = ⊥. If not, drop the message. Else proceed as in Π.
All other messages are dropped.

aIn case more channels are being created at the same time, then none
of the other creation requests can use of the tid .

bSee Appendix A what we formally meant by “reply”.

F. Security Proofs

In this section we provide proofs for Theorem 2, Theorem 1
and Theorem 3.

1) Proof of Theorem 2: In our proof of Theorem 2, we
provide the code for a simulator, that simulates the protocol
ΠpreL in the ideal world, having access to the functionalities L̂
and FpreL. In UC proofs it is required to provide a simulation
of the real protocol in the ideal world even without knowledge
of the secret inputs of the honest protocol participants. The
main challenge is that this transcript of the simulation has to

be indistinguishable to the environment E from the transcript
of the real protocol execution. Yet, in our protocols, parties
do not receive secret inputs, but are only instructed by the
environment to take certain protocol actions, e.g. updating a
channel. Hence the only challenge that arises during simulation
is handling different behavior of malicious parties. Due to
this, we only provide the simulator code for the protocol
without arguing about indistinguishability of simulation and
real protocol execution, since it naturally holds due to the
reasons given above. In our simulation, we omit the case where
all parties are honest, since the simulator simply has to follow
the protocol description. In case of three protocol participants,
we provide a simulation for all cases where two parties are
corrupted and one party is honest, because these cases cover
also all cases where just one party is corrupted. In other words,
the case where two parties are honest is a combination of cases
where each of these parties are honest individually.

Since the functionality FpreL incorporates, FL, we refer at
some point of our simulation to the simulator code for ledger
channels.

We note that the indistinguishability of the simulated tran-
script and the transcript of the real protocol can only hold if the
security properties of the underlying adaptor signature scheme
holds. Namely, we require the adaptor signature scheme to
fulfill the unforgeability, witness extractability and adaptability
properties.

Simulator for Wrapper protocol

Pre-Creat

Case A honest and B corrupted

1) Upon A sending (PRE–CREATE, γ, TXf, i, tofl)
τ0
↪−→ FpreL set

T1 = 2 and do the following:
2) If TXf.Output[i].cash 6= γ.cash, then ignore the message.
3) Set id := γ.id, generate (RA, rA) ← GenR, (YA, yA) ←

GenR and send (createInfo, id , TXf, i, tofl ,RA,YA)
τ0
↪−→

B.
4) If (createInfo, id , TXf, i, tofl ,RB ,YB)

τ0+1
←−−−↩ B, create:

[TXc] := GenCommit([TXf], IA, IB , 0)

[TXs] := GenSplit([TXc].txid‖1, γ.st)

for IA := (pkA,RB ,YA), IB := (pkB ,RB ,YB). Else
stop.

5) Compute sAc ← pSignskA
([TXc],YB), sAs ←

SignskA
([TXs]) and send (createCom, id , sAc , s

A
s)

τ0+1
↪−−−→ B.

6) If (createCom, id , sBc , s
B
s)

τ0+2
←−−−↩ B, s.t. pVrfypkB

([TXc],

YA; sBc) = 1 and VrfypkB
([TXs]; s

B
s) = 1, set

TXc := ([TXc], {SignskA
([TXc]),Adapt(s

B
c , yA)})

TXs := ([TXs], {sAs , sBs })
ΓApre(γ.id) := (γ, TXf, (TXc, rA,RB ,YB , s

A
c), TXs, tofl).

and if B has not sent (PRE–CREATE, γ, TXf, i, tofl) to FpreL

send this message on behalf of B.

Pre-Update

Let T1 = 2 and T2 = 1 and let | ~tid | = 1.

Case A is honest and B is corrupted

Upon A sending (PRE–UPDATE, id , ~θ, tstp)
τ0
↪−→ FpreL, pro-

ceed as follows:
1) Generate new revocation public/secret pair (RP , rP) ←

GenR and a new publishing public/secret pair (YP , yP)←

GenR and send (updateReq, id , ~θ, tstp,RA,YA)
τA0
↪−−→ B.

2) Upon (updateInfo, id , hB , YB , s
B
s)

τA0 +2
←−−−↩ B, set tlock :=

τA0 + tstp + 5 + ∆ + tofl , extract TXf from ΓBpre(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ),

for IA := (pkA,RA,YA) and IB := (pkB ,RB ,YB). If it
holds that VrfypkB

([TXs]; s
B
s) = 1 continue. Else mark this

execution as “failed” and stop.

3) If A sends (PRE–SETUP–OK, id)
τA1 ≤τ

A
0 +2+tstp

↪−−−−−−−−−→
FpreL, compute sAc ← pSignskA

([TXc],YB), sAs ←
SignskA

([TXs]) and send the message

(update–commitA, id , sAc , s
A
s)

τA1
↪−−→ B.

