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Abstract—Mobile-application fingerprinting of network traffic
is valuable for many security solutions as it provides insights into
the apps active on a network. Unfortunately, existing techniques
require prior knowledge of apps to be able to recognize them.
However, mobile environments are constantly evolving, i.e., apps
are regularly installed, updated, and uninstalled. Therefore, it is
infeasible for existing fingerprinting approaches to cover all apps
that may appear on a network. Moreover, most mobile traffic is
encrypted, shows similarities with other apps, e.g., due to common
libraries or the use of content delivery networks, and depends on
user input, further complicating the fingerprinting process.

As a solution, we propose FLOWPRINT, a semi-supervised
approach for fingerprinting mobile apps from (encrypted) net-
work traffic. We automatically find temporal correlations among
destination-related features of network traffic and use these
correlations to generate app fingerprints. Our approach is able
to fingerprint previously unseen apps, something that existing
techniques fail to achieve. We evaluate our approach for both
Android and iOS in the setting of app recognition, where we
achieve an accuracy of 89.2%, significantly outperforming state-
of-the-art solutions. In addition, we show that our approach can
detect previously unseen apps with a precision of 93.5%, detecting
72.3% of apps within the first five minutes of communication.

I. INTRODUCTION

Security solutions aim at preventing potentially harmful or
vulnerable applications from damaging the IT infrastructure or
leaking confidential information. In large enterprise networks,
this is traditionally achieved by installing monitoring agents
that protect each individual device [67]. However, for mobile
devices security operators do not have direct control over the
apps installed on each device in their infrastructure, especially
when new devices enter networks under bring-your-own-device
(BYOD) policies on a regular basis and with the ease by
which apps are installed, updated, and uninstalled. In order
to still retain detection capabilities for apps that are active in
the network, operators rely on observing the network traffic
of mobile devices. This naturally introduces the challenge of
detecting apps in encrypted network traffic, which represents
the majority of mobile traffic—80% of all Android apps, and
90% of apps targeting Android 9 or higher, adopt Transport
Layer Security (TLS) [31].

However, recognizing mobile apps can be a double-edged
sword: On the one hand, network flow analysis provides a non-
intrusive central view of apps on the network without requiring
host access. On the other hand, app detection can be used for
censoring and invades users’ privacy. As we show in this work,
active apps on a network can not only be reliably fingerprinted
for security purposes, but also in an adversarial setting, despite
traffic encryption. Thus, privacy-conscious users need to be
aware of the amount of information that encrypted traffic is still
revealing about their app usage, and should consider additional
safeguards, such as VPNs, in certain settings.

The idea of network-based app detection has already been
extensively explored in both industry and academia [2, 4, 5,
17, 25]. Snort for example offers AppID [21], a system for
creating network intrusion detection rules for specified apps,
while Andromaly [57] attempts to detect unknown software
through anomaly detection by comparing its network behavior
to that of known apps. Other approaches specifically focus
on detecting apps containing known vulnerabilities [62], and
others identify devices across networks based on the list of
apps installed on a device [61]. All these approaches have
in common that they require prior knowledge of apps before
being able to distinguish them. However, new apps are easily
installed, updated and uninstalled, with almost 2.5 million
apps to choose from in the Google Play Store alone [60],
not to mention a number of alternative markets. Furthermore,
recent work has shown that even the set of pre-installed apps
on Android varies greatly per device [30]. Thus, especially
when companies adopt BYOD policies, it is infeasible to know
in advance which apps will appear on the network. As a
consequence, unknown apps are either misclassified or bundled
into a big class of unknown apps. In a real-world setting, a
security operator would need to inspect the unknown traffic
and decide which app it belongs to, limiting the applicability
of existing approaches in practice.

Unlike existing solutions, we assume no prior knowledge
about the apps running in the network. We aim at generating
fingerprints that act as markers, and that can be used to both
recognize known apps and automatically detect and isolate
previously unseen apps. From this, a security operator can
update whitelists, blacklists or conduct targeted investigations
on per-app groupings of network traffic.

There are several challenges that make such fingerprinting
non-trivial. This is because mobile network traffic is particu-
larly homogeneous, highly dynamic, and constantly evolving:
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Homogeneous. Mobile network traffic is homogeneous be-
cause many apps share common libraries for authentication,
advertisements or analytics [11]. In addition, the vast majority
of traffic uses the same application-level protocol HTTP in
various forms (HTTP(S)/QUIC) [50]. Furthermore, part of
the content is often served through content delivery networks
(CDNs) or hosted by cloud providers. Consequently, different
apps share many network traffic characteristics. Our work
tackles homogeneous traffic by leveraging the difference in
network destinations that apps communicate with. We show
that despite the large overlap in destinations, our approach is
still able to extract unique patterns in the network traffic.

Dynamic. Mobile network traffic is often dynamic as data that
apps generate may depend on the behavior of the users, e.g.,
their navigation through an app. Such dynamism may already
be observed in synthetic datasets that randomly browse through
an app’s functionality. Various fingerprinting approaches rely
on repetitive behavior in network traffic [1, 28]. Despite good
results of these methods in smart-home environments and
industrial control systems, dynamic traffic could complicate
fingerprinting of mobile apps. Hence, our work aims to create
fingerprints that are robust against user interactions by leverag-
ing information about network destinations on which the user
has limited influence. We show that our approach achieves
similar results on both automated and user-generated datasets.

Evolving. Mobile network traffic is constantly evolving as app
markets offer effortless installation, update, and uninstallation
of a vast array of apps. Studies have shown that apps are
regularly updated with new versions, as frequently as once a
month on average [11, 22]. This is a challenge for existing fin-
gerprinting mechanisms that require prior knowledge of an app
in order to generate fingerprints. When new or updated apps
are introduced into the network, these fingerprinting systems
become less accurate, similarly to what Vastel et al. observed in
the setting of browser fingerprinting [65]. Moreover, the frac-
tion of apps covered by these systems dramatically decreases
over time if fingerprints are not regularly updated. Our solution
counters this by basing its fingerprints on pattern discovery in
network traffic instead of training on labeled data. Doing so,
our approach produces fingerprints that automatically evolve
together with the changing network traffic. We show that our
approach is able to correctly recognize updated apps and can
even detect and fingerprint previously unseen apps.

To address these challenges, we introduce a semi-
supervised approach to generate fingerprints for mobile apps.
Our key observation is that mobile apps are composed of
different modules that often communicate with a static set of
destinations. We leverage this property to discover patterns in
the network traffic corresponding to these different modules.
On a high level, we group together (encrypted) TCP/UDP
flows based on their destination and find correlations in des-
tinations frequently accessed together. We then combine these
patterns into fingerprints, which may, among other use cases,
be used for app recognition and unseen app detection.

While our approach does not require prior knowledge to
generate fingerprints, and could, thus, be considered unsuper-
vised, the applications of our approach are semi-supervised. In
fact, our approach creates “anonymous” labels that uniquely
identify mobile apps. However, app recognition uses known
labels to assign app names to the matched fingerprints. For

example, having knowledge about the Google Maps app,
allows us to rename unknown_app_X to google_maps.
Similarly, unseen app detection requires a training phase on a
set of known apps to identify unknown ones.

In summary, we make the following contributions:
• We introduce an approach for semi-supervised fin-

gerprinting by combining destination-based clustering,
browser isolation and pattern recognition.

• We implement this approach in our prototype FLOW-
PRINT, the first real-time system for constructing
mobile app fingerprints capable of dealing with unseen
apps, without requiring prior knowledge.

• We show that, for both Android and iOS apps, our
approach detects known apps with an accuracy of
89.2%, significantly outperforming the state-of-the-art
supervised app recognition system AppScanner [62].
Moreover, our approach is able to deal with app
updates and is capable of detecting previously unseen
apps with a precision of 93.5%.

In the spirit of open science, we make both our prototype and
datasets available at https://github.com/Thijsvanede/FlowPrint.

II. PRELIMINARY ANALYSIS

To study mobile network traffic and identify strong indica-
tors that can be used to recognize mobile apps, we performed
a preliminary analysis on a small dataset. As indicated in
the introduction, our fingerprinting method should be able to
distinguish mobile apps despite their homogeneous, dynamic
and evolving behavior. Hence, in our preliminary analysis we
explored features that may be used to fingerprint apps.

A. Dataset

In order to perform our analyses, we use datasets of
encrypted network traffic labeled per app (see Table I). These
datasets allow us to evaluate our method in various conditions
as they contain a mix of both synthetic and user-generated data;
Android and iOS apps; benign and potentially harmful apps;
different app stores; and different versions of the same app. We
collected three of the datasets as part of our prior work [40, 51,
52, 53]. We collected the last set specifically for this work with
the purpose of representing browser traffic, which is lacking in
most available datasets. For this preliminary analysis, we only
used a small fraction of the available data in order to prevent
bias in the final evaluation.

ReCon. The ReCon AppVersions dataset [52, 53] consists
of labeled network traces of 512 Android apps from the
Google Play Store, including multiple version releases over
a period of eight years. The traces were generated through
a combination of automated and scripted interactions on five
different Android devices. The apps were chosen among the
600 most popular free apps on the Google Play Store ranking
within the top 50 in each category. In addition, this dataset
contains extended traces of five apps, including multiple ver-
sion releases. The network traffic of each of these five apps
was captured daily over a two-week period. In this work, we
refer the AppVersions dataset as ReCon and to the extended
dataset as ReCon extended.
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TABLE I. DATASET OVERVIEW. 3 INDICATES A DATASET CONTAINS
HOMOGENEOUS (H), DYNAMIC (D), OR EVOLVING (E) TRAFFIC.

Dataset No.
Apps

No.
Flows

% TLS
Flows Start Date End Date Avg.

