
Updatable Signatures and Message
Authentication Codes?

Valerio Cini1, Sebastian Ramacher1, Daniel Slamanig1, Christoph Striecks1,
and Erkan Tairi2

1 AIT Austrian Institute of Technology, Vienna, Austria
{firstname.lastname}@ait.ac.at

2 TU Wien, Vienna, Austria
erkan.tairi@tuwien.ac.at

Abstract. Cryptographic objects with updating capabilities have been
proposed by Bellare, Goldreich and Goldwasser (CRYPTO’94) under the
umbrella of incremental cryptography. They have recently seen increased
interest, motivated by theoretical questions (Ananth et al., EC’17) as well
as concrete practical motivations (Lehmann et al., EC’18; Groth et al.
CRYPTO’18; Klooß et al., EC’19). In this work, the form of updatability
we are particularly interested in is that primitives are key-updatable and
allow to update “old” cryptographic objects, e.g., signatures or message
authentication codes, from the “old” key to the updated key at the same
time without requiring full access to the new key (i.e., only via a so-called
update token).
Inspired by the rigorous study of updatable encryption by Lehmann and
Tackmann (EC’18) and Boyd et al. (CRYPTO’20), we introduce a defi-
nitional framework for updatable signatures (USs) and message authen-
tication codes (UMACs). We discuss several applications demonstrating
that such primitives can be useful in practical applications, especially
around key rotation in various domains, as well as serve as building
blocks in other cryptographic schemes. We then turn to constructions
and our focus there is on ones that are secure and practically efficient.
In particular, we provide generic constructions from key-homomorphic
primitives (signatures and PRFs) as well as direct constructions. This
allows us to instantiate these primitives from various assumptions such
as DDH or CDH (latter in bilinear groups), or the (R)LWE and the SIS
assumptions. As an example, we obtain highly practical US schemes from
BLS signatures or UMAC schemes from the Naor-Pinkas-Reingold PRF.

1 Introduction

Updatable cryptographic primitives, initially introduced as incremental cryptog-
raphy [BGG94, BGG95], support the transformation of one cryptographic object

? This is the full version of a paper which appears in the proceedings of the 24th
International Conference on Practice and Theory of Public-Key Cryptography -
PKC 2021, LNCS, Springer.

to a related one without recomputing it entirely and have been widely studied
(cf. [ABK20] for an overview). Recently, Ananth et al. in [ACJ17] studied a
unified approach towards adding updatability features to many cryptographic
primitives such as attribute-based encryption, functional encryption or more
generally cryptographic circuit compilers. Moreover, they study the updatabil-
ity for classical protocols such as zero-knowledge proofs and secure multi-party
computation. Their constructions thereby rely on a novel updatable version of
randomized encodings [IK00, AIK06]. Besides exploring such updatable primi-
tives from a rather theoretical perspective, there have been various interesting
lines of work on specific updatable primitives inspired by concrete practical ap-
plications. For instance, Groth et al. in [GKM+18] introduce the notion of an
updatable common reference string (CRS) and apply it to zk-SNARKs (used
within many real world protocols in the cryptocurrency and distributed ledger
domain) to reduce the trust in the generator of the CRS and cope with ma-
licious CRS generators. Later in [Lip20] Lipmaa studied quasi-adaptive NIZK
(QA-NIZK) proofs in an updatable CRS setting where in addition to CRS up-
dates “old” valid proofs can be updated to be still valid under an updated
CRS. Another such primitive that is strongly motivated by practical applica-
tions and has recently been studied quite intensively is updatable encryption
(UE) [BLMR13, EPRS17, LT18, KLR19, JKR19, BDGJ20, BEKS20]. An UE
scheme is a symmetric encryption scheme that allows the key holder to update
keys and to compute an update token, which can be given to a party storing ci-
phertexts, and can be used to update existing ciphertexts to ones under the new
key. UE is motivated by the fact that it is a good key management practice to
change encryption keys periodically and it avoids the cumbersome requirement
to download, decrypt and re-encrypt and upload all the data again.

Motivation. Our work is now essentially motivated by this previous work on
UE and the observation that it is equally important in context of signatures and
message authentication codes (MACs) to follow good key management practices
and to periodically switch keys. For instance, any kind of software distribution
channels including App stores or operating system updates rely on signatures to
ensure the authenticity of the software they distribute. Moreover, file systems or
(outsourced) databases usually require signatures or MACs to ensure integrity
of stored data (we discuss this in more detail later in this section). What we
envision therefore are signatures and MACs that are updatable in a sense that,
similar to UE, holders of a secret key can compute a token that allows some third
party to update existing signatures and MACs to ones valid under the new key.
Thereby, we want to guarantee unforgeability even if the adversary can see lots
of different keys and tokens with the restriction that we exclude trivial forgeries
(we discuss this possible leakage in more detail later).

Related and previous work. While there are notions of signatures that
support updating keys or even guarantee unforgeability when allowing queries
under (adversarially) updated keys, none of them rigorously covers what we
have sketched above and in particular guaranteeing security even if signatures
can be updated between different keys. Closest are updatable signatures by

2

Klooß et al. [KLR19] implicitly used in one of their UE constructions. But
they do not treat their security in the updatable setting and rather sketch
how they can be obtained from unforgeable signatures in combination with
generic properties of the token generation. Key-updatable signatures by Jaeger
and Stepanovs [JS18] or key-updating signatures by Jost et al. [JMM19] pro-
posed in context of secure messaging allow to update keys and obtain signa-
tures under updated keys, but do not consider signature updates. Similarly,
signatures with re-randomizable keys by Fleischhacker et al. [FKM+16] consider
adversarially chosen updates of the secret key (and access to a signing oracle
under updated keys), but do not consider updating existing signatures. Some-
what orthogonal, key-homomorphic signatures by Derler and Slamanig [DS19]
consider updating keys as well as updating existing signatures (this concept
is similar to key-homomorphic PRFs [BLMR13]). But they only study the re-
quired properties functional-wise and do not consider an unforgeability notion
(rather they implicitly prove them for their respective applications). Neverthe-
less, as we will see these key-homomorphic signatures and key-homomorphic
PRFs [BLMR13, BP14, Kim20] can be used as the basis for some constructions
of US and UMACs, respectively. Finally, there is a recent notion of updatable
signatures by Abdolmaleki et al. [ARS20], which however focuses on key-update
tokens that serve as a proof of correct update and allow extractability of update
keys in order to be used within zk-SNARKs with updatable CRS.

Our framework for updatable signatures and MACs. Since none of the
existing works cover updatable signatures with strong security guarantees (and
there is to the best of our knowledge no work related to updatable MACs), our
goal is to design a comprehensive framework and security model. Therefore, sim-
ilar to models for UE [LT18, BDGJ20], we use the concept of epochs, where each
epoch e has an associated key-pair (ske, pke) of a signature scheme starting with
an initial key-pair in epoch 1 (all the discussion below analogously applies to
UMACs). An US scheme then provides the functionality that in epoch e given
(ske, pke) we can compute a key-pair (ske+1, pke+1) for the next epoch together
with an update token ∆e+1 that is capable of updating signatures under a key
from epoch e to e + 1. Our focus is on schemes where these update tokens are
independent of the signature and so ∆e+1 can be used for any signature from
epoch e. We want that the schemes support an arbitrary number of epochs (any
polynomial in the security parameters) but to support schemes from lattice as-
sumptions we also consider a bounded number of epochs (bounded US) with a
concrete bound T that usually depends on some parameters of the scheme. The
goal is now to achieve strong security guarantees, in particular, the US scheme
stays secure even after signing keys are compromised (a feature which is called
post-compromise secrecy) and also before signing keys get corrupted (a feature
called forward secrecy). Furthermore, outside of our model, we consider as an ad-
ditional practical feature of US and UMAC the so called message-independence.
This means that the update functionality only requires the update token and a
signature, but does not need to access the respective message.