4) In round τA1 + 2 distinguish the following cases:

• If A receives (update–commitB, id , sBc)
τA1 +2
←−−−↩

B check if B has not sent (PRE–UPDATE–OK, id)
τA1 +1
↪−−−→ FpreL. If so send the message

(PRE–UPDATE–OK, id)
τA1 +1
↪−−−→ FpreL on behalf of

B. If pVrfypkB
([TXc],YA; sBc) = 0, then mark this

execution as “failed” and stop.

• If A receives (updateNotOk, id , rB)
τA1 +2
←−−−↩ B, where

(RB , rB) ∈ R, add ΘA(id) := ΘA(id)∪([TXc], rB ,YB ,
sAc), instruct FpreL to send (PRE–UPDATE–REJECT, id)
↪−→ A and to stop and mark this execution as “failed” and
stop.

• Else, execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

5) If A sends (PRE–REVOKE, id)
τA1 +2
↪−−−→ FpreL, then

parse ΓApre(id) as (γ, TXf, (TXc, r̄A, R̄B , ȲB , s̄
A
Com), TXs)

and update the channel space as ΓApre(id) :=
(γ, TXf, (TXc, rA,RB ,YB , s

A
c), TXs), for TXs := ([TXs],

{sAs , sBs }) and TXc := ([TXc], {SignskA
([TXc]),Adapt(s

B
c ,

yA)}). Then send (revokeP, id , r̄A)
τA1 +2
↪−−−→ B.

Else, execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

6) If A receives (revokeB, id , r̄B)
τA1 +4
←−−−↩ B, check if B

has not sent (PRE–REVOKE, id)
τB1 +2
↪−−−→ FpreL. If so send

(PRE–REVOKE, id)
τB1 +2
↪−−−→ FL on behalf of B. Check if

(R̄B , r̄B) ∈ R, then set

ΘB(id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄
A
Com)

Else execute the simulator code for the procedure
Wait–if–RegisterA(id) and stop.

Case B is honest and A is corrupted

Upon A sending (updateReq, id , ~θ, tstp, hA)
τ0
↪−→ B, send

the message (PRE–UPDATE, id , ~θ, tstp)
τ0
↪−→ FpreL on behalf of

A, if A has not already sent this message. Proceed as follows:

1) Upon (updateReq, id , ~θ, tstp,RA,YA)
τB0←−−↩ A, generate

(RB , rB)← GenR and (YB , yB)← GenR.
2) Set tlock := τB0 + tstp + 4 + ∆ + tofl , extract TXf from

ΓApre(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ)

where IA := (pkA,RA,YA), IB := (pkB ,RB ,YB).
3) Compute sBs ← SignskB

([TXs]), send (updateInfo, id ,RB ,

YB , s
B
s)

τB0
↪−−→ A.

4) If B receives (update–commitA, id , sAc , s
A
s)

τB1 ≤τ
B
0 +2+tstp

←−−−−−−−−−−↩ A then send (PRE–SETUP–OK, id)
τB1
↪−−→ FpreL on behalf of A, if A has not sent this message.

5) Check if pVrfypkP
([TXc],YQ; sPc) = 1 and

VrfypkP
([TXs]; s

P
s) = 1. Else mark this execution as

“failed” and stop.

6) If B sends (PRE–UPDATE–OK, id)
τB1
↪−−→ FpreL,

then compute sBc ← pSign([TXc],YA) and send

(update–commitB, id , sBc)
τB1
↪−−→ A. Else send

(updateNotOk, id , rB)
τB1
↪−−→ A, mark this execution

as “failed” and stop.
7) Parse ΓBpre(id) as (γ, TXf, (TXc, r̄B , R̄A, ȲA, s̄

B
Com), TXs).

If B receives (revokeA, id , r̄A)
τB1 +2
←−−−↩ A, send

(PRE–REVOKE, id)
τB1 +2
↪−−−→ FpreL on behalf of A, if A has

not sent this message.

Else if you do not receive (revokeA, id , r̄A)
τB1 +2
←−−−↩ A or if

(R̄A, r̄A) 6∈ R, execute the simulator code of the procedure
Wait–if–RegisterB(id) and stop.

8) If B sends (PRE–REVOKE, id)
τB1 +2
↪−−−→ FpreL, then set

ΘB(id) :=ΘB(id) ∪ ([TXc], r̄A, ȲA, s̄
B
Com)

ΓBpre(id) :=(γ, TXf, (TXc, rB ,RA,YA, s
B
c), TXs),

for TXs := ([TXs], {sAs , sBs }) and TXc := ([TXc],
{SignskB

([TXc]),Adapt(s
A
c , yB)}). Then (revokeB, id ,

r̄B)
τB1 +2
↪−−−→ A and stop. Else, in round τB1 + 2, execute the

simulator code of the procedure Wait–if–RegisterB(id)
and stop.