Duration H D E

ReCon [52, 53] 512 28.7K 65.9% 2017-01-24 2017-05-06 189.2s 3 3
ReCon extended [52, 53] 5 141.2K 54.0% 2017-04-21 2017-05-06 4h 16m 3 3

Cross Platform (Android) [51] 215 67.4K 35.6% 2017-09-11 2017-11-20 333.0s 3 3
Cross Platform (iOS) [51] 196 34.8K 74.2% 2017-08-28 2017-11-13 339.4s 3 3
Cross Platform (All) [51] 411 102.2K 49.6% 2017-08-28 2017-11-20 336.0s 3 3

Andrubis [40] 1.03M 41.3M 24.7% 2012-06-13 2016-03-25 210.7s 3

Browser 4 204.5K 90.5% 2018-12-17 2019-03-01 3h 34m 3

Cross Platform. The Cross Platform dataset [51] consists of
user-generated data for 215 Android and 196 iOS apps. The
iOS apps were gathered from the top 100 apps in the App
Store in the US, China and India. The Android apps originate
from the top 100 apps in Google Play Store in the US and
India, plus from the top 100 apps of the Tencent MyApps and
360 Mobile Assistant stores, as Google Play is not available in
China. Each app was executed between three and ten minutes
while receiving real user inputs. Procedures to install, interact,
and uninstall the apps were given to student researchers who
followed them to complete the experiments while collecting
data. We use this dataset to evaluate both the performance
of our method with user-generated data and the performance
between different operating systems.

Andrubis. The Andrubis dataset [40] contains labeled data of
1.03 million Android apps from the Google Play Store and 15
alternative market places. This dataset contains both benign
and potentially harmful apps, as classified by VirusTotal. Each
trace in this dataset was generated by running the app for
four minutes in a sandbox environment emulating an Android
device. The app was exercised by automatically invoking app
activities and registered broadcast receivers, and simulating
user interactions through the Android Application Exerciser
Monkey. We use the Andrubis dataset for experiments requir-
ing large traffic volume and to assess the performance of our
method on both benign and potentially harmful apps.

Browser. We created the Browser dataset because the existing
datasets contain a limited amount of browser traffic, which may
produce a significant portion of traffic in mobile environments.
Even though a browser is not a dedicated app, but rather a
platform on which various web content is rendered, executed
and displayed, a fingerprinting method with the purpose of
detecting apps should also be able to detect the browser as
a single app. To this end, we collect an additional dataset
of browser traffic by scraping the top 1,000 Alexa websites
on a Samsung Galaxy Note 4 running Android 6.0.1 with
Chrome, Firefox, Samsung Internet and UC Browser, which
cover 90.9% of browser traffic [59], if we exclude Safari,
which is not available for Android. Each website visit lasts for
15 seconds, while the Application Exerciser Monkey simulates
a series of random movements and touches.

B. Feature Exploration

Previous work on app fingerprinting usually tackles the
problem in a supervised setting. In this work however, we
propose an approach with the aim of automatically detect-
ing unknown apps, without requiring prior knowledge. This
requires a re-evaluation of the network features commonly
used in app fingerprinting. Therefore, we first identify pos-
sible features from the network traffic. The TLS-encrypted

traffic limits the available features to temporal and size-based
features, as well as the header values of unencrypted layers
and the handshake performed to establish a TLS connection.
The data-link layer header provides only information about
the linked devices, not about the app itself and is therefore
not useful for our purposes. We further analyze the layers
between the data-link and application layer, as we expect the
latter to be encrypted. From these layers, we extract all header
values controlled by the communicating app as well as the
sizes and inter-arrival times of packets. In addition, for the size
and time related features we compute the statistical properties:
minimum, maximum, mean, standard deviation, mean absolute
deviation, and 10-th through 90-th percentile values.

C. Feature Ranking

We score all features according to the Adjusted Mutual
Information (AMI) [66], a metric for scoring features in unsu-
pervised learning. We favor the AMI over other methods, such
as information gain, as the latter is biased towards features that
can take on random values. Such randomness is undesirable
in an unsupervised or semi-supervised setting, as we do not
have any prior expectation of feature values. The AMI defines
the relative amount of entropy gained by knowing a feature
with respect to the class, in our case the app. To this end, we
first compute the mutual information between a feature and its
app as described in Equation 1. Here Y is the list of classes
of each sample and X is the list of features corresponding to
the samples. Function p(x, y) defines the joint probability of
value x and label y, whereas p(x) and p(y) are the individual
probabilities of features x and y occurring respectively.

MI(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
( p(x, y)

p(x)p(y)

)
(1)

To counter that the mutual information is biased toward
features that have many different values, the AMI removes
any bias by normalizing for the expected gain in entropy. As a
result, the AMI score ranges from 0 (completely uncorrelated)
to 1 (observing feature X fully maps to knowing app label Y).
Equation 2 shows the definition of the AMI, where E[X] is
the expected value of X and H(X) is the entropy of X . We
use the AMI to rank features based on how much information
they contain about an app, and thereby get an indication of
their usefulness in a fingerprint.

AMI(X,Y ) =
MI(X,Y )− E[MI(X,Y )]

max(H(X), H(Y ))− E[MI(X,Y )]
(2)

D. Feature Evaluation

Using the AMI, we analyze and rank the features available
in TLS-encrypted traffic of the ReCon dataset. The evaluation
of our fingerprinting approach in Section V demonstrates that
these features also generalize to other datasets. After extracting
all features, we divide them into categorical and continuous
values. As the AMI can be compared only for categorical
values, we divided each continuous value into 20 equally
sized bins spanning the full range of each feature. Then,
we computed the AMI of each feature with respect to the
app label. Table II shows the ten highest ranked features,
we provide all the analyzed features together with their AMI
scores at https://github.com/Thijsvanede/FlowPrint.
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TABLE II. AMI OF TEN HIGHEST SCORING FEATURES.

Feature Category AMI

Inter-flow timing Temporal 0.493
IP address - source Device 0.434
TLS certificate - validity after Destination 0.369
TLS certificate - validity before Destination 0.356
TLS certificate - serial number Destination 0.342
IP address - destination Destination 0.246
TLS certificate - extension set Destination 0.235
Packet size (incoming) - std Size 0.235
Packet size (outgoing) - std Size 0.232
Packet inter-arrival time (incoming) - std Temporal 0.218

From Table II we first observe that there are no features
with an AMI close to 1. Hence, a fingerprint should combine
multiple features in order to create a reliable app marker.
In addition, we deduce four important categories that can
be leveraged when creating app fingerprints. We note that
these categories are not new to app fingerprinting, but give
insights into how an approach may benefit from leveraging
these features. While only using a small part of the dataset for
our preliminary feature evaluation, our results in Section V
show that the features are generic and also perform well on
larger datasets.

Temporal features. The Inter-flow timing and Packet inter-
arrival time (incoming) stress the importance of timing in
network traffic. Most apps primarily communicate when active,
and early studies suggested a limited number of apps are active
simultaneously [14, 26]. As temporal features may be affected
by latency and network congestion on a small-time scale, our
work uses time on a more course-grained level. We leverage
the time between flows to correlate traffic occurring at the
same time interval. In addition to our semi-supervised setting,
supervised fingerprinting methods such as BIND [4] also use
temporal features.

Device features. The IP address - source feature is the IP
address of the monitored device. This feature demonstrates
that the device producing network traffic reveals information
about the app. Intuitively, different devices may run different
app suites. Our work does not use the IP source address
as a feature, but instead create app fingerprints separately
per device. We reason that identifying apps on a per-device
basis assists in limiting the amount of dynamic behavior.
Furthermore, a related study [5] observed that different devices
in terms of vendor and/or OS version may exhibit significant
variations in traffic features. Therefore, our approach handles
traffic on a per-device basis and constructs separate fingerprints
for each device.

Destination features. The high AMI of the IP address - desti-
nation, i.e., the IP address of the server, and various TLS cer-
tificate features indicate that apps may be discriminated based
on the destinations with which they communicate. Intuitively,
each app is composed of a unique set of different modules
that all provide parts of the app’s functionality. Each module
communicates with a set of servers resulting in a unique set
of network destinations that differentiate apps. Destination
features may even be enriched by domains extracted from DNS
traffic. However, this data is not always available due to DNS
caches. Hence, to work in a more general setting our approach
does not use the domain as a feature. Even though network
destinations may change over time, we show in Section V that
our approach is able to deal with these changes.

Size features. Both incoming and outgoing Packet size features
show a high AMI. This implies that the amount of data being
sent and received per flow is a good indicator of which app is
active. However, all other packet size features yielded an AMI
score of 0.07 or lower, i.e., making up two thirds of the bottom
50% of ranked features. Therefore, we do not incorporate
packet sizes in our approach. This does not mean size features
are unsuited for fingerprinting per se, as can be observed
from supervised approaches using size-based features [2, 5,
62]. However, the size features yield little information for
fingerprinting in a semi-supervised setting.

III. THREAT MODEL

Our work focuses on creating fingerprints for mobile apps
and we assume the perspective of a security monitor who can
(1) trace back flows to the device despite NAT or changing IP
addresses, (2) distinguish mobile from non-mobile devices, and
(3) only monitor its own network (e.g., the WiFi network of an
enterprise)—traffic sent over other networks cannot be used to
generate fingerprints. Our assumptions match the scenario of
enterprise networks, where security operators have full network
visibility and access to the DHCP server.

Even without a priori knowledge about device types, se-
curity operators could still isolate network traffic from mobile
devices based on MAC addresses and orthogonal OS finger-
printing approaches: for example, related work has shown that
DHCP messages [46], TCP/IP headers [18], and OS-specific
destinations [36] (e.g., update servers and mobile app markets),
can be used to identify mobile devices, and even tethering.

Finally, we focus on single app fingerprints, i.e., we assume
that mobile apps are executed one at the time. In practice, there
is often a separation between the execution of multiple apps,
with the exception of background services, which, however,
produce fewer and more recognizable traffic patterns. Nonethe-
less, we acknowledge the possibility that multiple apps are
executed simultaneously on a single device causing composite
fingerprints. We believe our approach is an excellent start
to investigate the creation and behavior of such composite
fingerprints. However, as we will discuss in Section VI, we
consider this out of scope for the current work as existing
solutions already suffer from limitations such as identifying
previously unseen apps.