3

For unforgeability, we allow the adversary to trigger arbitrary signature com-
putations, computations of next keys and updates adaptively and also adaptively
compromise tokens and signing keys. We thereby use the concept of leakage pro-
files originally defined in [LT18] and also used in [BDGJ20] to capture key, token,
and signature “leakage” that cannot be captured by the oracles in the security
experiment. The reason is that due to the nature of updates, US schemes in-
herently allow for information leakage of updated message-signature pairs, keys,
and tokens besides what is modeled in the security experiment. For instance,
if the adversary compromises a secret key ske and a token ∆e+1 it might be
possible to derive ske+1 (or ske from key ske+1 and token ∆e+1). Also, a token
∆e besides allowing to update signatures into the next epoch may also allow to
switch signatures back to previous epochs. However, we stress that in contrast
to UE, where no-directional UE schemes are highly desirable, for US it does not
seem to be that useful. The reason is that upgrading old signatures is covered
by correctness (and thus cannot be prevented) and preventing switching keys
or signatures back to previous epochs is only required if old public keys are not
considered revoked (and we currently do not see such applications).

In addition to the unforgeability notion, we also provide an unlinkability no-
tion that essentially says that updated signatures cannot be distinguished from
fresh signatures. More precisely, we require that an adversary even when given
all signing keys, tokens as well as signatures is not able to distinguish a fresh
signature from an updated version of the signature that it already holds. While
this property does not seem essential to the practical applications discussed be-
low, we discuss cryptographic applications where this notion is important.

Exploring applications. We will now discuss practical as well as cryptographic
applications of US and UMACs.

Key rotation in software distributions with US. Software distribution channels
including App stores such as Google Play [Goo19, Ele14, WLX+19], Apple’s
App Store [App20], or Microsoft’s Windows Apps [Mic20] and Windows Up-
dates, or Linux distributions such as Debian [Kra05], Ubuntu, Red Hat [Red18]
and Arch Linux [Arc20] rely on signatures to ensure the authenticity of their
software packages. In one way or another, they either sign indices including
hashes of the software packages or sign the software packages directly. For the
latter, packages are often signed by individual developers whose keys are either
signed by some central party like the app store provider or are shipped to the
user directly via keyring packages containing all trusted keys. In this setting, key
rotation of individual developer keys becomes an issue, since, if keys are rotated,
all software packages signed by the old key have to be re-signed with the new one.
The same issue can also be observed in the context of signed boot loaders and
kernels for secure boot [LSW10]. When relying on US, key rotation of developer
keys becomes less of a burden on the developer. Indeed, the developer would
update the key and produce an update token which is then used to update all
signatures from this developer. Thus, instead of the developer having to re-sign
all their packages, the signature adaption can be outsourced to a service run by
the app store. Note that the effort for certifying new or updated keys would be

4

the same in both settings.

File system and (outsourced) database integrity with UMACs. Modern file sys-
tems including zfs [ZRAA10] ensure the on-disk data integrity by storing hashes
of the data. Additionally, when replicating data from one storage pool to an-
other, the digests ensure integrity during transport. Similarly, databases sup-
port integrity checks which are helpful for replication and backups. Especially
interesting is the application to outsourced databases [MNT06, WG18], where in
case of key-rotation the use of an UMAC enables these updates to be performed
without re-computing all the authentication tags from scratch and without giv-
ing the actual key to the third party hosting the database.

Malleable signatures and revocation in privacy protocols. Redactable signatures
(RS) [SBZ02, JMSW02] and sanitizable signatures (SS) [ACdMT05, BFF+09]
are malleable signatures that allow to remove parts from signed messages or
replace designated parts of signed messages by designated parties without in-
validating the signatures. They have numerous applications, but due to their
selective disclosure functionality are especially attractive to protect privacy in
medical documents when shared with other parties. Replacing the conventional
EUF-CMA secure signature scheme that typically serves as a building block in
such schemes with an US can, similar to the above applications, help to reduce
re-signing effort in case of a key-rotation. This is particularly interesting when
large amounts of signed medical documents are involved. US providing unlink-
ability can firstly help if one requires unlinkability from the respective RS or
SS scheme (cf. [BFLS10] for a discussion of the linkability problem when join-
ing different versions of a document to derive additional information) even over
different versions of one document under different (updated) keys. Secondly, un-
linkable RS [CDHK15, San20] serve as a building block to construct anonymous
credentials (ACs). In this context, unlinkable US allow to realize credential revo-
cation in the following way: the issuer can provide an update token to a service
that receives signatures from users and only updates credentials of non-revoked
users to the current issuer key. Unlinkability of the US thereby in particular
guarantees that it is hard to distinguish between credentials of non-revoked users
from that of newly joined users. The same revocation idea can also be applied
to replace re-issuing based revocation [BCC+16] in group signatures that follow
the sign-randomize-prove paradigm [BCN+10, PS16, DS18]. Moreover, UMACs
seem to be suitable for the same purpose in keyed-verification ACs [CMZ14], i.e.,
ACs where issuer and verifier are the same entity, typically constructed from al-
gebraic MACs instead of signatures. An in-depth study of these cryptographic
applications of US and UMACs is considered as future work.

CCA-secure UE with ciphertext integrity using UMACs. Klooß et al. [KLR19]
showed how to achieve CCA security and ciphertext integrity for UE using
the Encrypt-and-MAC transformation. Their transformation requires encryp-
tion and MAC schemes that support key-rotation. In [KLR19] the key-rotatable
MAC was instantiated using the DDH-based PRF (NPR) [NPR99] using a key-
switching akin to the proxy re-encryption approach due to Blaze et al. [BBS98].
We note that a UMAC satisfies the key-rotatable property, and hence, can be

5

directly plugged into the described transformation to obtain CCA-secure UE
with ciphertext integrity by using a suitable encryption scheme and any UMAC.

Further contributions. Besides the already discussed comprehensive frame-
work for US and UMACs, we provide the following contributions:

US and UMAC from KH primitives. We construct US from key-homomorphic
(KH) signatures [DS19], which satisfy some additional requirement that all natu-
ral schemes provide. Due to the properties of KH signatures, they are unlinkable.
With respect to provable security, we use a proof-technique that is inspired by
the key-insulation technique due to Klooß et al. [KLR19], where we essentially
can use the unlinkability property of the underlying KH signature. Similarly, we
obtain fixed-length UMACs from key-homomorphic PRFs [BLMR13], which we
generically turn into variable-input UMACs and our proof technique essentially
follows the ones for signatures. This allows us to instantiate US and UMACs from
various assumptions such as DDH or CDH (latter in bilinear groups). For in-
stance, we achieve instantiations for highly practical US schemes from BLS signa-
tures [BLS01] or UMAC schemes from the Naor-Pinkas-Reingold PRF [NPR99].
Interestingly, by using some tricks, we can show how to generically construct
UMACs from “almost” key-homomorphic PRFs [BLMR13] leading to construc-
tions from the (R)LWE assumption, and thus, post-quantum UMACs. Unfor-
tunately, there are no known key-homomorphic signatures with the required
properties from post-quantum assumptions. Consequently, we investigate direct
constructions of US from lattices. On the positive side we are able to provide a
US construction based on the probabilistic GPV scheme [GPV08] under the SIS
assumption. On the negative side, we therefore have to weaken the adversarial
capabilities to prove it secure. While we provide formal evidence that this does
not seem to be too problematic in practice, we consider it as a challenging open
issue to construct US schemes from post-quantum assumptions being provable
secure without any such restrictions.