Register

Case A honest and B corrupted

For party A in every round τ0 do the following:
1) For each id ∈ {0, 1}∗ s.t. ΓApre(id) 6= ⊥:
2) Parse ΓApre(id) := (γ, TXf, (TXc, rA,RB ,YB , s

A
c),

TXs, tofl , x)
3) If TXf appeared on-chain in this round, then

a) Set Γ(id) := (γ, TXf, (TXc, rA,RB ,YB , s
A
c), TXs).

b) Set ΓApre(id) := ⊥
c) If x = in–dispute, then execute the simulator code for

L–ForceCloseA(id).

Wait–if–Register(id)

Case A honest and B corrupted

Let τ0 be the current round. Let X := ΓApre(id). Then set
ΓApre(id) := (X, in–dispute).

2) Proof of Theorems 1 and 3: We now provide a proof for
Theorem 1 and Theorem 3. In our proof, we provide the code
for a simulator, that simulates the protocol ΠV in the ideal
world having access to the functionalities L̂ and FV .

We note that since during our simulation, no ERROR mes-
sages are produced by the functionality, the protocol satisfies
the security properties of the functionality FV as mentioned
in Section III-B.

Simulator for creating virtual channels

creating virtual channels

Case A is honest and I are B are corrupt

Upon A sending (CREATE, γ)
τA0
↪−−→ FV set T1 = 6T + tstp

proceed as follows:
1) Let idα := γ.subchan(A) and compute

θA := GenVChannelOutput(γ,A).

2) Upon A sending (UPDATE, idα, θA, tstp)
τA0
↪−−→ FL execute

the simulator code of the update procedure for the general-
ized channels until the message (SETUP, idα, tidA) is sent
by FL. If the execution stops send (peaceful–reject, idα)
↪−→ FV .

3) Upon A receiving (SETUP, idα, tidA)
τA1 ≤τ

A
0 +T

←−−−−−−−↩ FL,
execute the simulator code for SetupVChannel with input
(γ, tidA).

4) If this execution of SetupVChannel is recorded “failed”
stop. Otherwise execute the simulator code of the update
procedure for the generalized channels until the end. If
the execution failed (I does not revoke) instruct FV to
L–ForceClose(idα).

5) If B or I have not sent (CREATE, γ) ↪−→ FV send this
message on their behalf.

6) Upon A receiving (CREATED, γ)
τA2 ≤τ

A
1 +5T

←−−−−−−−↩ FV , mark γ
as created, i.e. update ΓA(γ.id) from (⊥, x) to (γ, x).

Case I is honest and A,B are corrupted

Upon I sending (CREATE, γ)
τI0
↪−→ FV proceed as follows:

1) Set idα = γ.subchan(A), idβ = γ.subchan(B) and
generate

θA := GenVChannelOutput(γ,A)

θB := GenVChannelOutput(γ,B)

2) Upon A and B sending (UPDATE, idα, θA, tstp)
τA0
↪−−→ FL

and (UPDATE, idα, θB , tstp)
τB0
↪−−→ FL, execute the simulator

code for the update procedure of the generalized chan-
nel functionality until the message (UPDATE–REQ, idα, θA,
tstp, tidA) and (UPDATE–REQ, idα, θB , tstp, tidB) are sent
by FL.

3) If in round τ I1 ≤ τ I0 +T , I has received both (UPDATE–REQ,
idα, θA, tstp, tidA) ←−↩ FL and (UPDATE–REQ, idβ , θB ,
tstp, tidB) ←−↩ FL, then execute the simulator code
of SetupVChannel with inputs (γ, tidA, tidB). Or send
(peaceful–reject, idα) ↪−→ FV and (peaceful–reject, idβ)
↪−→ FV if instructed by E . Else stop.

4) If in round τ I2 ≤ τ I1 + tstp + T , I receives both
(SETUP–OK, idα)) ←−↩ FL and (SETUP–OK, idβ)) ←−↩
FL, continue executing the simulator code of the up-
date procedure of generalized channels until the messages
(REVOKE–REQ, idα) and (REVOKE–REQ, idα) are sent by FL.
Otherwise stop.

5) If in round τ I3 ≤ τ I2 + 4T you have received both
(REVOKE–REQ, idα) ←−↩ FL and (REVOKE–REQ, idβ) ←−↩
FL, continue executing the simulator code of the update
procedure of generalized channels until the end. Otherwise
stop.

6) If A or B have not sent (CREATE, γ) ↪−→ FV send this
message on their behalf. Update ΓI(γ.id) from (⊥, x) to
(γ, x).

SetupVChannel for channels without validity

Case A is honest and I, B are corrupted

1) Create the body of the funding transaction:

TX
γ
f .Input :=(tidA, tidB)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.cash + γ.fee, One–SigpkI
))

2) Upon A sending (PRE–CREATE, γ, TXf, 1, tofl)
t0
↪−→ FpreL

where tofl = 2T + 8∆, execute the simulator code for the
Pre-Create procedure of the FpreL functionality.