IV. APPROACH

We aim to fingerprint mobile apps in a semi-supervised and
real-time fashion on the base of their (encrypted) network traf-
fic. We build our approach on the observation that mobile apps
are composed of different modules that each communicate with
a relatively invariable set of network destinations. Our focus
lies on discovering these distinctive communication patterns
without requiring any knowledge of the specific active apps. To
this end, we create fingerprints based on temporal correlations
among network flows between monitored devices and the
destinations they interact with. As a result, our fingerprints are
capable of dealing with evolving app suites, and are agnostic
to the homogeneous and dynamic nature of mobile traffic.

Figure 1 shows an overview of our approach: We peri-
odically take network traffic of mobile devices as input and
generate fingerprints that map to apps. To do so, we isolate
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Fig. 1. Overview of the creation and matching of app fingerprints. (A) We
extract features from the network traces. (B) We cluster the flows from each
device per network destination. (C) We detect and isolate browsers. (D) We
discover correlations between network destinations. (E) We create fingerprints
based on strong correlations. (F) We match newly found fingerprints against
previously generated fingerprints and update them accordingly.

TCP/UDP flows from the network traces for each device, and
extract the required features. Subsequently, for each individual
device we cluster all flows according to their destination.
This clustering allows the discovery of common communi-
cation patterns later on. Before generating app fingerprints,
our approach first pays special attention to browsers as they
behave like a platform accessing web content rather than
a dedicated app. Thereafter, we correlate remaining clusters
based on temporally close network activity to generate app
fingerprints. When clusters show a strong correlation, we group
their flows together in a fingerprint. Finally, we match the gen-
erated fingerprints against a database of known fingerprints to
recognize apps or detect previously unseen apps. By combining
correlation and clustering techniques, our approach discovers
temporal access patterns between network destinations without
requiring any prior knowledge.

A. Feature Extraction

The first step for generating fingerprints extracts features
from the network traffic, where we separately look at the TCP
and UDP flows of each mobile device. Per device, we extract
the destination IP and port number, timestamp (used to com-
pute the timing between flows), size and direction of all packets
in the flow and, if applicable, the TLS certificate for that flow.
From these features, we use the destination IP and port number
as well as the TLS certificate in the clustering phase. Browser
isolation additionally requires information about the amount of
data that is sent over the network. Finally, the correlation step
uses the timestamps of packets to determine to what extent
different flows are temporally correlated.

B. Clustering

Since our approach runs periodically over input data of
each device, we first split the input data is into batches of
a given timing interval τbatch. After extracting the features
for each batch, we cluster together TCP/UDP flows based
on their network destination. We consider flows to go to the
same network destination if they satisfy any of the following
criteria: (1) The flows contain the same (destination IP address,
destination port)-tuple. (2) The flows contain the same TLS
certificate.

The clustering approach for app fingerprinting raises some
concerns about the consistency of destination clusters. After

all, web services may use multiple IP addresses for a sin-
gle destination for load balancing and reducing the server
response time, or even change their IP address completely.
Our approach tackles this problem by clustering destinations
based on similarity of either the (IP, port)-tuple or the TLS
certificate. As discussed previously, one may even enrich the
clustering features by including DNS traffic of flows as well
if this information is available. Our evaluation in Section V
shows that this method is robust against inconsistencies in
network destinations.

Figure 2 shows an example of the resulting clusters, in
which the destination clusters are scattered randomly. The
size of each cluster is proportionate to the amount of flows
assigned to it. Note that some of the clusters are generated by
multiple apps, which we refer to as shared clusters. Further
inspection reveals that these shared clusters correspond
to third-party services such as crash analytics, mobile
advertisement (ad) networks, social networks, and CDNs.
These services are often embedded through libraries that are
used by many apps: e.g., googleads.g.doubleclick.net,
lh4.googleusercontent.com and android.clients.-
google.com are shared clusters that provide these services.
We discuss the extent to which shared clusters influence
fingerprinting in our analysis on homogeneity in Section V-E.
In addition to shared clusters, apps frequently produce
clusters unique to that specific app, e.g., the s.yimg.com and
infoc2.duba.net clusters only occur in the traffic of the
com.rhmsoft.fm app. These app-specific clusters often point
to destinations of the app developer, i.e., the first party, or
smaller providers of the aforementioned cross-app services.
Finally, note that the obtained clusters consist of flows
from the entire input batch. However, the monitored device
will only sporadically communicate with each destination.
Therefore, we refer to clusters as active when a message is
sent to or received from the destination represented by the
cluster, and inactive otherwise.

C. Browser Isolation

As previously discussed, browsers are different from other
apps in that they are not dedicated apps. This means that
behavioral patterns in browsers are more difficult to detect as
the user may navigate to any website at will. To account for
this, we introduce a separate technique to detect and isolate
browser traffic into a single app.

Features. From the perspective of destination clustering, we
expect browsers to show many new clusters. After all, modern
websites distribute their content along CDNs, display adver-
tisement, and load auxiliary scripts and images. These are
stored at various destinations and therefore show up as new
clusters. In addition, content downloaded to be displayed in
browsers often contains much more data than is uploaded
in browser requests. We expect that for other mobile apps,
this communication is much more balanced and the number
of clusters active simultaneously is smaller. To account for
the fact that multiple apps may be active and thereby show
browser-like behavior, we focus only on the relative changes.
Therefore, our browser detector uses the following features:
(1) Relative change in active clusters; (2) Relative change in
bytes uploaded; (3) Relative change in bytes downloaded; (4)
Relative change in upload/download ratio.
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Browser detector. To detect browsers, we train a Random
Forest Classifier [34] with labeled browser and non-browser
data.1 When the classifier detects a TCP/UDP stream origi-
nating from a browser at time t, we isolate all connections
active within an empirically set timeframe of [t − 10, t + 10]
seconds. This means that we label the connections as browser
and do not consider them for further analysis. Therefore, after
detection, these streams are removed from the destination
clusters. Our rationale for removing all connections within
a specific timeframe is that, when a browser is detected, it
probably caused more network activity around that time. While
this approach might be considered aggressive in detecting
browsers, we argue that other apps should show persistent
behavior. As a result, clusters that have been removed because
all their connections were incorrectly isolated are still expected
to resurface when the app is active without an interfering
browser. We evaluate the performance of the browser isolation
component in Section V-D.

D. Cluster Correlation

Now that browsers are isolated, we leverage the remaining
clusters for app fingerprinting. However, using only destination
clusters is insufficient for fingerprinting apps as network desti-
nations are shared among apps and may change between differ-
ent executions of an app [62, 63]. A small-scale experiment on
our datasets shows that an increasing number of apps leads to a
rapid decline in app-specific clusters. When randomly selecting
100 apps from all our dataset over ten Monte Carlo cross
validations, only 58% of apps show at least one app-specific
destination cluster. In the same experiment, when selecting
1,000 apps, this number drops to 38%. Therefore, to fingerprint
apps we also leverage the temporal correlations between active
destination clusters. Our rationale here is that apps persistently
communicate with the same network destinations. We hypoth-
esize that the combination of active destination clusters at each
point in time is unique and relatively stable for each app. This
means that over time one should be able to observe stronger
correlations for destinations that belong to the same app. Our
experiments in Section V demonstrate that this method of
fingerprint generation can be used for both app recognition
and detection of previously unseen apps.

Correlation graph. To measure the temporal correlation be-
tween clusters, we compute the cross-correlation [49] between
the activity of all cluster pairs as defined in Equation 3. Even
though this has a theoretical time complexity of O(n2), we
show in Section V-G that in practice it is still easily scalable.
We compute this cross-correlation by splitting the input batch
into slices of τwindow seconds (see Section V-A). We consider
a cluster ci active at time slice t if it sends or receives at
least one message to or from the destination cluster during
that window. Its activity is modeled as ci[t] = 1 if it is active
or ci[t] = 0 if it is inactive.

(ci ? cj) =
T∑
t=0

ci[t] · cj [t] (3)

The cross-correlation is naturally higher for clusters with a lot
of activity. To counter this, we normalize the cross-correlation

1While this is a form of supervised detection, we still consider our approach
semi-supervised as we do not require prior knowledge for other types of apps.

Fig. 2. Example of destination clusters for three apps: com.rhmsoft.fm,
com.steam.photoeditor, and au.com.penguinapps.android.babyfeeding.client.-
android. The size of each cluster is proportionate to the amount of flows
assigned to it. We labeled first- and third-party destinations based on the
methodology of Ren et al. [52], and distinguished for the latter between CDNs,
advertisement networks (ads), and social networks (social).

Fig. 3. Example correlation graph for three apps as generated
by our approach (left) and when labeled per app (right). The
apps include com.rhmsoft.fm (blue), com.steam.photoeditor (green) and
au.com.penguinapps.android.babyfeeding.client.android (red) or shared desti-
nation clusters (black). Larger nodes indicate the more flows to that destination
cluster. The thickness of each edge depends on the cross correlation.

for the total amount of activity in both clusters as specified in
Equation 4.

(ci ? cj)norm =

∑T
t=0 ci[t] · cj [t]∑T

t=0 max(ci[t], cj [t])
(4)

Using the cross-correlation metric between each cluster, we
construct a correlation graph with each node in this graph
representing a cluster. Clusters are connected through weighted
edges where the weight of each edge defines the cross-
correlation between two clusters. Figure 3 shows the corre-
lation graph of three selected apps as an example. We see that
clusters belonging to the same app demonstrate a strong cross-
correlation. In addition, shared clusters show weak correlation
between all apps and most of the unique clusters are not
correlated at all.

E. App Fingerprints

To construct app fingerprints we identify maximal cliques,
i.e., complete subgraphs, of strongly correlated clusters in the
correlation graph. To discover such cliques, we first remove all
edges with a weak cross-correlation. A cross-correlation is con-
sidered weak if it is lower than a threshold τcorrelation, which in
our approach is empirically set to 0.1 (see Section V-A). This
leaves us with a correlation graph containing only the strongly
correlated clusters. We then extract all maximal cliques from
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this graph and transform each clique into a fingerprint. As
all maximal cliques are complete subgraphs, the edges in the
clique do not add any additional information. This means
we can transform cliques into sets of network destinations
by extracting all (destination IP, destination port)-tuples and
TLS-certificates from every node in a clique and combine
them into a set. By performing this transformation for each
clique, we obtain all of our fingerprints. In short, we define an
app fingerprint as the set of network destinations that form a
maximal clique in the correlation graph.