Message-independent US and UMAC. We further discuss message-independent
constructions of US and UMAC from the BLS signature scheme [BLS01], from
the Pointcheval-Sanders signature scheme [PS16], and from the Naor-Pinkas-
Reingold PRF [NPR99]. These overcome the limitations of the respective con-
structions directly obtained from them viewed as KH-signatures and -PRFs,
which are message-dependent. Message-independence can be a desirable prop-
erty in practical applications, as access to the message is not required for updat-
ing signatures and MACs, i.e., if they are verified and then stored and at a later
point updated (in a batch) one does not need to access the respective messages
and improves update performance.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security
parameter. For a finite set S, we denote by s ← S the process of sampling

6

s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process of
running A on input (λ, x) with access to uniformly random coins and assigning
the result to y (we may omit to mention the λ-input explicitly and assume that
all algorithms take λ as input). To make the random coins r explicit, we write
A(λ, x; r). We use ⊥ to indicate that an algorithm terminates with an error and
AB when A has oracle access to B, where B may return > as a distinguished
special symbol. We say an algorithm A is probabilistic polynomial time (PPT)
if the running time of A is polynomial in λ. Given x ∈ Zn, we denote by ||x|| its
infinity norm, i.e., for x = (x1, x2, . . . , xn), we have ||x|| := max(|x1|, . . . , |xn|).
A function f is negligible if its absolute value is smaller than the inverse of any
polynomial (i.e., if ∀c∃k0∀λ ≥ k0 : |f(λ)| < 1/λc). We may write q = q(λ) if we
mean that the value q depends polynomially on λ.

Basic primitives. We recall some basic primitives.

Definition 1 (Pseudorandom Function [GGM84]). Let F : K × X → Y
be a keyed function. We say F is secure pseudorandom function (PRF) if for all
efficient adversaries A, we have∣∣∣Pr

[
AF (k,·)(1λ) = 1: k ← K

]
− Pr

[
Af(·)(1λ) = 1: f ← Funs[X ,Y]

]∣∣∣ = ε(λ),

where Funs[X ,Y] denotes the set of all functions with domain X and range Y
and ε(λ) = negl(λ).

Definition 2 (Signature scheme). A signature scheme Σ = (Gen,Sig,Ver)
consists of the following PPT algorithms:

Gen(λ) : On input security parameter λ, it outputs a signing key sk and a ver-
ification key pk with associated message space M.

Sig(sk,M) : On input a secret key sk and a message M ∈ M, it outputs a
signature σ.

Ver(pk,M, σ) : On input a public key pk, a message M ∈ M and a signature
σ, it outputs a bit b ∈ {0, 1}.

A digital signature scheme Σ needs to provide (perfect) correctness as well
as a notion of unforgeability. We first present the correctness definition.

A digital signature scheme Σ is correct, if for all security parameters λ ∈ N,
for all (sk, pk)← Gen(λ), for all M ∈M, we have that

Pr
[
Ver(pk,M,Sig(sk,M)) = 0

]
≤ ε(λ),

where ε(λ) = negl(λ), and we call it perfectly correct if ε(λ) = 0. We also require
existential unforgeability under adaptively chosen message attacks (EUF-CMA
security) notion. For EUF-CMA security the adversary has access to an oracle
Sig′(sk, ·), which A can adaptively query on any message M of its choice and it
returns Sig(sk,M). An adversary is valid if it does not query M∗ to Sig′.

7

Definition 3 (EUF-CMA security of Σ). A signature scheme Σ is EUF-
CMA-secure iff for any valid PPT adversary A the advantage function

Adveuf-cma
Σ,A (λ) := Pr

[
Expeuf-cma

Σ,A (λ) = 1
]
,

is negligible in λ where Expeuf-cma
Σ,A (λ) is defined in Figure 1.

Experiment Expeuf-cma
Σ,A (λ)

(pk, sk)← Gen(λ)

(M∗, σ∗)← ASig′(sk,·)(pk)
if A is valid and Ver(pk,M∗, σ∗) = 1 then return 1 else return 0

Fig. 1. The EUF-CMA security notion for signatures.

Definition 4 (Message Authentication Code (MAC)). A message au-
thentication code Π = (Gen,Sig,Ver) consists of the following PPT algorithms:

Gen(λ) : On input security parameter λ it outputs a key sk with associated mes-
sage space M.

Sig(sk,M) : On input a key sk and a message M ∈M it outputs a tag (signa-
ture) σ.

Ver(sk,M, σ) : On input a key pk, a message M ∈ M and a tag (signature) σ
it outputs a bit b ∈ {0, 1}.

We omit correctness, as it is defined analogously to signatures. We require EUF-
CMA security of Π with verification queries.3 Here, the adversary has access
to oracles Sig′(sk, ·) and Ver′(sk, ·, ·) which A can adaptively query on any mes-
sage M and message M and tag σ, respectively, and it returns Sig(sk,M) and
Ver(sk,M, σ), respectively. An adversary is valid if it does not query Sig′ on M∗.

Definition 5 (EUF-CMA security of Π). A MAC Π is EUF-CMA-secure
iff for any valid PPT adversary A the advantage function

Adveuf-cma
Π,A (λ) := Pr

[
Expeuf-cma

Π,A (λ) = 1
]
,

is negligible in λ where Expeuf-cma
Π,A (λ) is defined in Figure 2.

Key-homomorphic signatures. We recall relevant parts of the definitional
framework of key-homomorphic signatures as introduced in [DS19, DS16]. Let
Σ = (KGen,Sign,Verify) be a signature scheme and the secret and public key
elements live in groups (H,+) and (E, ·), respectively. For these two groups it is
required that group operations, inversions, membership testing as well as sam-
pling from the uniform distribution are efficient.

3 We note that this definition is equivalent to one without verification queries, but
this makes our proofs more compact and natural.

8

Experiment Expeuf-cma
Π,A (λ)

sk ← Gen(λ)

(M∗, σ∗)← ASig′(sk,·),Ver′(sk,·,·)(λ)
if A is valid and Ver(sk,M∗, σ∗) = 1 then return 1 else return 0

Fig. 2. The EUF-CMA security notion for MACs.

Definition 6 (Secret Key to Public Key Homomorphism [DS19]). A
signature scheme Σ provides a secret key to public key homomorphism, if there
exists an efficiently computable map µ : H → E such that for all sk, sk′ ∈ H it
holds that µ(sk + sk′) = µ(sk) · µ(sk′), and for all (sk, pk) ← Gen(λ), it holds
that pk = µ(sk).

In the discrete logarithm setting, it is usually the case sk ← Zp and pk = gsk

with g being the generator of some group G of prime order p.

Definition 7 (Key-Homomorphic Signatures [DS16]). A signature scheme
is called key-homomorphic, if it provides a secret key to public key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,M, σ,∆) : Given a public key pk, a message M , a signature σ, and a
shift amount ∆ outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ H and all (pk, sk)← Gen(λ), all messages M ∈M and all
σ with Ver(pk,M, σ) = 1 and (pk′, σ′)← Adapt(pk,M, σ,∆) it holds that

Pr[Ver(pk′,M, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

The following notion covers whether adapted signatures look like freshly gener-
ated ones, even if the initial signature used in Adapt is known.

Definition 8 (Perfect Adaption [DS19]). A key-homomorphic signature
scheme provides perfect adaption, if for every κ ∈ N, every message M ∈M, it
holds that

[σ, (sk, pk),Adapt(pk,M, σ,∆)] ,

where (sk, pk)← Gen(λ), σ ← Sign(sk,M), ∆← H, and

[σ, (sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk +∆,M))] ,

where sk ← H, σ ← Sign(sk,M), ∆← H, are identically distributed.