3) Upon A receiving (PRE–CREATED, γ.id)
τ1≤τ0+T
←−−−−−−↩ FpreL

then sign the funding transaction, i.e. sBf ← SignskB
([TXγf])

and send (createFund, γ.id, sAf , [TX
γ
f])

τ1
↪−→ I . Else record

this execution as “failed” and stop.
4) Upon receiving (createFund, γ.id, sBf , s

I
f)

τ1+1
←−−−↩ I , verify

all signatures, i.e. check:

VrfypkB
([TXγf]; sBf) = 1

VrfypkI
([TXγf], sIf) = 1.

If all checks pass define

TX
γ
f := {([TXγf], sAf , s

B
f , s

I
f)},

and set
ΓA(γ.id) := (⊥, TXγf , tidA)

and consider procedure successfully completed. Else record
this execution as “failed” and stop.

Case I is honest and A,B are corrupted

5) If I receives (createFund, γ.id, sAf , [TX
γ
f])

τ2≤τ0+T+1
←−−−−−−−−↩

A and (createFund, γ.id, sBf , [TX
γ
f])

τ2←−↩ B, verify the
funding transaction and signatures of A and B, i.e. check:

VrfypkA
([TXγf]; sAf) = 1

VrfypkB
([TXγf], sBf) = 1

(tidA, tidB) = TX
γ
f .Input

(γ.cash + γ.fee, One–SigpkI
) ∈ TX

γ
f .Output.

6) If all checks pass, sign the funding transaction, i.e. compute

sIf := SignskI
([TXγf]),

TX
γ
f := {([TXγf], sAf , s

B
f , s

I
f)}.

Store ΓI(γ.id) := (⊥, TXγf). Then send
(createFund, γ.id, sBf , s

I
f)

τ2
↪−→ A and

(createFund, γ.id, sAf , s
I
f)

τ2
↪−→ B, and consider procedure

successfully completed. Else record this execution as
“failed” and stop.

SetupVChannel for channels With validity

Case A is honest and B, I are corrupted

1) Send (createInfo, γ.id, tidA)
τ0
↪−→ B.

2) In round τ1 = τ0 + 1, create the body of the funding
transaction:

TX
γ
f .Input :=(tidA)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.fee/2, One–SigpkI
))

3) Upon A sending (PRE–CREATE, γ, TXf, 1, tofl)
τ1
↪−→ FpreL

where tofl = γ.val+3∆, execute the simulator code for the
Pre-Create procedure of the FpreL functionality. If A does

not receive the message (PRE–CREATED, γ.id)
τ2≤τ1+T
←−−−−−−↩

FpreL then mark this execution as “failed” and stop.
4) If A receives (createFund, γ.id, sIf)

τ2+2
←−−−↩ I , verify the

signature, i.e. check:

VrfyskI
([TXγf]; sIf) = 1.

If the check passes, compute a signature on the fund
transaction:

sAf := SignskA
([TXγf]),

TX
γ,A
f := {([TXγf], sIf , s

A
f)}.

Else record this execution as “failed” and stop.
5) Set

ΓA(γ.id) := (⊥, TXγ,Af , tidA)

and consider procedure successfully completed.

Case B is honest and A, I are corrupted

1) If (createInfo, γ.id, tidA)
τ0+1
←−−−↩ A, create the body of the

funding and the first commit and split transactions:

TX
γ
f .Input :=(tidA)

TX
γ
f .Output :=((γ.cash, Multi–Sig{γ.endUsers}),

(γ.fee/2, One–SigpkI
))

TX
γ
refund.Input :=(TXγf .txid||2, tidB)

TX
γ
refund.Output :=(γ.cash + γ.fee, One–SigpkI

).

Else record this execution as “failed” and stop.
2) Upon B sending (PRE–CREATE, γ, TXf, 1, tofl)

τ1=τ0+1
↪−−−−−→

FpreL

where tofl = γ.val + 3∆, execute the simulator code for
the Pre-Create procedure of the FpreL functionality. If B

does not receive (PRE–CREATED, γ.id)
τ2≤τ1+T
←−−−−−−↩ FpreL

then mark this execution as “failed” and stop.
3) Compute a signature on the refund transaction, i.e., sBRef ←

SignskB
([TXγrefund]) and define TX

γ,B
f := {([TXγf])}. Then,

send (createFund, γ.id, sBRef, [TX
γ
refund], [TX

γ
f])

τ2
↪−→ I , set

ΓB(γ.id) := (⊥, TXγ,Bf , tidB)

and consider procedure successfully completed. Else record
this execution as “failed” and stop.

Case I is honest and A,B are corrupted

4) If I receives the message (createFund,

γ.id, sBRef, [TX
γ
refund], [TX

γ
f])

τ3≤τ0+T+2
←−−−−−−−−↩ B, verify the

fund and refund transactions and signature of B, i.e. check:

VrfyskB
([TXγrefund]; s

B
Ref) = 1.