As graph edges in the correlation graph depend on the
activity of a destination with other clusters, some of the nodes
are completely disconnected from the rest of the graph. This
is often the case for destinations that are shared among many
apps. Figure 3 shows an example where the shared (black)
nodes only have low cross correlations that fall under the
threshold. As these 1-cliques often correspond to multiple
apps, treating them as fingerprints yields little added value.
However, they will most likely originate from the same app
for which we are able to produce fingerprints during the batch
processing. Therefore, we assign flows from 1-cliques to the
fingerprint that is closest in time, or, if two fingerprints are
equally close, to the fingerprint containing the most flows.

F. Fingerprint Comparison

The benefit of using a fingerprint to represent traffic from
an app is that it can be computed from the features of the
network traffic itself without any prior knowledge. Moreover,
we want to compare fingerprints with each other to track
app activity over time. Unfortunately, apps communicate with
various sets of destinations at different times, either because
traffic is based on user interaction, which is dynamic, or be-
cause apps produce distinct traffic for different functionalities.
Consequently, fingerprints of the same app can diverge to
various degrees. To account for this fact, we do not compare
fingerprints as an exact match, but instead base their compar-
ison on the Jaccard similarity [35]. Since our fingerprints are
sets, the Jaccard similarity is a natural metric to use. To test
whether two fingerprints are similar, we compute the Jaccard
similarity between two fingerprints Fa and Fb (displayed in
Equation 5) and check whether it is larger then a threshold
τsimilarity. If this is the case, we consider the two fingerprints
to be the same.

J(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

(5)

By comparing fingerprints in this way, we are able to track the
activity of apps between different input batches and executions
of the our approach. In addition, it automatically solves the
problem when we observe a fingerprint where one edge of the
clique is missing because it did not make the threshold cutoff.
Especially when cliques become larger, the possibility of a
clique missing an edge increases. In such cases, our approach
would output multiple fingerprints for the same app. If these
fingerprints are similar, they can even be merged by taking
the union of fingerprints. In addition, this comparison based
on the Jaccard similarity allows our approach to treat similar
fingerprints as equivalent.

V. EVALUATION

We implemented a prototype of our approach, called
FLOWPRINT, in Python using the Scikit-learn [47] and Net-
workX [33] libraries for machine learning and graph compu-
tation. The first experiment in our evaluation determines the
optimal parameters for our approach. Then, we analyze to
what extent the fingerprints generated by our approach can
be used to precisely identify apps. Here, we compare our
approach against AppScanner [62], a supervised state-of-the-
art technique to recognize apps in network traffic. Thereafter,
we evaluate how well our approach deals with previously
unseen apps, either through updates or newly installed apps.
We then detail specific aspects of our approach such as the
performance of the browser detector, the confidence level
of our fingerprints, and the number of fingerprints produced
per app. We further investigate how well our approach can
deal with the homogeneous, dynamic, and evolving nature
of mobile network traffic. Finally, we discuss the impact of
the number of apps installed on the device and demonstrate
that our method is able to run in real-time by assessing the
execution time of FLOWPRINT.

Experimental setup. Our evaluation requires ground truth
labels, which for mobile apps can be acquired by installing
an intrusive monitoring agent on a real device, or by running
controlled experiments. Due to privacy concerns and to ensure
repeatability of our experiments, we evaluate FLOWPRINT
on the datasets described in Section II-A, which closely
approach an open world setting, containing encrypted data,
user-generated data, both Android and iOS apps, and different
app versions. As explained in Section IV, our approach does
not require any prior knowledge to generate fingerprints, and
we leverage ground truth labels only to evaluate our prototype
(i.e., to assign app names to matched fingerprints).

We split the traffic of each app in our datasets 50:50
into training and testing sets, without any overlap. For each
experiment, we build our database from the training data of
100 randomly chosen apps for each dataset. This leads to an
average of 2.0 fingerprints per app for ReCon and Andrubis,
and 6.2 for the Cross Platform dataset. For the unseen app
detection, we additionally introduce traffic from 20 randomly
chosen apps that are not present in the training set.

A. Parameter Selection

As detailed in the previous section, our approach requires
four configurable parameters to create fingerprints:

• τbatch sets the amount of time of each batch in a net-
work capture to process in each run of our approach.

• τwindow specifies the time window for destination clus-
ters to be considered active simultaneously.

• τcorrelation describes the minimum amount of correlation
(ci ?cj)norm between two destination clusters to have
an edge in the correlation graph.

• τsimilarity indicates the minimum required Jaccard simi-
larity between fingerprints to be treated as equivalent.

Optimization metric. We optimize each parameter with re-
spect to the F1-score that our approach achieves when rec-
ognizing apps. This metric computes the harmonic mean
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TABLE III. SUMMARY OF TESTED PARAMETER OPTIMIZATION
VALUES. THE FIRST ROW SHOWS THE DEFAULT PARAMETERS AND EACH

SUBSEQUENT ROW HIGHLIGHTS THE OPTIMAL VALUES FOUND FOR EACH
INDIVIDUAL PARAMETER.

τbatch τwindow τcorrelation τsimilarity F1-score

3600 5 0.3 0.5 0.8164

300 5 0.3 0.5 0.8294
300 30 0.3 0.5 0.8367
300 30 0.1 0.5 0.8543
300 30 0.1 0.9 0.9190

between precision and recall and is often used to evaluate
security solutions. As we output fingerprints, we need to map
them to app labels in order to evaluate our approach. Each
fingerprint consists of flows which, in our dataset, are labeled.
Hence, we label each fingerprint with the flow label that is
most commonly assigned to that fingerprint. To illustrate this,
suppose fingerprint F contains 10 flows of app A and 2 flows
of app B, all 12 flows of that fingerprint will be assigned the
label A. While this approach can generate multiple fingerprints
per app (see Section V-D), many security applications (e.g.,
firewalls) use a mapping on top of fingerprinting and allow
multiple fingerprints for the same app.

Parameter selection. To optimize our parameters, we refine
them individually to reach an optimal F1-score. We choose our
parameters from the following set of possible values:

• τbatch: 1m, 5m, 10m, 30m, 1h, 3h, 6h, and 12h.
• τwindow: 1s, 5s, 10s, 30s, 1m, 5m, 10m, and 30m.
• τcorrelation: 0.1 to 1.0 in steps of 0.1.
• τsimilarity: 0.1 to 1.0 in steps of 0.1.

The batch size thresholds vary between 1 minute, a scenario
where apps can be detected while they are still running, and
12 hours, representing a post-incident analysis. The window
thresholds vary between 1 second and 30 minutes, where
smaller values may miss flow correlations and larger values
may correlate flows that were accidentally active around the
same time period. Both correlation and similarity thresholds
are evenly spread out between 0.1 and 1.0, the first and max
values that trigger the corresponding fingerprint mechanism.

For each parameter we vary the value by iterating over the
test set of possible values while keeping the other parameters
as their default value. Once we find an optimal value for a
parameter, it is set as the new default for optimizing the other
parameters. This way of iterating through the values allows
us to capture dependencies between the parameters. To get an
average result, we perform a 10-fold cross validation analysis
for each setting on held-out validation data from the Andrubis
dataset. This held-out data is not used in the remainder of the
evaluation to remove bias from this optimization step. We opt
to optimize the parameters using only the Andrubis dataset
to ensure all datasets contain enough testing data to evaluate
our approach. While this may bias the optimal parameters to
a specific dataset, our results in the remainder of this section
show that the parameters also generalize well to other datasets.
During the experiment, we assume that each device has 100
apps installed, which resembles a realistic setting [10]. We
also performed the same evaluation with 200 apps per device,
which resulted in the same optimal parameters.

As shown in Table III, we find optimal values for τbatch =
300 seconds, τwindow = 30 seconds, τcorrelation = 0.1 and
τsimilarity = 0.9 from this analysis.2 One interesting observation
is that the optimal value for τbatch is found at 300 seconds.
This means that it may take up to five minutes before a
flow is assigned to a fingerprint. In settings that require faster
fingerprint generation, operators can of course set a lower τbatch
value, however at the cost of a lower performance.

B. App Recognition

Many security solutions use a fingerprinting method for
the purpose of app recognition [15, 57, 62]. To evaluate the
extent to which our approach recognizes apps within network
traffic, we create fingerprints of labeled training data. Then,
we label each fingerprint with the app label most commonly
assigned to flows within the fingerprint, i.e., we perform a
majority vote. After obtaining the labeled fingerprints we run
our approach with the test data. We then compare the resulting
test fingerprints with the labeled training fingerprints using the
Jaccard similarity, as detailed in Section IV-F. Subsequently,
each test fingerprint, and by inference each flow belonging to
that test fingerprint, receives the same label as the training
fingerprint that is most similar to it.

We compare our approach with the state-of-the-art tool
AppScanner [62, 63]. However, the authors of AppScanner
only released precomputed length statistics about the flows in
their dataset and the code for running the classification phase
on such preprocessed statistics. Therefore, to be able compare
both approaches on the same datasets, we faithfully reim-
plemented the AppScanner feature extraction strategy, which
reads PCAP files and feeds the feature values to the classifier.3
To do so, we followed the description in the AppScanner paper
for computing feature statistics, using the standard NumPy [45]
and Pandas [43] libraries. AppScanner has different settings, it
can either work with a Support Vector Classifier or a Random
Forest Classifier. We evaluate AppScanner with a single large
Random Forest Classifier, which achieved the highest perfor-
mance in AppScanner’s evaluation. In addition, AppScanner
requires a parameter that sets the minimum confidence level
for recognition. The optimal confidence level according to
the original paper is 0.7, hence this is what we used in our
evaluation. Lowering this threshold increases the recall and
decreases the precision of AppScanner.