Key-homomorphic PRFs. Key-homomorphic PRFs (KH-PRFs) are PRFs
which satisfy additional algebraic properties. More precisely, the key space K
and the range Y of the PRF exhibit certain group structures such that the
evaluation of the PRF on any fixed input x ∈ X is homomorphic with the
respect to these group structures. More precisely:

Definition 9 (Key-Homomorphic PRFs [NPR99, BLMR13]). Let (K,⊕),
(Y,+) be groups. Then, a keyed function F : K×X → Y is a key-homomorphic
PRF (KH-PRF) if F is a secure PRF and for every key k1, k2 ∈ K and every
input x ∈ X , we have

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x).

9

We note that KH-PRFs constructed from assumptions such as Learning with
Errors (LWE) as proposed in [BLMR13, Kim20, BEKS20] do not achieve the per-
fect homomorphism as described in the definition above, but are only “almost”
key-homomorphic in that F (k1, x)+F (k2, x) = F (k1⊕k2, x)+e, where e is a small
error term. For them one needs to bound the number of successive applications
and provide T -time correctness for a pre-specified T ≥ 1 (cf. [BLMR13, Kim20]
for a comprehensive treatment). Note also, that only achieving an “almost” key-
homomorphic property allows to distinguish fresh evaluations of the PRF from
ones obtained via the key-homomorphic property.

3 Updatable MACs and Signatures

In this section, we present our definitional framework of updatable MACs and
signatures. In order to make the illustration compact and avoid redundancy, we
try to unify the notation as much as possible and will, whenever necessary, point
to the differences between the two primitives.

3.1 Updatable MACs

We define updatable message authentication codes (UMACs) next and their
security model in Section 3.3. An UMAC scheme UMAC with message spaceM
is a tuple of the PPT algorithms (Setup, Next, Sig, Update, Ver):

Setup(λ, n): on input security parameter λ ∈ N and the maximum number of
epochs n ∈ O(2λ), the setup algorithm outputs a (secret) key k1.4

Next(ke): on input key ke for epoch e ∈ [n−1], the key-update algorithm outputs
an updated key ke+1 together with an update token ∆e+1.

Sig(ke,M): on input key ke for epoch e ∈ [n] and a message M ∈M, the signing
algorithm outputs a tag σe.

5

Update(∆e+1,M, σe): on input an update token ∆e+1, a message M , and a tag
σe for epoch e < n, the update algorithm outputs an updated message-tag
pair (M,σe+1) or ⊥.

Ver(ke,M, σe): on input key ke, a message M , and a tag σe for epoch e ∈ [n],
the verification algorithm outputs a verdict b ∈ {0, 1}.

Correctness of UMAC. Correctness ensures that an update of a valid tag σe
(via ∆e+1) from epoch e to e+1 yields a valid tag σe+1 that can be verified under
the epoch key ke+1 which is derived from ke. More formally, we require that for
all λ, n ∈ N, for all k1 ← Setup(λ, n), for all e ∈ [n − 1], for all (ke+1, ∆e+1) ←
Next(ke), for all M ∈M, for all σe with Ver(ke,M, σe) = 1, for all (M,σe+1)←
Update(∆e+1,M, σe), we have that Pr

[
Ver(ke′ ,M, σe′) 6= 1

]
≤ ε(λ) holds, for all

e′ ∈ [n], where ε(λ) = negl(λ), and we call it perfectly correct if ε(λ) = 0.

4 See that such large values of n allow for virtually unbounded number of epochs.
5 We assume that from keys, tokens, and tags, the associated epoch is efficiently ex-

tractable.

10

3.2 Updatable Signatures

We define updatable signatures (US) next and their security model in Section
3.3. An US scheme US with message space M is a tuple of the PPT algorithms
(Setup, Next, Sig, Update, Ver):
Setup(λ, n): on input security parameter λ and the maximum number of epochs

n ∈ O(2λ), the setup algorithm outputs a public and secret key pair (pk1, sk1).6

Next(pke, ske): on input a public key pke and secret key ske for epoch e ∈ [n−1],
the key-update algorithm outputs an updated public key pke+1, an updated
secret key ske+1 and an update token ∆e+1.

Sig(ske,M): on input secret key ske for epoch e ∈ [n] and a message M ∈ M,
the signing algorithm outputs a signature σe.

Update(∆e+1,M, σe): on input an update token ∆e+1, a message M , and a
signature σe for epoch e < n, the update algorithm outputs an updated
message-signature pair (M,σe+1) or ⊥.

Ver(pke,M, σe): on input public key pke, a message M , and a signature σe for
epoch e ∈ [n], the verification algorithm outputs a verdict b ∈ {0, 1}.

Correctness of US. For all λ, n ∈ N, for all (pk1, sk1) ← Setup(λ, n), for all
e ∈ [n−1], for all (pke+1, ske+1, ∆e+1)← Next(pke, ske), for allM ∈M, for all σe
with Ver(pke,M, σe) = 1, for all (M,σe+1)← Update(∆e+1,M, σe), we have that
Pr
[
Ver(pke′ ,M, σe′) 6= 1

]
≤ ε(λ) holds, for all e′ ∈ [n], where ε(λ) = negl(λ),

and we call it perfectly correct if ε(λ) = 0.

3.3 Security of UMAC and US

We are now ready to define the security notions of UMAC and US where we
will use UX with X ∈ {MAC, S} to distinguish between those two primitives.
In order to make the description as compact as possible, we will use pke and
ske, for e ∈ [n], as handles to the public and secret key, respectively; where for
UMACs we have pke := ⊥ and ske := ke. Moreover, we will also call the tags in
UMACs signatures henceforth.

We introduce security definitions for existential unforgeability under chosen-
message attack (UX-EUF-CMA) and unlinkable updates under chosen-message
attack (UX-UU-CMA). Loosely speaking, the UX-EUF-CMA notion ensures that
signatures cannot be forged even when the PPT adversary sees many signatures
of chosen messages while the UX-UU-CMA notion guarantees that signatures
derived from Update are unlinkable even when the PPT adversary sees many
(updated) signatures of chosen messages.

In our security experiments, let q ∈ N be the number of signature queries and
e the current epoch. Furthermore, we introduce a global state S = (I,K, T ,S):

When the experiment is initialized, we set I = {((pk1, sk1), ∆1)}, for (pk1, sk1)
← Setup(λ, n) and ∆1 := ⊥, and let S, K, and T be initially empty sets. Addi-
tionally, we require the following oracles which are eligible to change sets in S
for any epoch e′ ∈ [e]:

6 As in UMACs, such large values of n allow for virtually unbounded number of epochs.

11

I = {((pke′ , ske′),∆e′)e′∈[e]} : all keys and update tokens.
K = {e′ ∈ [e]} : all epochs where the adversary queried Corrupt(key, e′).
T = {e′ ∈ [e]} : all epochs where the adversary queried Corrupt(token, e′).
S = {(e′,M, σe′)e′∈[e]} : all tuples where the adversary queried Sig′(M, e′) in

epoch e′ or Update′(M, ·) in epoch e′ − 1;

Sig′(M, e′) : on input message M and epoch e′ ∈ [e], compute signature σe′ ←
Sig(ske′ ,M), set S := S ∪ {(e′,M, σe′)}, and return σe′ . Else, return ⊥.

Next′ : find (pke, ske) ∈ I, compute (pke+1, ske+1,∆e+1) ← Next(pke, ske), up-
date I := I ∪ {((pke+1, ske+1),∆e+1)}, return pke+1 and set e := e+ 1.

Update′(M,σe′) : on input a message-signature pair (M,σe′), return ⊥ if
Ver′(M,σe′) 6= 1; else, compute (M,σe′+1) ← Update(∆e′+1,M, σe′), set
S := S ∪ {(e′ + 1,M, σe′+1)} and return σe′+1.