[TXγrefund].Input = (TXγf .txid||2, tidB),

[TXγrefund].Output = (γ.cash + γ.fee, One–SigpkI
),

[TXγf].Output[2] = (γ.fee/2, One–SigpkI
)

If all checks pass, sign the fund and refund transactions, i.e.
compute

sIRef := SignskI
([TXγrefund]), s

I
f := SignskI

([TXγf]),

TX
γ
refund := {([TXγrefund], s

I
Ref, s

B
Ref)}.

Store ΓI(γ.id) := (⊥, [TXγf], TXγrefund, tidA, tidB). Then
send (createFund, γ.id, sIf)

τ3
↪−→ A, and consider proce-

dure successfully completed. Else record this execution as
“failed” and stop.

Function GenVChannelOutput(γ, P)

Return θ, where θ.cash = γ.cash+ γ.fee/2 and θ.ϕ is defined
as follows

θ.ϕ =

Multi–Sigγ.users ∨ (One–SigP ∧ CheckRelative(T+4∆)),

if γ.val = ⊥
Multi–SigA,I ∨ (One–SigI ∧ CheckLockTimeγ.val),

if γ.val 6= ⊥ ∧ P = A

Multi–SigB,I ∨ (One–SigB ∧ CheckLockTimeγ.val+2∆),

if γ.val 6= ⊥ ∧ P = B

Simulator for updating virtual channels

Update virtual channels

Case A is honest and B is corrupt

Below we abbreviate FpreL := FpreL(T, 1) and assume A
is the initiating party.

1) Upon A sending (UPDATE, id , ~θ, tstp)
τA0
↪−−→ FpreL, execute

the simulator for the pre-update procedure of the FpreL

functionality from beginning until PRE–SETUP is sent. If this
execution is marked “failed” stop.

2) Upon A sending (SETUP–OK, id)
τA2 ≤τ

A
1 +tstp

↪−−−−−−−−→ FpreL, con-
tinue executing the simulator code until step 4. If this
execution is marked “failed” stop.

3) If A does not receive (PRE–UPDATE–OK, id)
τA3 ≤τ

A
2 +T

←−−−−−−−↩

FpreL or (PRE–UPDATE–REJECT, id)
τA3 ≤τ

A
2 +T

←−−−−−−−↩ FpreL,
execute the simulator code for the procedure OffloadA(id)
and stop.

4) Upon A sending (PRE–REVOKE, id)
τA3
↪−−→ FpreL continue

executing the simulator code until the end. If this execution
is marked as “failed” execute the simulator code for the
procedure OffloadA(id) and stop.

5) Upon A receiving (PRE–UPDATED, id)
τA4 ≤τ

A
3 +T

←−−−−−−−↩ FpreL,
update the channel space, i.e., let γ := ΓA(id), set γ.st := ~θ
and Γ(id) := γ. Else if this execution is marked as “failed”
execute the simulator code for the procedure OffloadA(id)
and stop.

Case B is honest and A is corrupt

1) Let τB0 be the round in which B receives

(PRE–UPDATE–REQ, id , ~θ, tstp, tid)
τB0←−−↩ FpreL.

2) Let τB1 ≤ τ0 + tstp + T be the round in which B receives

the message (PRE–SETUP–OK, id)
τB1 ≤τ0+tstp+T
←−−−−−−−−−↩ FpreL.

3) Upon B sending (UPDATE–OK, id)
τB1←−−↩ FpreL execute the

simulator code of the pre-update procedure for the FpreL

functionality until the message PRE–REVOKE–REQ is sent by
the functionality and let the this round be τB2 ≤ τB1 +T . If
this execution is marked as “failed” execute the simulator
code of the procedure OffloadB(id) and stop.

4) Upon B sending (PRE–REVOKE, id)
τB2
↪−−→ FpreL continue

executing the simulator code until the end. If this execution
is marked as “failed” execute the simulator code for the
procedure OffloadB(id) and stop.

5) Upon B receiving (PRE–UPDATED, id)
τB3 ≤τ

B
2 +T

←−−−−−−−↩ FpreL,
update the channel space, i.e., let γ := ΓB(id), set γ.st := ~θ
and Γ(id) := γ.

Simulator for offloading virtual channels

Offloading virtual channels without validity

Case A honest and I, B corrupted

1) Extract γ and TX
γ
f from ΓA(id) and tidA, tidB from

TX
γ
f . Then define idα := γ.subchan(A). Upon A sending

(CLOSE, idα)
τ0
↪−→ FL execute the simulator code for the

close procedure of generalized ledger channels.

2) If A receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−↩ FL, check

that a transaction with tidA appeared on L̂. Else stop.
3) Let T2 := τ1 + T + 3∆ and distinguish:
• If in round τ2 ≤ T2 a transaction with tidB appeared

on L̂, then (post, TXγf)
τ2
↪−→ L̂.