Comparison with AppScanner. We evaluate FLOWPRINT
against AppScanner by running a 10-fold cross validation on
the same datasets discussed in Section II-A. Additionally, we
measure to what extent the performance of our approach is
affected by the number of flows produced per app. As apps
in the Andrubis dataset produce a varying amount of data,
we evaluated the performance considering only apps having
a minimum of x flows. This resulted in five evaluations for
x = 1, i.e., all apps, x = 10, x = 100, x = 500, and
x = 1000. We refer to these evaluations as Andrubis ≥ x
flow(s) for each respective value of x. All experiments assumed
a maximum of 100 active apps per device in accordance with
recent statistics [10].

2Due to space limitations we provide additional results about the parameter
selection at https://github.com/Thijsvanede/FlowPrint.

3We release our implementation of AppScanner at https://github.com/
Thijsvanede/AppScanner.
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TABLE IV. PERFORMANCE OF OUR APPROACH COMPARED TO APPSCANNER IN THE APP RECOGNITION EXPERIMENT. THE NUMBER OF FLOWS SHOWN
FOR THE ANDRUBIS DATASET INDICATE THE MINIMUM NUMBER OF REQUIRED FLOWS AN APP HAD TO PRODUCE TO BE INCLUDED IN THE EXPERIMENT.

FLOWPRINT AppScanner (Single Large Random Forest)
Dataset Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

ReCon 0.9470 0.9447 0.9458 0.9447 0.8960 0.4284 0.5797 0.4284
ReCon extended 0.8984 0.8922 0.8953 0.8922 0.9365 0.2534 0.3989 0.2534

Cross Platform (Android) 0.9007 0.8698 0.8702 0.8698 0.9108 0.8867 0.8693 0.8867
Cross Platform (iOS) 0.9438 0.9254 0.9260 0.9254 0.8538 0.1484 0.2430 0.1484
Cross Platform (Average) 0.9191 0.8923 0.8917 0.8923 0.8791 0.5028 0.5757 0.5028

Andrubis (≥ 1 flow) 0.5842 0.5871 0.5856 0.5871 0.6270 0.1956 0.2982 0.1956
Andrubis (≥ 10 flows) 0.5439 0.5031 0.5227 0.5031 0.6069 0.1501 0.2407 0.1501
Andrubis (≥ 100 flows) 0.7617 0.6852 0.7214 0.6852 0.8520 0.5048 0.6340 0.5048
Andrubis (≥ 500 flows) 0.7389 0.7413 0.7401 0.7413 0.8663 0.5386 0.6642 0.5386
Andrubis (≥ 1000 flows) 0.8021 0.8111 0.8066 0.8111 0.9141 0.6005 0.7248 0.6005

Table IV shows the performance of both FLOWPRINT and
AppScanner. We note that the accuracy and recall levels are the
same, which is due to computing the micro-average metrics for
the individual apps. This is often regarded as a more precise
metric for computing the precision, recall and F1-score and has
the side effect that the accuracy equals the recall [32]. Despite
competing with a supervised learning method, we see that both
AppScanner and our approach have similar levels of precision,
meaning they are able to correctly classify network flows to
their corresponding app. However, we outperform AppScanner
greatly on the recall, meaning that our approach is much better
at classifying all types of traffic, whereas AppScanner provides
a sufficient certainty level for only a small fraction of apps.
We note that in our experiments, AppScanner has a lower
performance than reported in the original paper, especially
for the recall. The cause is twofold: First, most apps in our
datasets are captured over shorter periods of time, making
it more difficult to recognize apps. Second, the AppScanner
paper reported only on flows for which they have a confidence
level ≥ 0.7, which in their dataset was 79.4% of flows.
This means that unclassified flows are not taken into account.
As unrecognized flows reveal much about the recognition
approach, our work reports the performance over all flows,
where unrecognized flows cause lower recall rates.

Dataset independence. Our evaluation shows that FLOW-
PRINT performs well on both synthetic (ReCon and Andrubis)
and human-generated (Cross Platform) traffic. Furthermore,
the results from the Cross Platform dataset show that our
approach can be used to generate fingerprints for both iOS
and Android apps. However, this does not necessarily mean
that a fingerprint generated for an iOS app can be used to
detect the corresponding Android version or vice versa. In
the Andrubis dataset, we observed no significant difference
between recognizing benign and potentially harmful apps.
Moreover, the flow experiment (see Table IV) shows that apps
generating a small amount of flows are more difficult to detect.
As a result, our approach has to find correlations between
traffic in a limited timeframe resulting in a lower precision.
This is a known limitation of network-based approaches and
also affects related tools such as AppScanner.

C. Detection of Previously Unseen Apps

In addition to app recognition, we evaluate the capabilities
of our fingerprinting approach to detect previously unseen
apps. Here, we want FLOWPRINT to be able to correctly isolate
an unseen app as a new app, instead of classifying it as an

existing one. This isolation allows also us to distinguish be-
tween different unseen apps. Subsequently, when FLOWPRINT
detects a previously unseen app, the security operator can
choose to include the new fingerprints in the database. From
that point forward, the new app will be classified as known
and can be recognized as in Section V-B. For this setting,
we create fingerprints for the apps that are present on the
device. Subsequently, we add previously unseen apps to the
evaluation and generate fingerprints for all the apps present
during this testing phase. Our work uses the same parameters
from Section V-A for detecting unseen apps. However, in
order to decide whether a fingerprint originates from a new
or existing app, we introduce a different threshold τnew. This
threshold indicates the maximum Jaccard similarity between a
tested fingerprint and all training fingerprints to be considered
a new app. Note that the lower this threshold, the more
conservative we are in flagging fingerprints as originating
from new apps. The rationale for introducing this additional
threshold is that fingerprints remain the same for the entire
approach, but are interpreted differently depending on the use
case. When detecting unseen apps, we suggest the use of
a threshold of 0.1, meaning that only fingerprints that have
an overlap of less than 0.1 with all existing fingerprints are
considered new apps. Comparing fingerprinting approaches for
detecting unseen apps is difficult because, as far as we are
aware, the only network-based approaches for detecting unseen
apps are DECANTeR [15] and HeadPrint [16]. Unfortunately,
both detectors only handle unencrypted data, thus they cannot
be applied on encrypted data like ours. Hence, we are unable
to compare our approach with related work in this setting.

As in previous experiments, we assume each device has
100 apps installed, and introduce 20 new apps. We evaluate our
detector by running a 10-fold cross validation using τnew = 0.1.
A low τnew threshold ensures that known apps are not detected
as new despite the dynamic nature of apps. As a trade-off,
the detector does not correctly classify all flows of previously
unseen apps. However, we argue that correctly classifying all
flows of unseen apps is infeasible as large parts of many apps
are shared in the form of common libraries. This means that
it is preferable to aim for a high precision in flows flagged
as new apps rather than a high recall as long as previously
unseen apps can be detected at some point.

Table V shows the results of our experiment. We see
that the precision is reasonably high and 97.8% of flows
are correctly flagged as unseen for ReCon and 99.5% for
ReCon extended. This also means that existing apps are rarely
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TABLE V. PERFORMANCE OF OUR APPROACH WHEN DETECTING
UNSEEN APPS. TRUE POSITIVES = CORRECTLY IDENTIFIED NEW APPS;

TRUE NEGATIVES = CORRECTLY IDENTIFIED KNOWN APPS; FALSE
POSITIVES = KNOWN APPS CLASSIFIED AS NEW; FALSE NEGATIVES = NEW

APPS CLASSIFIED AS KNOWN.

Dataset Precision Recall F1-score Accuracy

ReCon 0.9777 0.7098 0.8225 0.8550
ReCon extended 0.9948 0.2032 0.3375 0.5494

Cross Platform (Android) 0.9106 0.4318 0.5858 0.6634
Cross Platform (iOS) 0.9637 0.7744 0.8588 0.8527
Cross Platform (Average) 0.9352 0.5449 0.6886 0.7253

Andrubis (≥ 1 flow) 0.4757 0.2090 0.2904 0.5100
Andrubis (≥ 10 flows) 0.5703 0.2552 0.3526 0.4965
Andrubis (≥ 100 flows) 0.8405 0.4760 0.6078 0.6386
Andrubis (≥ 500 flows) 0.7722 0.3121 0.4446 0.5915
Andrubis (≥ 1000 flows) 0.7939 0.3444 0.4804 0.6177

marked as unseen, reducing the load on any manual checking
of alert messages. On the Cross Platform dataset, we achieve
93.5% precision on average indicating that, while slightly more
difficult, our approach is still capable of detecting new apps
without raising too many false alerts. For Andrubis, the rate
of false positives is higher with 14.8% for apps producing at
least 100 flows. This is due to the relatively short time span in
which traffic of this dataset was produced, i.e., 240 seconds.

Recall. We see that the recall is significantly lower than
the precision, only reaching 20.3% for the ReCon extended
dataset. This is caused by homogeneous behavior of mobile
apps, i.e., the network traffic of these apps overlaps due to
the use of common libraries and services. In the experiments
of Table V we found that unknown apps showed similar
advertisement traffic to known apps. When the similarity ot
the unknown app results in a higher matching score than τnew,
it will be misclassified as known. This is less of a problem in
the app recognition scenario where FLOWPRINT searches for a
best match. Multiple training fingerprints can have a similarity
score > τnew, but the actual app likely produces the highest
score due to most overlapping destinations, leading to a correct
match. We elaborate on the effects of homogeneous traffic in
Section V-E. As stated before, low recall is not necessarily
problematic as long as the unseen app is detected at some
point. In our experiment, we already detect 72.3% of apps in
the first batch (five minutes) in which they appear. We discuss
further limitations of app fingerprinting in Section VI.

D. Fingerprinting Insights

In the previous experiments we demonstrated that our
approach works for both recognizing already seen apps, as
well as detecting unseen apps. In this section, we evaluate
specific parts of our fingerprinting approach to give insights
into possible other use cases.