Corrupt({token, key}, e′) : on input handles token or key, and epoch e′ ∈ [e],
- return ∆e′+1 and set T := T ∪ {e′}, if called with token and e′ < e,
- return ske′ and set K := K ∪ {e′}, if called with key. Else, return ⊥.

Ver′(M,σe′): on input a message-signature pair (M,σe′),
- return b← Ver(ske′ ,M, σe′) in the UMAC case,
- return b← Ver(pke′ ,M, σe′) in the US case.

Leakage profile (K∗, T ∗,S∗). We use the concept of a leakage profile originally
defined in [LT18] to capture key, token, and signature “leakage” that cannot
be directly captured via oracles. The reason is that due to the nature of signa-
ture updates, UX schemes inherently allow for information leakage of updated
message-signature pairs, keys, and tokens besides what is modeled via the global
state S. For example, one token ∆e′+1 alone in such schemes is capable of updat-
ing polynomially many message-signature pairs ((M1, σ1,e′), . . . , (M`, σ`,e′)), for
all ` = `(λ) and for each epoch e′ ∈ [n−1]. As this is required by the correctness
of the scheme, we cannot capture which particular signature σ′ the adversary
retrieves (via an update token) and, hence, cannot include it into S.

Furthermore, signatures, keys, and tokens cannot only be “upgraded” but
also potentially “downgraded”, e.g., a token ∆e′ and key ske′ or a token ∆e′

and a message-signature pair (M,σe′) for epoch e′ ∈ [n] might be used to derive
a key ske′−1 or message-signature pair (M,σe′−1) of the previous epoch e′ − 1,
respectively. Hence, we cannot capture which particular key sk′ or signature σ′

the adversary retrieves (via an update token) and, hence, cannot include those
as well into K or S, respectively.

We want to emphasize that the directionality of updates, i.e., either bidirec-
tional or unidirectional, is subject to discussion in updatable encryption [Jia20].
In context of US or UMACs, we observe that due to correctness one always can
upgrade signatures (so leakage in this direction does not add anything), and
stronger schemes could only prevent to derive keys or signatures “into the past”.
This, however, seems of limited interest in authentication primitives, where old
keys are typically assumed to be invalidated. Consequently, we opted for the
arguably simpler bidirectional setting.

12

When looking ahead, we will construct US from key-homomorphic (KH)
signatures. Now, in [DS19], the authors also provide a number of constructions
of KH signatures that provide a property being weaker than the one we are using
and which is called adaption of signatures. Now, one could wonder why we do
not support such schemes. Firstly, it would only allow to achieve a very weak
notion of unlinkability. Secondly, and more importantly, all known KH signatures
with this “weak” adaption (e.g., Schnorr or Guillou-Quisquater signatures) have
the property that a signature and its updated version leak the update token.
Consequently, an adversary who obtains a signing key in some old epoch and
then sees a signature and its updated versions, can compute all the signing keys
up to the epoch of the latest updated version it sees. As this results in very weak
security guarantees, we decided that our framework should not support schemes
with these weak security guarantees.

Now, let us consider an UX scheme with optimal leakage to be the one where
we only have signature upgrade (but no downgrade) and tokens are not useful
to upgrade or downgrade keys in any way. The leakage would be limited for such
schemes, however, the model would still need to restrict the adversary to retrieve
the update token in epoch e∗ − 1, i.e., ∆e∗ , where e∗ is the forgery epoch. The
reason is that otherwise the adversary could trivially win the game by updating
any signature computed under a corrupted key to epoch e∗. Hence, also such
strong schemes with so-called no-directional key updates would not achieve any
stronger security in our model; at least with the applications we have in mind.

Now we are ready to introduce the leakage profile. We model leakage via
key-update, token, and signature-update inferences where the leakage profile
(K∗, T ∗,S∗) of a concrete scheme is specified by the respective sets.
Key-update inferences. Key-update inferences of a specific UX scheme can
be formally captured as K∗ with corrupted-key set K and corrupted-token set T
maintained by the oracles:

K∗ :=

{
{e ∈ [n] | corrupt-key(e) = true} with true = corrupt-key(e) iff:

(e ∈ K) ∨ (e− 1 ∈ K ∧ e ∈ T) ∨ (e+ 1 ∈ K ∧ e+ 1 ∈ T).

Token inferences. Token inferences can be formally captured as T ∗ with
corrupted-token set T and key-leakage set K∗:

T ∗ := {e ∈ [n] | (e ∈ T) ∨ (e− 1 ∈ K∗ ∧ e ∈ K∗)}.

Signature-update inferences. Signature-update inferences can be formally
captured as S∗ with corrupted-signature set S maintained by the oracles and
sets K∗ and T ∗ with M ∈M∪ {>}7:

S∗ :=

{(e,M) | corrupt-sig(e,M) = true} with true = corrupt-sig(e,M) iff:

((e,M, ·) ∈ S) ∨ ((e,M) ∈ K∗ × {>}) ∨ (corrupt-sig(e− 1,M) ∧
e ∈ T ∗) ∨ (corrupt-sig(e+ 1,M) ∧ e+ 1 ∈ T ∗),

7 M = > is a placeholder for “all messages” in M and helps us to construct the set
S∗ efficiently.

13

where corrupt-sig(0,M) = false.
In Figure 3 we provide an example of potential leakage in UX schemes with

our leakage profile.

epoch: e− 5 e− 4 e− 3 e− 2 e− 1 e e+ 1 e+ 2 e+ 3 e+ 4

keys: ke−5 ke−4 ke−3 ke−2 ke−1 ke ke+1 ke+2 ke+3 ke+4

tokens: ∆e−4 ∆e−3 ∆e−2 ∆e−1 ∆e ∆e+1 ∆e+2 ∆e+3 ∆e+4 ∆e+5

signature: σe−5 σe−4 σe−3 σe−2 σe−1 σe σe+1 σe+2 σe+3 σe+4

Fig. 3. Example of directly obtained (green) and inferable information (blue) for UX
schemes.

Existential unforgeability under chosen-message attacks (UX-EUF-
CMA). Informally, the UX-EUF-CMA notion ensures that no PPT adversary
can non-trivially forge signatures even when the adversary adaptively compro-
mises a number of keys and tokens. We say that an UX scheme is UX-EUF-
CMA-secure if any PPT adversary succeeds in the following experiment only
with negligible probability. The experiment starts by computing the initial keys
(pk1, sk1) ← Setup(λ, n). During the experiment, via the oracles, the adversary
may query signatures for any epoch e′ up to the current epoch e, iterate to the
next epoch e + 1, update signatures, and corrupt tokens or keys for any epoch
e′ up to the current epoch e (note that the global state S is changed by the
oracles). Eventually, the adversary outputs a message-signature pair (M∗, σ∗e∗),
for epoch e∗ ∈ [n], and succeeds if Ver(pke∗ ,M

∗, σ∗e∗) = 1 in the US case and
Ver(ske∗ ,M

∗, σ∗e∗) = 1 in the UMAC case, and the adversary is valid which we
define in Definition 10.

Definition 10 (Validity of A for UX-EUF-CMA). Depending on (S∗,K∗, T ∗),
a PPT adversary A is valid in the UX-EUF-CMA experiment if

{{(e∗,>)} ∪ {(e∗,M∗)}} ∩ S∗ = ∅, (1)

i.e., A has not learned any useful forgery-message information for epoch e∗.