• Else in round T2 create the punishment transaction
TXpun as TXpun.Input := tidA, TXpun.Output :=
(γ.cash+γ.fee/2, One–SigpkA

) and TXpun.Witness :=

SignskA
([TXpun]). Then (post, TXpun)

T2
↪−→ L̂.

4) Let T3 := τ2 +∆ and distinguish the following two cases:
• The transaction TX

γ
f was accepted by L̂ in τ3 ≤ T3,

then update ΓA := ToLedgerChannel(ΓA, γ.id) and
set m := offloaded.

• The transaction TXpun was accepted by L̂ in τ3 ≤ T3,
then define ΓA(γ.id) = ⊥ and set m := punished.

5) Return m in round τ3.

Case I honest and A,B corrupted

1) Extract γ and TX
γ
f from ΓI(id) and tidA, tidB from

TX
γ
f . Then define idα := γ.subchan(A), idβ :=

γ.subchan(B) Upon I sending the messages (CLOSE, idα)
τ0
↪−→ FL and (CLOSE, idβ)

τ0
↪−→ FL execute the simulator

code of the close procedure for the generalized channels.

2) If I receives both (m, idα)
τA1 ≤τ0+T+3∆
←−−−−−−−−−↩ FL and

(CLOSED, idβ)
τB1 ≤τ0+T+3∆
←−−−−−−−−−↩ FL, check that a trans-

action with tidA and a transaction with tidB appeared
on L̂. Then publish (post, TXγf)

τ1
↪−→ L̂, where τ1 :=

max{τA1 , τB1 }. Otherwise set ΓI(id) = ⊥ and stop.
3) Once TX

γ
f is accepted by L̂ in round τ2 ≤ τ1 + ∆, then

ΓI(γ.id) = ⊥ and return “offloaded”.

Offloading virtual channels with validity

Case A honest and B, I corrupted

1) Extract γ, tidA and TX
γ
f from ΓA(id). Then define idα :=

γ.subchan(A) and Upon A sending (CLOSE, idα)
τ0
↪−→ FL

execute the simulator code of the close procedure of the
generalized ledger channel.

2) If A receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−↩ FL, then post

(post, TXγ,Af)
τ2
↪−→ L̂. Otherwise, set ΓA(γ.id) = ⊥ and

stop.
3) Once TXγf is accepted by L̂ in round τ2 ≤ τ1 +∆, then set

ΓAL(id) := ΓA(id), ΓA(id) := ⊥ and return “offloaded”.

Case B honest and A, I corrupted

1) Extract γ, tidB and [TXγf] from ΓB(id). Then define
idβ := γ.subchan(B) and Upon B sending (CLOSE, idβ)
τ0
↪−→ FL execute the simulator code of the close procedure
of the generalized ledger channel.

2) If B receives (CLOSED, idβ)
τ1≤τ0+T+3∆
←−−−−−−−−−↩ FL, then

continue. Otherwise, set ΓB(γ.id) = ⊥ and stop.
3) Create the punishment transaction TXpun as TXpun.Input :=

tidB , TXpun.Output := (γ.cash + γ.fee/2, One–SigpkB
)

and TXpun.Witness := SignskB
([TXpun]). Then wait until

round τ2 := max{τ1, γ.val+2∆} and send (post, TXpun)
τ2
↪−→ L̂.

4) Let T3 := τ2 +∆ and distinguish the following two cases:
• A transaction with identifier TXγf .txid was accepted by
L̂ in τ3 ≤ T3, then update ΓBL (id) := ΓB(id) and set
m := offloaded.

• The transaction TXpun was accepted by L̂ in τ3 ≤ T3,
then define ΓB(γ.id) = ⊥, and set m := punished.

5) Return m in round τ3.

Case I honest and A,B corrupted

1) Extract γ, tidA, tidB , TX
γ
refund and [TXγf] from

ΓI(id). Then define idα := γ.subchan(A), idβ :=

γ.subchan(B) and upon I sending (CLOSE, idα)
τ0
↪−→ FL

and (CLOSE, idβ)
τ0
↪−→ FL execute the simulator code of

the close procedure of the generalized ledger channel for
both idα and idβ .

2) If I receives both (CLOSED, idα)
τA1 ≤τ0+T+3∆
←−−−−−−−−−↩ FL and

(CLOSED, idβ)
τB1 ≤τ0+T+3∆
←−−−−−−−−−↩ FL,then continue. Other-

wise, set ΓI(γ.id) = ⊥ and stop.
3) Create the punishment transaction TXpun as TXpun.Input :=

tidA, TXpun.Output := (γ.cash + γ.fee/2, One–SigpkI
)

and TXpun.Witness := SignskI
([TXpun]). Then wait until

round τ2 := max{τA1 , γ.val} and send (post, TXpun)
τ2
↪−→

L̂.
4) Let T3 := τ2 +∆ and distinguish the following two cases:
• A transaction with identifier TXγf .txid was accepted by
L̂ in τ ′3 ≤ T3, send (post, TXγrefund)

τ4
↪−→ L̂ where τ4 :=

max{τB1 , τ ′3}. Once TXγrefund is accepted by L̂ in round
τ5 ≤ τ4 + ∆, set ΓI(γ.id) = ⊥ and m := offloaded.