Browser isolation. We first highlight the performance of
the browser detector component within our approach. In this
experiment we use both the browser dataset and the Andrubis
dataset as discussed in Section II-A. As the browser detector
is supervised, it performs better when trained with a large
set of applications, hence the Andrubis dataset is a natural
choice for this evaluation. To this end, we randomly selected
5,000 non-browser apps from the Andrubis dataset to represent
non-browser data. Of these apps, we used an 80:20 split for
training and testing our detector respectively. Recall that when

TABLE VI. PERFORMANCE OF THE BROWSER DETECTOR BASED ON
THE NUMBER OF DETECTED TCP/UDP STREAMS.

Actual Browser Actual non-Browser

Predicted Browser 21,987 (TP) 5,574 (FP)
Predicted non-Browser 363 (FN) 28,4125 (TN)

we detect a browser, all flows within a surrounding 20 second
window are marked as browser traffic. This window was
empirically optimized to achieve high recall rates. To ensure
that wrong detections are properly penalized in our experiment,
we interleave the browser and non-browser traffic by shifting
all timestamps such that each trace starts at the same time.

Note that, while there exist apps that embed a “browser
window” (e.g., Android WebView), we do not consider these
apps as browsers because of their confined access to a limited
set of network destinations. In contrast, real browsers navigate
to many different websites, producing a bigger relative change
of active clusters—one of the features of our browser isolation.
In fact, our datasets contain several HTML5 apps, which we
correctly detected as regular apps.

Table VI shows the average performance of the browser
detector using ten Monte Carlo cross validations. Our detec-
tor achieves, on average, an accuracy of 98.1% and detects
browser flows with a recall of 98.3%. Unfortunately, with a
precision of 79.8% the number of wrongly isolated streams is
rather high due to the aggressive detection. This in turn leads to
1.8K of 25.8K non-browser clusters being incorrectly removed
at some point. Fortunately, 75.7% of these clusters resurfaced
after the initial removal without being mistakenly detected as
a browser. This means they are still used for fingerprinting
their corresponding non-browser apps. In total only 1.7% of
non-browser clusters were permanently removed.

Confidence. FLOWPRINT assigns unlabeled fingerprints to
each flow passing through. To gain more insights into how
these fingerprints are represented we assign a confidence level
to each fingerprint that measures how certain we are that each
flow within a fingerprint belongs to the same app. In order
to measure confidence, we look at the amount of information
gained by knowing to which fingerprint a flow belongs to with
respect to the app label of that flow. That is, we measure by
what fraction the entropy of app labels is reduced if we know
the fingerprint of each flow. Equation 6 shows the formula for
computing the confidence of our fingerprints. Here, H(A|F )
is the entropy of app labels for each flow, given that we
know its fingerprint. H(A) is the entropy of the labels without
knowing the fingerprints. When all fingerprints only consist of
flows of a single app knowing that fingerprint automatically
leads to knowing the label. Therefore, H(A|F ) = 0 gives a
confidence level of 1. In case knowing the fingerprint does
not provide additional information regarding the app label of
a flow H(A|F ) = H(A) and therefore, the confidence level
is 0. In clustering, this is referred to as homogeneity [54].

Confidence = 1− H(A|F )
H(A)

(6)

Table VII shows the confidence level of fingerprints produced
by our approach for each dataset. We see that for each dataset
we achieve confidence levels close to 1 meaning that the
majority of our fingerprints contain only flows of a single app.
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TABLE VII. CONFIDENCE LEVELS OF OUR FINGERPRINTS. A SCORE
OF 1 INDICATES FINGERPRINTS ONLY CONTAIN FLOWS OF A SINGLE APP.

Dataset Confidence

ReCon 0.9857
ReCon extended 0.9670

Cross Platform (Android) 0.9740
Cross Platform (iOS) 0.9887
Cross Platform (Total) 0.9864

Andrubis 0.9939

Cardinality. Each app is ideally represented by a single fin-
gerprint. This would make it possible to automatically separate
the network traffic into bins of different apps. However, this
might be infeasible as mobile apps offer different function-
alities which may result in multiple fingerprints. Therefore,
we also investigate the number of fingerprints our approach
generates for each app. We recall that an app can be viewed
as a combination of individual modules, including third-party
libraries, that each account for part of the app’s functionality.
This naturally leads to apps presenting multiple fingerprints.
We refer to the number of fingerprints generated per app as
the cardinality of each app.

Figure 4 displays the cardinality of apps in our datasets
and shows that the majority of apps in all datasets have
multiple fingerprints. Our previous evaluations have shown
that this is not a problem for the app recognition and unseen
app detection settings. However, the cardinality of apps in
our work should be taken into account in case a new app
is detected. Here, security operators should be aware that
there will likely emerge multiple fingerprints for that new app.
We note that the ReCon extended dataset is not shown in
this graph since all apps in that dataset had more than 20
fingerprints. This is in large part due to the fact that apps
in the ReCon extended dataset contain more versions, which
introduce additional fingerprints (also see Section V-E). On
average, each version in the ReCon extended dataset contained
18 fingerprints. This number of fingerprints per version is still
higher than the other datasets because each app was exercised
longer, leading to more app functionality being tested, which in
turn led to more fingerprints. Finally, Figure 4 shows that apps
in the Cross Platform dataset have a higher average cardinality
than the other datasets. This suggests that user interaction leads
to more fingerprints describing individual app functionalities
rather than the entire app itself.

E. Mobile Network Traffic Challenges

We evaluate the effect of the three properties (Section I)
of the mobile network traffic that pose challenges for our
approach: its homogeneous, dynamic and evolving nature.

(1) Homogeneous traffic. The first challenge is that mobile
traffic is homogeneous because traffic is encrypted and many
apps share the same network destinations, for example due to
shared third-party libraries, or the use of CDNs and common
cloud providers. In this experiment, we analyze to what extent
the homogeneity caused by shared network destinations affects
the performance of our approach. We analyzed the ReCon
dataset, which includes DNS information for each flow, as
well as a classification of each DNS address as a first-party or
third-party destination for each app, allowing us to investigate
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the cause of homogeneity. In detail, this classification maps
domains, and by extension flows, to one of the following
categories based on properties of the app’s description in the
Google Play Store and WHOIS information [52]: (1) first-
party, i.e., app-specific traffic, and third-party traffic. For the
latter we further distinguish between (2) CDN traffic, (3)
advertisement traffic, and (4) social network traffic, based on
publicly available adblocker lists, extended by manual labeling.
In turn, we classify each cluster according to a majority vote
of the flows within that cluster.

Our experiment found a total of 2,028 distinct clusters, of
which 281 clusters are shared between more than one app.
At first sight, the homogeneity of traffic seems quite low with
only 13.9% of all clusters being shared. However, these shared
clusters account for 56.9% of all flows in the dataset. By
looking at the categories, we find that advertisement networks
account for 60.6% of traffic spread over 184 different shared
destination clusters. As apps often use standard libraries for
displaying advertisement it is unsurprising that many flows
are homogeneous with respect to their network destination.
Social networks account for 30.4% of traffic to shared clusters.
Similar to advertisements, the support for social services
is often provided by commonly used libraries such as the
Facebook SDK4 or Firebase SDK5. Finally, we find that 6.0%
and 2.9% of shared cluster traffic originates from app-specific
network destinations and CDNs respectively.

Then, we evaluate how our approach reacts under higher
levels of homogeneity. To this end, we removed all flows
that are not shared between apps from the ReCon dataset,
leaving only shared clusters. When running our approach for
recognizing apps, the F1-score drops from 94.6% to 93.0% and
accuracy drops from 94.5% to 93.3%. Despite the small drop
in performance, we are still able to accurately distinguish apps
because the different correlation patterns of these shared clus-
ters can still be uniquely identified. Therefore, our approach
shows robustness against homogeneous network traffic.

4https://developers.facebook.com/docs/android/
5https://firebase.google.com/docs/auth/android/start
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(2) Dynamic traffic. The second challenge is the dynamic
nature of the traffic generated by users as they interact with
apps by using different functionalities at different times. In
contrast, automatically generated datasets often aim to cover as
much functionality as possible in a short amount of time. This
difference between datasets may lead to a different quality of
the fingerprints. To evaluate whether our approach is influenced
by dynamic traffic, we look at the performance difference
of our approach between the user-generated Cross Platform
dataset and the other datasets. Although these datasets are not
directly comparable due to the different apps they contain, we
do not find a significant difference in the detection capabilities
of our approach (see Tables IV and V). We attribute this in
part to the amount of network traffic produced by apps without
requiring any user interaction. These include connections to,
for example, advertisement and social networks, as well as
loading content when launching an app. The high performance
for both recognizing apps and detecting unseen apps from user-
generated traffic suggests that dynamic traffic does not impose
any restrictions on our approach.

(3) Evolving traffic. The final challenge concerns the evolving
nature of apps. Besides detecting previously unseen apps
(Section V-C), we evaluate our approach when dealing with
new versions of an existing app, and we perform a longitudinal
analysis to assess how FLOWPRINT performs when the values
of our features change over time.

(3a) App updates. We use the ReCon and ReCon extended
datasets as they contain apps of different versions released
over 8 years. On average, the datasets contain 18 different
versions per app, where new versions were released once
every 47.8 days on average. As the traffic of these different
versions was captured over a period of two and a half months,
changes in IP addresses and certificates might cause a slight
bias in the dataset. In the next subsection, we describe the
results of our longitudinal analysis, which provides a more
in depth analysis regarding this influence. Nevertheless, we
demonstrate that new app functionality introduced by updates
does not necessarily cause an issue with our fingerprints if
caught early. For this experiment, we train the unseen app
detector with a specific version of the app as described in
Section V-C. In turn, for each newer version of the app, we
run the unseen app detector to predict whether the fingerprints
of this new version match the training version. We perform
this experiment by increasing the amount of versions between
the training data and the version to predict. This simulates a
security operator lagging behind in updating the models and
thus missing intermediate versions.