Remark. Definition 10 essentially says that the adversary is not able to derive
a valid message-signature pair for epoch e∗ which excludes trivial wins. The
leftmost term in Equation (1) “checks” that A does not possess a valid (derived)
secret key in e∗ while the middle term “checks” that A is not able to derive a
valid signature for M∗ in epoch e∗ via corrupted tokens.

See that the keys (pke∗ , ske∗) for any e∗ ∈ [n] can be derived, i.e., if e∗ ≤ e,
we have that ((pke∗ , ske∗), ·) ∈ I, otherwise, if e∗ > e, we can derive (pke∗ , ske∗)

14

iteratively by invoking Next′ starting with (pke, ske). If e∗ ≤ e we set emax := e,
else emax := e∗. Figure 4 depicts the UX-EUF-CMA experiments.

Definition 11 (UX-EUF-CMA security of UX). A UX scheme UX is UX-
EUF-CMA-secure iff for any valid PPT adversary A the advantage function

Advux-euf-cma
UX,A (λ, n) := Pr

[
Expux-euf-cma

UX,A (λ, n) = 1
]
,

is negligible in λ, where Expux-euf-cma
US,A (λ, n) is defined in Figure 4.

Experiment Expux-euf-cma
UX,A (λ, n)

(pk1, sk1)← Setup(λ, n)
S = (I,K, T ,S), for I := {((pk1, sk1),⊥)},K := T := S := ∅
(M∗, σ∗e∗)← ASig′,Next′,Update′,Ver′,Corrupt(λ)
if A is valid and Ver({pke∗ , ske∗},M∗, σ∗e∗) = 1 then return 1 else return 0

Fig. 4. The UX-EUF-CMA security notions for UX. For US, we verify
Ver(pke∗ ,M

∗, σ∗e∗) = 1; for UMAC, we use Ver(ske∗ ,M
∗, σ∗e∗) = 1 in the last step.

Unlinkable updates under chosen-message attacks (UX-UU-CMA). In-
formally, the UX-UU-CMA notion ensures that no PPT adversary can distin-
guish fresh signatures from updated signatures even seeing (all) keys, update
tokens and signatures from the past. We say that an UX scheme is UX-UU-
CMA-secure if any PPT adversary succeeds in the following experiment only
with negligible probability. The experiment starts by computing the initial keys
(pk1, sk1) ← Setup(λ, n). During the experiment, via the oracles, the adversary
may query signatures for any epoch e′ up to the current epoch e, iterate to
the next epoch e + 1, update signatures, and corrupt tokens or keys for any
epoch e′ up to the current epoch e, and has access to a verification oracle (note
that the global state S is changed by the oracles). Then, the adversary outputs
a message M∗ and epoch e∗ for which it queried Sig′ in some epoch e′ < e∗.
It receives a challenge signature σ(b) which is either a fresh signature on M∗,
σ(0), or the existing signature for M∗ updated to epoch e∗, σ(1). For the lat-
ter case, we use the compact notation of UpdateCh(M∗) to denote the repeated
application of Update′ starting with σe′ for M∗ and finally resulting in σ(1) as
signature for M∗ in epoch e∗ (note that Update′ implicitly checks the condition
Ver(pke′ ,M

∗, σe′) = 1). In both cases, this might require calling repeatedly Next
until (ske∗ , pke∗) is defined. Eventually it outputs a bit b∗ and wins if b = b∗.
Note that the adversary can call Corrupt arbitrarily. We call an adversary valid if
it queried M∗ to Sig′ in some epoch e′ < e∗. Figure 5 depicts the UX-UU-CMA
experiments.

Definition 12 (UX-UU-CMA security of UX). A UX scheme UX is UX-
UU-CMA-secure iff for any valid PPT adversary A the advantage function

Advux-uu-cma
UX,A (λ, n) := |Pr

[
Expux-uu-cma

UX,A (λ, n) = 1
]
− 1/2|,

is negligible in λ, where Expux-uu-cma
US,A (λ, n) is defined in Figure 5.

15

Experiment Expux-uu-cma
UX,A (λ, n)

(pk1, sk1)← Setup(λ, n)
S = (I,K, T ,S), for I := {((pk1, sk1),⊥)},K =: T =: S := ∅
(M∗, e∗)← ASig′,Next′,Update′,Ver′,Corrupt(λ)
b← {0, 1}
σ(0) ← Sig(ske∗ ,M

∗), σ(1) ← UpdateCh(M∗)

b∗ ← ASig′,Next′,Update′,Ver′,Corrupt(σ(b))
if (e′,M∗, ·) ∈ S, e′ < e∗, and b = b∗ then return 1 else return 0

Fig. 5. The UX-UU-CMA security notions for UX.

4 Construction of Updatable Signatures

In this section, we will present different instantiations of updatable signatures
from different assumptions (see Section 4.4 for an overview and discussion.)

4.1 Updatable Signatures from KH Signatures

Subsequently, we show how to generically construct US with polynomially many
updates from key-homomorphic (KH) signatures. Let Σ = (Gen,Sig,Adapt,Ver)
be a KH signature scheme providing perfect adaption, where we denote the secret
key space by H and the secret key to public key homomorphism by µ. The so-
obtained US scheme US is depicted in Figure 6. Before discussing the security,

Setup(1λ, n):
– Return (pk1, sk1)← Σ.Gen(1λ).

Next(pke, ske):
– Choose random sk′ ∈ H and set ∆′e+1 := sk′ and ∆e+1 := (∆′e+1, pke).
– Compute pke+1 = pke · µ(∆′e+1) and ske+1 = ske +∆′e+1.
– Return (pke+1, ske+1,∆e+1).

Sig(ske,M):
– Return Σ.Sig(ske,M).

Update(∆e+1,M, σe):
– Parse ∆e+1 = (∆′e+1, pke)
– Compute σe+1 := Σ.Adapt(pke,M, σe,∆

′
e+1).

– Return (M,σe+1).
Ver(pke,M, σe):
– Return Σ.Ver(pke,M, σe).

Fig. 6. US from KH signatures.

we will note that correctness straightforwardly follows from inspection.

Theorem 1. Let Σ = (Gen,Sig,Adapt,Ver) be a uniform-keys key-homomorphic
signature scheme. If Σ is EUF-CMA secure and provides perfect adaption, then
the updatable signature scheme US from Figure 6 is US-EUF-CMA-secure and
US-UU-CMA secure.

In the above theorem, we require uniform-keys KH signatures, which we intro-
duce now. This notion is satisfied by all natural schemes and in particular the
ones discussed in [DS19]:

16

Definition 13 (Uniform-Keys Key-Homomorphic Signatures). A key-
homomorphic signature scheme Σ is said to be uniform-keys if the distribution
of sk with (sk, pk) ← Σ.Gen(1λ) is the uniform distribution over the secret key
space H.

Helper Lemmas. Notice that a valid adversary should not trivially forge sig-
natures using the updatable property of the US scheme and the information
provided by the leakage profile (e.g., produce a valid signature for epoch e′ ∈ K∗
using ske′ and update it to a valid signature for epoch e∗ using the update tokens
in T ∗) for epochs in an appropriate window containing epoch e∗. More formally,
we can define

e− := max
1≤e≤e∗

{e | e 6∈ T ∗ ∪ K∗ and e′ 6∈ K∗, e′ ∈ T ∗ ∀ e < e′ ≤ e∗} ,

e+ := min
e∗<e≤emax

{e | e 6∈ T ∗ and e′ 6∈ K∗, e′ ∈ T ∗ ∀ e∗ < e′ < e} ,

and let the interval [e−, e+[denote such a window and notice that e− is well-
defined. Suppose on the contrary that the set

E := {e ∈ [1, e∗] | e 6∈ T ∗ ∪ K∗ ∧ e′ 6∈ K∗, e′ ∈ T ∗ ∀ e < e′ ≤ e∗} ,

is empty (if it is not empty then it has a maximum element). We claim, by
backward induction on the epoch number k and starting from e∗, that this
implies that [k, e∗] ⊆ T ∗ for all k ∈ [1, e∗] which is a contradiction as 1 /∈ T ∗ by
construction of T ∗. The base case is k = e∗. Indeed if E is empty then e∗ /∈ E
which implies that e∗ ∈ T ∗ as @ e′ with e∗ < e′ ≤ e∗ and it cannot be that
e∗ ∈ K∗. Now assume by induction hypothesis that [k, e∗] ⊆ T ∗ for k < e∗. We
deduce from it, using that k − 1 /∈ E, that k − 1 ∈ T ∗ as k − 1 cannot be in K∗
by validity of the adversary when [k, e∗] ⊆ T ∗. Hence, [k− 1, e∗− 1] ⊆ T ∗ which
concludes the proof. A similar argument also proves the well-definedness of e+.
We can summarize the above discussion in the following lemma.