• The transaction TXpun was accepted by L̂ in τ ′′3 ≤ T3,
then set ΓI(γ.id) = ⊥ and m := punished.

5) Return m in round τ6 where τ6 := max{τ5, τ ′′3 }.

Simulator for punishing in a virtual channel

• Upon a party sending (PUNISH)
τ0
↪−→ FL, execute the simula-

tor code for the punish procedure of the generalized channels.
• Execute the simulator code for both Punish and
Punish–Validity.

Punish

Case A honest and I, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val = ⊥ can
be extracted from ΓA(id) do the following:

1) Extract TX
γ
f from ΓA(id) and tidA, tidB from TX

γ
f .

Check if tidA appeared on L̂. If not, then stop.
2) Denote T2 := τ1 + T + 3∆ and distinguish:
• If in round τ2 ≤ T2 the transaction with tidB appeared

on L̂, then (post, TXγf)
τ2
↪−→ L̂.

• Else in round T2 create the punishment transaction
TXpun as TXpun.Input := tidA, TXpun.Output :=
(γ.cash+γ.fee/2, One–SigpkA

) and TXpun.Witness :=

SignskA
([TXpun]) and (post, TXpun)

T2
↪−→ L̂.

3) Let T3 := τ2 +∆ and distinguish the following two cases:

• The transaction TX
γ
f was accepted by L̂ in τ3 ≤ T3,

then update ΓA := ToLedgerChannel(ΓA, γ.id).
• The transaction TXpun was accepted by L̂ in τ3 ≤ T3,

then define ΓA(γ.id) = ⊥.

Case I honest and A,B corrupted

For every id ∈ {0, 1}∗, such that γ with γ.val = ⊥ can be
extracted from ΓI(id) do the following:

1) Extract TXγf from ΓI(id) and tidA, tidB from TX
γ
f . Check

if for some P ∈ {A,B} a transaction with identifier tidP
appeared on L̂. If not, then stop.

2) Denote idα := γ.subchan(Q) where
Q = γ.otherParty(P) and upon I sending (CLOSE,

idα)
τ0
↪−→ FL execute simulator the code for the punish

procedure of the generalized virtual channels.

3) If I receives (CLOSED, idα)
τ1≤τ0+T+3∆
←−−−−−−−−−↩ FL and

tidQ appeared on L̂, (post, TXγf)
τ1
↪−→ L̂. Otherwise set

ΓI(id) = ⊥ and stop.
4) Once TX

γ
f is accepted by L̂ in round τ2, such that τ2 ≤

τ1 + ∆, set ΓI(id) = ⊥.

Punish–Validity

Case A honest and I, B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val 6= ⊥ can
be extracted from ΓA(id) do the following:

1) Extract tidA and TX
γ
f from ΓA(id). Check if tidA ap-

peared on L̂. If not, then stop.
2) Send (post, TXγf)

τ1
↪−→ L̂.

3) Once TX
γ
f is accepted by L̂ in round τ2 ≤ τ1 + ∆, set

ΓAL(id) := ΓA(id), ΓA(id) := ⊥.

Case B honest and A, I corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val 6= ⊥ can be
extracted from ΓB(id) do the following:

1) Extract tidB and [TXγf] from ΓB(id). Check if tidB or
[TXγf].txid appeared on L̂. If not, then stop.

2) If TXγf appeared on L̂, set ΓBL (id) := ΓB(id), ΓB(id) :=
⊥ and stop.

3) If tidB appeared on L̂, create the punishment transac-
tion TXpun as TXpun.Input := tidB , TXpun.Output :=
(γ.cash + γ.fee/2, One–SigpkB

) and TXpun.Witness :=
SignskB

([TXpun]). Then wait until round τ2 :=

max{τ1, γ.val + 2∆} and send (post, TXpun)
τ2
↪−→ L̂.

4) If transaction TXpun was accepted by L̂ in τ3 ≤ τ2 + ∆,
then define ΓB(γ.id) = ⊥.

Case I honest and A,B corrupted

For every id ∈ {0, 1}∗, such that γ which γ.val 6= ⊥ can be
extracted from ΓI(id) do the following:

1) Extract tidA, tidB , TX
γ
refund and [TXγf] from ΓI(id).

Check if tidA or tidB appeared on L̂ or τ1 = γ.val −
(3∆ + T). If not, then stop.