Figure 5 shows the results of this experiment. Here, the
x-axis shows the amount of versions between the training app
and predicted app. The y-axis shows the relative number of
fingerprints from the newer app versions that FLOWPRINT
correctly recognizes. As we know the average amount of
time it takes for an app to be updated (47.8 days), we show
the decline in performance not only in terms of versions,
but also over time, by the vertical dashed lines in the plot.
We found that on average FLOWPRINT recognizes 95.6%
of the fingerprints if FLOWPRINT is updated immediately
when a subsequent version is released. When we do not
update immediately, but wait a certain amount of time, the
detection rate slowly drops, which is more evident in the
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Fig. 5. Recognition performance of FLOWPRINT between versions. The
x-axis shows the number of different versions, including the average time
apps take to receive so many version updates. The y-axis shows the fraction
of matching fingerprints between training and testing data.

ReCon dataset. The difference between the two datasets is due
to (1) more traffic per app in the ReCon Extended dataset,
which makes fingerprinting more accurate, and (2) a larger
set of apps in the ReCon dataset, which makes recognition
more difficult. The average result shows the analysis for the
combined datasets and gives the most realistic performance,
which shows that FLOWPRINT can recognize 90.2% of the
new fingerprints even when operators do not update the models
for one year. Interestingly, 45.5% of the apps in our datasets
released multiple new versions on the same day. However,
FLOWPRINT showed nearly identical performance for these
same-day updates, leading us to believe that quick version
releases do not introduce major app fingerprint changes.

(3b) Longitudinal analysis. Over time, the destination fea-
tures (IP address, port) and the TLS certificate may change
because of server replication/migration or certificate renewals.
To measure how FLOWPRINT’s performance changes over
extended periods of time, we evaluate how feature changes
affect our approach. To do this, we train FLOWPRINT using
the original training data and consistently change a percentage
of random IP addresses and TLS certificates in the testing
data. As TLS certificates are domain-based and not IP-based,
random selection gives a good approximation of FLOWPRINT’s
performance. We performed a 10-fold cross validation chang-
ing 0 to 100% of such features in steps of 10% points.

Figures 6 and 7 show the performance of FLOWPRINT, in
the case of app recognition and unseen app detection respec-
tively, for an increasing amount of changes in our features.
As with the app updates, we indicate the expected amount of
changed features after given periods of time by the vertical
dashed lines. These expected changes are computed from the
average lifetime of certificates in our dataset and DNS-name-
to-IP changes according to the Farsight DNSDB database [56].
For the case of app recognition, the number of changed fea-
tures initially has limited effect because changing only one of
the two destination features still allows our clustering approach
to detect the same network destination. Once we change
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approximately 80% of the features, the decline becomes a
lot steeper because at this point both features are changed
simultaneously. When changing 100% of IP addresses and
certificates we are unable to detect anything. Interestingly, the
Andrubis performance of the dataset declines almost linearly.
That is because only 24.7% of Andrubis flows contain a TLS
certificate. Hence, the certificate cannot counteract changes
in the IP address, leading to a steeper decline. This also
underlines the importance of using both the IP and TLS
certificate as destination features. We recall from Section IV-B
that destination features may be enriched by domains from
DNS traffic. As domains are generally more stable than IP
addresses, they will have a positive effect on the performance
over time. For the case of unseen app detection, an increase
in changed features leads to an increase in the recall. After
all, if traffic of a previously unseen app differs more from the
training data, the app will be flagged as previously unseen.
For the same reason, the detection precision declines as known
apps increasingly differ from their training dataset.

Subsequently, we performed a real-world experiment by
collecting and analyzing data from the current versions of
31 apps in the Cross Platform dataset more than 2 years (26
months) after the original capture. When FLOWPRINT trains on
the original dataset and performs recognition on the recollected
flows it achieved a precision of 36.7%, recall of 33.6% and
F1-score of 35.1%. This translated to being able to recognize
12 out of 31 apps. Interestingly, if we only look at the apps
that we were able to recognize, FLOWPRINT performs with
a precision of 76.1%, a recall of 62.2% and an F1-score of
68.4%. The expected decline in performance after 2+ years
that we found in our two previous analyses is in line with the
results from this real-world experiment.

In conclusion, while, as expected, FLOWPRINT’s perfor-
mance degrades when a large amount of destination-based fea-
tures change (i.e., after one year), our approach can cope with
a significant amount of variations without drastic performance
degradations. We believe this gives operators enough time to
update FLOWPRINT’s models to maintain high performance,
making our approach practical.

F. Training Size

So far we assumed each device in the network to have 100
apps installed, however FLOWPRINT may perform better or
worse in case this number differs. To evaluate the effect of the
number of installed apps, we train FLOWPRINT by varying
the number of apps N in the training data. Recall that our
approach builds its model on a per-device basis. Hence, while
our database may contain millions of fingerprints, FLOWPRINT
only matches fingerprints against apps installed on the moni-
tored device. We train FLOWPRINT with N apps, ranging from
1 to 200 for the ReCon and Cross Platform datasets, which
is already much higher than the average number of installed
apps on a device [10]. For the Andrubis dataset, we range
N from 1 to 1,000 to evaluate the extreme scenario. We first
analyze the performance of our approach in app recognition
on the testing data of the same apps. In the second experiment,
for each N we introduce 20% previously unseen apps, which
FLOWPRINT has to correctly detect. All experiments use 10-
fold cross validation.
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Fig. 6. App recognition performance vs changes in both IP and certificate
features. The x-axis denotes the % of changed features. Where the expected
amount of change over time is denoted by the dashed vertical lines.
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Fig. 7. Unseen app detection performance vs changes in both features.
The x-axis denotes the % of changed features. Where the expected amount of
change over time is denoted by the dashed vertical lines.

Figure 8 shows the performance of the different datasets
in app recognition. Here we see that for all datasets, the
performance of all metrics initially decreases, but stabilizes
after a certain point (note that the y-axis starts from 0.85).
Even up to the tested scenario of 1,000 apps, for the Andrubis
dataset, the F-1 score remains constant at 0.9. This indicates
that FLOWPRINT easily discerns between relatively few apps,
because it can still rely on network destinations to differentiate
between apps. However, once apps start to share network desti-
nations, the performance drops slightly and quickly stabilizes.
Once stabilized, FLOWPRINT leverages temporal correlations
in network destinations found by our correlation-graph, which
provide a much more robust way of recognizing apps. We
see the same mechanism, although to a lesser degree, for
the unseen app detection scenario in Figure 9. Here the
recall is initially affected because FLOWPRINT only detects
an app as previously unseen if its fingerprint differs enough
from the existing ones. When the training data includes more
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Fig. 9. Unseen app detection performance vs training size.

shared destinations, the probability that a new app overlaps
with the original dataset becomes larger, and therefore the
detection rate, initially, slightly decreases. Once the training
data contains a sufficient amount of shared destinations the per-
formance becomes more consistent. The fluctuations are due
to apps producing traffic to shared clusters, which occasionally
produce incorrect matches with known apps. Finally, we note
that the Andrubis dataset performs notably worse than the other
datasets because it contains apps that produce relatively few
flows. This is in accordance with the results found in Table V.

G. Assessment of Execution Time

In addition to the aforementioned metrics, the effectiveness
of our approach in a real environment also depends on its
execution time. As we employ some seemingly high-cost op-
erations, such as clustering and clique discovery, we also assess
the individual components of our approach to better understand
the actual time complexity involved. We note that, due to the
setup of our approach, its complexity depends on the number
of network flows rather than the amount of communicated
bytes. In order for our approach to run smoothly, it should be
able to process all received flows within each batch time τbatch,
which in our prototype is set to five minutes. We assessed the
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Fig. 10. Average execution time of FLOWPRINT when fingerprinting n
flows in a single batch. The fingerprint generation time includes clustering.

execution time of FLOWPRINT by running it on a single core
of an HP Elitebook laptop containing an Intel Core i5-5200U
CPU 2.20GHz processor.

Figure 10 shows the average performance over 10 runs
of FLOWPRINT when generating fingerprints. Here we find
that our prototype is able to process roughly 400k flows
within the time window of five minutes. To put this number
into perspective, the ReCon and Andrubis datasets contain an
average of 117 and 22 flows and a maximum of 845 and 1,810
flows per five-minute interval respectively. This means that at
peak communication activity FLOWPRINT is able to handle
221 devices simultaneously on a mid-range laptop, making our
approach feasible to run in practice. Both the clustering and
cross-correlation have a theoretical time complexity of O(n2),
however, from Figure 10 we see that in our approach these
components act almost linearly. For the clustering, each flow
is clustered together with flows containing the same destination
(IP, port)-tuple or the same TLS certificate. Our prototype
implements these checks using a hashmap giving the clustering
a linear time complexity. For the cross-correlation we note
that flows that have the same activity pattern c[0]...c[T ] have
a mutual cross-correlation of 1 and the same correlation with
respect to other flows. Hence, they only need to be computed
once, reducing the time complexity.

Generated fingerprints need to be matched against a
database of known fingerprints. We consider two scenarios: (1)
finding the closest matching fingerprint (for app recognition),
and (2) checking for any match (in case of unseen app detec-
tion). Figure 11 shows the average performance over 10 runs
for matching 1,000 generated fingerprints against a database
of size n. The complexity of matching fingerprints grows both
with the database size and the amount of fingerprints matched
against this database. Figure 11 shows that even for databases
containing one million fingerprints, the required time to match
is 73 seconds, which is well beneath the five-minute mark
of τbatch. Assuming an average of 100 apps per device and a
high cardinality of 20 fingerprints per app (see Section V-D), a
database containing one million fingerprints would be able to
deal with 500 devices simultaneously on a mid-range laptop.
These results suggest the feasibility of our approach in high-
volume traffic scenarios as well.
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VI. DISCUSSION

We have shown that our approach succeeds in creating
semi-supervised fingerprints for mobile apps, and that such
fingerprints can be used for both app recognition and detecting
previously unseen apps. Nevertheless, there are some aspects
of our approach that should be addressed in future work.