Lemma 1. Let A be a valid adversary that produces a forgery in epoch 0 < e∗ ≤
emax in the US-EUF-CMA experiment, then there exists a maximum integer
0 < e− ≤ e∗ and a minimum integer e∗ < e+ ≤ emax s.t. A

1) does not obtain tokens ∆e− and ∆e+ ,
2) obtains no secret key ske for all e− ≤ e < e+ and
3) can obtain all tokens ∆e for e− < e < e+,

from the queries made to the oracles. Subsequently, we often denote the interval
[e−, e+[as the window.

From Definition 13, the following lemma easily follows.

Lemma 2. Let Σ be a uniform-keys key-homomorphic signature scheme. Then
the following hold:

1) For every (sk, pk)← Σ.Gen(1λ) the distributions of sk+∆ with ∆← H and
sk′ with (sk′, pk′)← Σ.Gen(1λ) are identical.

17

2) For every (sk, pk)← Σ.Gen(1λ) and ∆ ∈ H we have that (sk+∆, pk ·µ(∆)) ∈
Σ.Gen(1λ).

Now we are ready for the proof of Theorem 1.

Proof. First we observe that correctness follows straightforwardly from inspec-
tion.

For US-UU-CMA security, we can observe that in the US-UU-CMA experi-
ment all keys, signing operations, updates and token computations are performed
honestly by the experiment. Any adversary A is given access to all keys, tokens
and signatures and what we need to consider is the computation of the challenge
signature σ(b). Now, due to the adaption property of Σ, the outputs of Σ.Sig
and Σ.Adapt are identical and thus also the outputs of US.Sig and US.Update.
By repeatedly applying Definition 8 within US.UpdateCh for computing σ(1) and
using Lemma 2 we are done. More formally, let us consider the sequence of games
as outlined below:

Game 0. This is the experiment Expus-uu-cma
US,A (λ, n) with b = 0, i.e., we always

return σ(0) ← Sig(ske∗ ,M
∗).

Game 1. This is the experiment Expus-uu-cma
US,A (λ, n) with b = 1, i.e., we always

return σ(1) ← UpdateCh(M∗).

Lemma 3 (Game 0 to Game 1). For any adversary A it holds that

|Pr [SA,0]− Pr [SA,1] | = 0.

Observe that in both games the adversary A is given access to all keys, tokens
and signatures and outputs a message M∗ and epoch e∗ for which it queried Sig′

in some epoch e′ ≤ e∗. Now, in Game 0 we finally output σ(0) ← Sig(ske∗ ,M
∗),

i.e., a fresh signature of M∗ that verifies under pke∗ to A. In Game 1 let us
denote by σe′ the signature for M∗ under (ske′ , pke′) that the adversary queried
for message M∗ during the experiment. Let us w.l.o.g. assume that (ske∗ , pke∗)
is already defined (otherwise repeatedly call Next until it is defined) and let
(ske′+1, pke′+1, ∆e′+1), . . . , (ske∗ , pke∗ , ∆e∗) be the sequence of keys and update
tokens. Now, UpdateCh does the following:

– For i = e′, . . . , e∗ − 1 compute σi+1 ← Update(∆i+1,M
∗, σi), where Update

parses ∆i+1 = (∆′i+1, pki) and calls σi+1 ← Σ.Adapt(pki,M
∗, σi, ∆

′
i+1).

By using Lemma 2, we know that every key pair in the sequence (ske′ , pke′), . . . ,
(ske∗ , pke∗) is distributed identical as one obtained from Σ.Gen. Now, this al-
lows us to repeatedly apply the perfect adaption notion to the output of the
previous Update in this sequence to conclude that in the sequence of signatures
(σei , . . . , σe∗ =: σ(1)) the last signature σ(1) is distributed identically to a fresh
signature computed as Sig(ske∗ ,M

∗).

This lets us conclude that Advus-uu-cma
US,A (λ, n) = 0 for any adversary A, which

concludes the proof of US-UU-CMA security. ut

18

To prove US-EUF-CMA security, we reduce US-EUF-CMA security to the
EUF-CMA security of Σ, where the challenger will be associated to period e−.
While we can use the Sig oracle of the EUF-CMA challenger for period e−, we
have to answer Sig queries for epoch e∗ and adjacent ones, and Update queries
from older epochs to e∗ and from e∗ to newer epochs. Moreover, we have to
provide secret keys and tokens on Corrupt queries to the adversary. By Lemma 1
we know that in order for an adversary to be valid and to rule out a trivial
forgery, there needs to be a maximum epoch 1 ≤ e− ≤ e∗ and a minimum
epoch e∗ < e+ ≤ emax for which A does not query tokens ∆e− and ∆e+ and
consequently does not know any secret key but knows all tokens for the window
of epochs [e−, e+[. We now can use the key insulation technique from Klooß et
al. [KLR19] for optimization, so that instead of guessing the challenge epoch
e∗ and the window to the left and to the right, we only guess the boundaries
of this region e− and e+ (containing the challenge epoch somewhere) and we
can just associate the EUF-CMA challenger of Σ to some epoch in this interval
(lets say e−). This reduces the overall reduction loss from e2max(emax + 1) to
emax(emax + 1).

Outside of the window, i.e., for epochs up to e− − 1 and starting from e+

upwards, we will behave in our simulation as in the original game and in par-
ticular choose and know all secret keys and update tokens (except ∆e+). For
all epochs inside the window, our strategy will be as follows: we do not know
the secret keys associated to the epochs, but they are implicitly set by choos-
ing for every epoch ei in the window a random token ∆ei as in the real Next
algorithm. Then for every epoch ei in the window starting from e− we use the
secret key to public key homomorphism of Σ and set the corresponding public
key as pkei = pkei−1

· µ(∆ei) (for e− < ei < e+). Now for any signature query
for message M and epoch ei within the window, we query M to the EUF-CMA
challenger of Σ associated to e− and use the Σ.Adapt algorithm in the forwards
direction to obtain the signature for M in epoch ei within the window. Note
that due to the adaption property of Σ and thus the identical distribution of
signatures from Σ.Sig and Σ.Adapt, this is indistinguishable for A. The Update′

oracle is performed as in the original game for all those epochs where the up-
date token is knows. For the remaining epochs, i.e., e− and e+, when asked to
update (M,σe−−1) (or (M,σe+−1), respectively), we query M to the EUF-CMA
challenger of Σ associated to e− (or produce a fresh signature using ske+ , re-
spectively) and return it to the adversary. Again by the adaption property of Σ
and thus the identical distribution of freshly generated signatures and updated
ones, this is indistinguishable. Now if A outputs a valid forgery (M∗, σ∗e∗) for
epoch e∗, if e∗ = e− we can directly output it. Otherwise we use Σ.Adapt to
adapt the forgery backwards into epoch e− and output it. Note that in any case
a valid forgery output by A represents a valid forgery for Σ, as validity guaran-
tees that we have never queried M∗ throughout the game for any epoch inside
the window.