2) Distinguish the following cases:
• If τ1 = γ.val−(3∆+T), define idα := γ.subchan(A),
idβ := γ.subchan(B) and upon I sending the mes-
sages (CLOSE, idα)

τ1
↪−→ FL and (CLOSE, idβ)

τ1
↪−→ FL

execute the simulator code for the close procedure of
the generalized channels for both channels idα and idβ .

• If tidB appeared on L̂, send (CLOSE, idα)
τ1
↪−→ FL.

3) If a transaction with identifier tidA appeared on L̂
in round τ2 ≤ τ1 + T + 3∆, create the pun-
ishment transaction TXpun as TXpun.Input := tidA,
TXpun.Output := (γ.cash + γ.fee/2, One–SigpkI

) and
TXpun.Witness := SignskI

([TXpun]). Then wait until round

τ3 := max{τ2, γ.val} and send (post, TXpun)
τ3
↪−→ L̂.

4) Distinguish the following two cases:
• The transaction TX

γ
f .txid was accepted by L̂ in τ4 ≤

τ3 + ∆, send (post, TXγrefund)
τ5
↪−→ L̂ where τ5 :=

max{γ.val + ∆, τ4}. Once TX
γ
refund is accepted by L̂

in round τ6 ≤ τ5 + ∆, set ΓI(γ.id) = ⊥ and stop.
• The transaction TXpun was accepted by L̂ in τ4 ≤ τ3 +

∆, then set ΓI(γ.id) = ⊥.

Simulator for Close in a virtual channel

Closing virtual channels

Case A honest and I, B corrupted

1) Upon A sending (CLOSE, id)
τA0
↪−−→ FV or in round τA0 =

γ.val− (4∆ + 7T) if γ.val 6= ⊥, proceed as follows:
2) Extract γ, TXγf , tidA from ΓA(id). Parse

TX
γ
s .Output =

(
(cA, One–SigpkA

), (cB , One–SigpkB
)
)
.

3) Compute the new state of the channel idα := γ.subchan(A)
as

~θA := {(cA, One–SigpkA
), (γ.cash−cA+

γ.fee

2
, One–SigpkI

)}

Then, upon A sending (UPDATE, idα, ~θA, 0)
τA0
↪−−→ FL exe-

cute the simulator code for the update procedure of general-
ized channels until (SETUP, idα, ~tid ′A) is sent by FL. If this
execution fails instruct FV to execute V–ForceClose(id)
and stop.

4) Upon A sending (SETUP–OK, idα)
τA1 ≤τ

A
0 +T

↪−−−−−−−→ FL continue
executing the simulator code for the update procedure of
generalized channels until A receives (UPDATE–OK, idα)
τA2 ≤τ

A
1 +2T

←−−−−−−−↩ FL. If this execution fails instruct FV to
execute V–ForceClose(id) and stop.

5) Upon A sending (REVOKE, idα)
τA2
↪−−→ FL continue executing

the simulator code for the update procedure of generalized

channels until A receives (UPDATED, idα)
τA3 ≤τ

A
2 +2T

←−−−−−−−↩ FL,
then set ΓA(id) := ⊥ and stop. If this execution fails
instruct FV to execute V–ForceClose(id) and stop.

Case I honest and A,B corrupted

1) Upon I sending (CLOSE, id)
τI0
↪−→ FV or in round τA0 =

γ.val− (4∆ + 7T) if γ.val 6= ⊥, proceed as follows:
2) Extract γ, TXγf , tidA and tidB from ΓI(id).
3) Let idα = γ.subchan(A), idβ = γ.subchan(B) and c :=

γ.cash, execute the simulator code for the update procedure
of generalized channels until (UPDATE–REQ, idα, ~tid ′A, ~θA,

0) ←−↩ FL and (UPDATE–REQ, idβ , ~tid ′B , ~θB , 0) ←−↩ FL are
sent by FL until round τ I1 ≤ τ I0 + T .

4) Check that for some cA, cB s.t. cA+cB+γ.fee = c it holds

~θA = {(cA, One–SigpkA
), (c− cA + γ.fee/2, One–SigpkI

)}
~θB = {(cB , One–SigpkB

), (c− cB + γ.fee/2, One–SigpkI
)}

If not, then stop.
5) continue executing the simulator code for the up-

date procedure of generalized channels until I receives
(SETUP–OK, idα) ←−↩ FL and (SETUP–OK, idβ)) ←−↩ FL
until round τ I2 ≤ τ I1 + T . Otherwise stop.

6) Upon I sending (UPDATE–OK, idβ)
τI2
↪−→ FL continue

executing the simulator code for the update procedure
of generalized channels until I receives the messages
(REVOKE–REQ, idα)←−↩ FL and (REVOKE–REQ, idβ)←−↩ FL
until round τ I3 ≤ τ I2 + 2T .

7) Upon I sending (REVOKE, idα)
τI3
↪−→ FL and (REVOKE, idβ)

τI3
↪−→ FL executing the simulator code for the update
procedure of generalized channels until the end and set
ΓI(id) := ⊥.