Potential for evasion. We construct our fingerprints based
on the set of network destinations, and the timing of com-
munication with such destinations. In order for authors of an
adversarial app to evade detection by our approach, they have
two options. First, they may redirect all traffic of their app
using a VPN or proxy. When doing this only for their app
and not system-wide, its single destination would still show
up as a fingerprint, thus that specific app can still be detected.
Setting a system-wide proxy or VPN connection for all apps
on the device (1) requires manual confirmation by the user;
and (2) would be recognizable as unusual device behavior as
our approach would detect all device traffic as originating from
a single app. Hence, with this evasion technique our approach
would still be able to detect the presence of an unknown app
but it will have trouble identifying the specific app. The second
option is to either avoid producing network traffic (limiting
the damage of potentially harmful apps), or to try to simulate
the traffic patterns of a genuine app. We expect that being
restricted to use the same set of destinations and timing of
an existing genuine app severely limits the potential for an
attack, especially if the attacker does not have control over
such destinations.

Low-traffic apps. During our evaluation, we observed cases of
apps that cannot be reliably fingerprinted using our approach.
This includes, in particular, apps that only communicate with
widely used services, e.g. advertisement networks and CDNs,
which may be difficult to fingerprint. After all, our fingerprints
rely on patterns shown in network destinations. If the pattern
generated by an app is common to many other apps, we cannot
discern said specific app. We mainly observed this behavior in
apps that do not require any form of server for their main
functionality, but that still communicate with advertisement
and analytics services, probably as a way for monetization.
Unfortunately, we expect most network-based monitoring ap-

proaches to suffer from the same limitation due to the generic
nature of advertisement and analytics communication.

Simultaneously active apps. A limitation of a semi-supervised
approach is that it has difficulty distinguishing multiple apps
that are running at the same time. Android allows apps to
exchange network traffic in the background, although this be-
havior is typically found only in a limited set of apps (i.e., mu-
sic streaming apps, and apps to make phone calls). In addition,
since Android 7, two apps can be in the foreground at the time
by splitting the screen of the device. Furthermore, Android
10 allows those apps also to be active simultaneously [58].
We expect this heavy multi-app scenario to create challenges
for our fingerprinting approach, and therefore, future work
needs to investigate the fingerprint generation for multiple
simultaneously active apps.

Repackaged apps. While one of our datasets, the Andrubis
dataset, also contains flows from potentially harmful and
malicious apps, we did not specifically investigate the effect
of repackaged apps on our fingerprinting. As malware authors
frequently repackage benign apps with their malicious pay-
load [38], it would be interesting for future work to investigate
whether the additional fingerprints introduced by this payload
could be used to detect this type of malware.

Fingerprint coverage. Our evaluation has shown an app
may have multiple fingerprints. When detecting new apps,
it takes some time for our approach to converge to a state
where a sufficient number of fingerprints has been created to
accurately characterize the network traffic of an app. Continella
et al. [24] already observed this as a limitation when dealing
with unknown traffic. Future work could explore approaches
similar to theirs to automatically decide when enough network
traffic has been fingerprinted to sufficiently cover the network
behavior of an app. Furthermore, while the fingerprints of
previously unseen apps can be immediately used to recognize
the same apps later on, if an unseen app produces multi-
ple fingerprints, FLOWPRINT recognizes each fingerprint as
a separate app. Future work could explore approaches to
automatically determine whether a burst of new fingerprints
belong to the same previously unseen app.

AppScanner reimplementation. While we faithfully reim-
plemented AppScanner following the approach described in
the original paper, our implementation might still slightly
differ from the original tool. Therefore, it is possible that
the two implementations have slightly different performances.
However, we expect this difference to be minimal, if present.

Privacy implications. One of the advantages of our work
is that it works on encrypted traffic. One can argue that in
enterprise networks, TLS can be decrypted by deploying man-
in-the-middle TLS proxies and therefore other approaches are
still applicable. However, traffic decryption weakens the over-
all security [27] and violates users’ privacy, thus we believe it
should be avoided. At the same time, our approach shows the
high precision with which apps can be identified despite traffic
encryption. From a privacy perspective, the use of certain
apps can reveal information about medical conditions, religion,
sexual orientation, or attitude towards the government of users.
Identifying individual apps from the network traffic alone also
opens the door for censorship and traffic differentiation [37].
Furthermore, individuals may be identified and tracked to
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a certain degree based on the unique set of apps they are
using [3]. Since devices from different vendors and carriers
often introduce a unique set of pre-installed apps [30], it should
at least be feasible to identify a specific device manufacturer
or type, which we leave for future work.

VII. RELATED WORK

Related work already explored the use of network finger-
prints for both mobile and desktop devices. However, related
approaches are either supervised, i.e., require prior training on
labeled apps, or only work on unencrypted network traffic.

App recognition. App recognition, also referred to as traffic
classification, is closely related to app fingerprinting as both
approaches attempt to map traffic to the app that produced
it. Related work suggested the use of deep packet inspection
(DPI) for this purpose. Some approaches attempt to automat-
ically identify clear-text snippets in network traffic that are
unique to an app [64, 68]. Other classifiers focus specifically
on HTTP headers in combination with traditional machine
learning [44] or deep learning approaches [19]. Choi et al. [20]
even suggested automatically learning the optimal classifier for
each app. As app recognition can only be used for apps for
which a fingerprint exists, several approaches extended HTTP-
based fingerprints by automating the process of fingerprint
creation [17, 25]. However, all these approaches rely on DPI,
meaning that they cannot be used on encrypted traffic. Given
that 80%–90% of Android apps nowadays communicate over
HTTPS, i.e., use TLS [31, 50], any fingerprinting solution
should be able to deal with TLS-encrypted traffic.

AppScanner [62] uses statistical features of packet sizes
in TCP streams to train Support Vector and Random Forest
Classifiers for recognizing known apps. This system is able to
re-identify the top 110 most popular apps in the Google Play
Store apps 99% accuracy. However, to achieve these results,
AppScanner only makes a prediction on traffic for which its
confidence is high enough. This results in the system only
being able to classify 72% of all TCP streams. BIND [4],
like AppScanner, creates supervised app fingerprints based on
statistical features of TCP streams. BIND also uses temporal
features to better capture app behavior and reaches an average
accuracy of 92.6%. However, the authors observed a decay
in performance over time, and suggest to retrain the system
periodically if lower performance is observed.

Concurrent to our work, Petagna et al. [48] demonstrated
that individual apps can also be recognized in traffic that
is anonymized through Tor. Their supervised approach uses
timing, size, packet direction and burst features of TCP flows.
Similar to our work, the authors observed web browsers
posing a particular challenge, since each visited website might
produce different patterns.

Other approaches include the use of Naı̈ve Bayes classifiers
in combination with incoming and outgoing byte distribu-
tions [39], the use of statistical flow features in combination
with decision trees [12] and the possibility of combining
existing classifiers [2]. Alan et al. [5] train a classifier on the
packet sizes of the launch-time traffic of apps. However, as
the authors acknowledge, detecting the launch of an app in
real-world traffic is challenging, and and app might already be
launched when a phone enters a network.

Finally, several techniques attempt to identify not the apps
themselves, but rather user activity within apps [23, 55].
These methods are able to detect even more subtle differences
within app usage which can subsequently be linked to the
original app. Unfortunately, none of these approaches address
the inherent flaw of app recognition, namely the inability to
recognize previously unseen apps.

Real-time fingerprint generation. Related approaches on
real-time fingerprint generation for the detection of apps either
require decrypted network traffic, or focus on detecting the
application-layer instead of the mobile app itself. Bernaille et
al. [13] stressed the importance of fast recognition of apps
in network traffic and suggested the clustering of TCP flows
based on their first five messages. Their approach recognizes
the application-layer protocol, which might be sufficient for
detecting desktop apps. In contrast, since mobile apps mostly
communicate over either HTTPS or QUIC, this method is
insufficient in our setting. DECANTeR [15] builds desktop
app fingerprints from the headers of HTTP messages without
requiring prior knowledge of apps. However, this approach also
relies on decrypted traffic for fingerprint generation.

TLS fingerprinting. In addition to app fingerprinting, TLS fin-
gerprinting techniques are often used to track communicating
processes [6, 8, 41, 42]. These techniques leverage the diversity
of fields in ClientHello messages generated by different
TLS implementations to create fingerprints. However, they
do not work well in the homogeneous mobile setting where
many apps use the same SSL/TLS implementation provided
by the underlying OS. Consequently, different apps produce
the same TLS fingerprints making impractical to recognize
apps or discover previously unseen apps. This property is
even exploited by tools [29] to bypass censorship systems.
TLS fingerprinting may also be applied on the ServerHello
message as done by JA3S [6]. In this setting, it is not the app
that is fingerprinted but rather the destination communicating
with the app. This technique can potentially be used to improve
our destination clustering step, but is not directly applicable to
fingerprinting mobile apps. In general, destination-based TLS
fingerprinting techniques that focus on desktop applications do
not work well when directly applied to mobile apps because,
as shown in Section V-E, mobile apps often share destination-
based clusters (e.g., advertisement networks).

Malware detection. We showed the value of our approach
in the setting of unseen app detection, where we treat new
apps as potentially malicious. This decision can be made by
complementing techniques that focus specifically on classify-
ing malicious traffic [7, 9]. These approaches are not capable
of discriminating between individual apps, but rather make a
decision on whether traffic contains malicious patterns. Hence,
our approach complements these techniques by providing more
insights into the individual apps active on the network.

VIII. CONCLUSION

In this work we proposed FLOWPRINT, a novel approach
for creating real-time app fingerprints from the encrypted
network traffic of mobile devices. Unlike existing approaches,
our approach does not rely on any prior knowledge about apps
that are active in a certain network. Therefore, the strength
of FLOWPRINT lies in its ability to detect previously unseen
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apps in encrypted network traffic. This allows us to deal with
evolving sets of apps, opening many security applications for
which fingerprinting was previously unsuitable.

In our evaluation, FLOWPRINT achieved an accuracy of
89.2% for recognizing apps, outperforming the supervised
state-of-the-art approach. Furthermore, we showed that our
approach is able to detect previously unseen apps with a
precision of 93.5%. These results demonstrate the capabilities
of semi-supervised approaches when dealing with evolving
systems, such as mobile apps, even in the presence of largely
homogeneous traffic due to third-party libraries and services.
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