More formally, let us consider the following sequence of games.

Game 0. This is the experiment Expus-euf-cma
US,A (λ, n).

19

Game 1. This is identical to the previous game with the exception that we
guess the window [e−, e+[in which the epoch e∗ for which A outputs the
forgery is located and abort if our guess is incorrect.

Game 2. This is identical to the previous game up to the following differences:
- For call to Next′ in epoch e−− 1 we set ∆e− := ⊥ and run (ske− , pke−)←
Σ.Gen(1λ) to obtain an independent key for epoch e−. The same is done
for a call to Next′ in epoch e+ − 1.

- For each call to the Next′ oracle for epoch e ∈ {e−, . . . , e+ − 2}, we run
Next(pke,⊥) where we ignore the secret key and just set the key implicitly
via the public-key, i.e., choose random sk′ ∈ H and set ∆′e+1 := sk′ and
∆e+1 := (∆′e+1, pke), compute pke+1 := pke · µ(∆e+1), set ske+1 = ⊥.

- For each call to the Sig′ oracle for message M in any epoch e within
[e−, e+[, we compute σ ← Σ.Sig(ske− ,M) and then call Σ.Adapt using
the respective public keys to adapt it to a signature σe valid under pke
and add (e,M, σe) to S.

- For each call to the Update′ oracle for signature (M,σe) in epoch e ∈
{e− − 1, e+ − 1}, we compute σe+1 ← Σ.Sig(ske+1,M). We then add
(e+ 1,M, σe+1) to S and U , and return σe+1 to the adversary.

Now, let us analyze the transitions:

Lemma 4. For any adversary A it holds that(
1

(emax + 1)emax

)
Pr [SA,0] ≤ Pr [SA,1] .

Proof. We guess the window by simply drawing e− ← {0, ..., emax} and e+ ←
{e−+1, ..., emax} uniformly at random. Thus, this guess is correct with probabil-
ity at least 1

(emax+1)emax
and if the guess turns out to be wrong, we abort. Note

that such a window always exists for a valid adversary A due to Lemma 1. ut

Lemma 5. For any adversary A it holds that

|Pr [SA,1]− Pr [SA,2] | = 0.

Proof. We observe that due to having a valid adversary A w.r.t. window [e−, e+[
and due to Lemma 1 we recall that A

1) does not obtain tokens ∆e− and ∆e+ ,
2) obtains no secret key ske for all e− ≤ e < e+ and
3) can obtain all tokens ∆e for e− < e < e+,

from the queries made to the oracles, given the leakage profile. Note that due
to 1) we know that there implicitly exists a token mapping keys and signatures
from e− − 1 to e− and from e+ − 1 to e+ (but we do not need to know them)
and all (implicit) keys due to Lemma 2 are distributed as expected. Also, all
the tokens ∆e in this window that are given to A are distributed as expected.
Finally, we can use the same argumentation as in the proof of Lemma 3 to
show all signatures given to the adversary within the window in Game 2 are
distributed identical to the ones in Game 1. ut

20

Lemma 6. For any adversary A it holds Pr [SA,2] ≤ Adveuf-cma
Σ,A (λ).

Proof. Now we are at the point where we can associate an EUF-CMA challenger
for Σ to the keys in time slot e−. Now, for every signature query for message M
and epoch e within the window to the Sig′ oracle, we query M to the EUF-CMA
challenger of Σ and then execute the remaining parts of the Sig′ oracle to adapt
the so obtained signature in the forwards direction to obtain the signature for
M in epoch e within the window. Now if A eventually outputs a valid forgery
(M∗, σ∗e∗) for epoch e∗, we know that in order to be valid, A did not query
message M∗ for any epoch within the window (otherwise, since it knows all
tokens this would be a trivial forgery). In case e∗ = e−, we can directly output
(M∗, σ∗e∗) to the EUF-CMA challenger of Σ. Otherwise, we use Σ.Adapt to adapt
the forgery backwards into epoch e− and then output the message M∗ and the
adapted signature σ as forgery to the EUF-CMA challenger.

Taking all together this concludes the proof. ut

4.2 Message-Independent US from the BLS Signature Scheme

Next, we discuss US schemes that do not require the message in order to update
signatures, a feature which we call message-independence (MI). We prove that
they are secure US in the conventional sense, i.e., in the model we always have
access to the messages and verify their validity and we rather consider MI to
be a practical feature in the following sense. In many practical applications,
signatures can be verified offline at some point and then when performing (a
batch of) updates at a later point in time, one does not need to access all the
messages and verify the signatures. This helps to improve the performance of
the updating procedure.

In Figure 7, we provide a message-independent US scheme from the BLS
signature. In contrast to BLS viewed as a KH signature scheme, where key
updates are additive and the next public key is pk′ = pk · g̃∆′ = g̃sk+∆

′
, we

here consider a slight variation where the key update is multiplicative, i.e.,
pk′ = pk∆

′
= g̃sk·∆

′
. While this does not anymore yield a KH signature scheme

in the framework of [DS19], due to the absence of the secret to public key ho-
momorphism, it is easy to see that this variant provides an Adapt algorithm
satisfying Definition 7, i.e., given a signature σ = H(M)sk the update is com-
puted as σ′ = σ∆

′
= H(M)sk·∆

′
. It is also easy to see that the BLS scheme with

this Adapt algorithm satisfies perfect adaption (cf. Definition 8), where in the
definition µ(sk) is replaced by g̃sk and µ(sk) · µ(∆) is replaced by g̃sk·∆.

Consequently, we can exactly follow the proof of Theorem 1 with the only
exception that we do not use µ for computing the pk’s in the window, but choose

∆ei ← Zp and compute pkei = pk
∆ei
ei−1 (for all e− ≤ ei < e+). Moreover, it is

easy to see that we adapt Lemma 2 with the same changes as discussed above.
Checking correctness is straightforward. Hence, we obtain the following:

Corollary 1. Let Σ = (Gen,Sig,Adapt,Ver) be the BLS signature scheme with

the Adapt algorithm defined as
(
pk∆

′
, σ∆

′
)
← Adapt(pk,M, σ,∆′), then the

21

Setup(1λ, n):
– Run BG = (G1,G2,GT , g, g̃, e, p) ← BGGen(1λ), choose a hash function H :
{0, 1}∗ → G1 uniformly at random from hash function family {Hk}k.

– Choose x← Z∗p, and set sk = x and pk = g̃x.
– Return (pk1, sk1)← (pk, sk).

Next(pke, ske):
– Choose x′ ← Z∗p and set ∆′e+1 := x′ and ∆e+1 := (∆′e+1, pke).

– Compute pke+1 = pk
∆e+1
e and ske+1 = ske ·∆′e+1.

– Return (pke+1, ske+1,∆e+1).
Sig(ske,M):
– Return σ = H(M)ske .

Update(∆e+1, σe):
– Parse ∆e+1 = (∆′e+1, pke).

– Compute σe+1 = σ
∆′e+1
e .

– Return σe+1.
Ver(pke,M, σe):
– Return e(H(M), pke) = e(σe, g̃).

Fig. 7. US with message-independent updates from BLS signatures.

updatable signature scheme US from Figure 7 is US-EUF-CMA secure and US-
UU-CMA secure.

MI US from PS signatures. We note that the same technique (i.e., using
multiplicative updates to obtain MI) can be applied to other KH signatures,
such as Pointcheval-Sanders (PS) [PS16]. More precisely, for PS we can set the
public key to pk := (X̃, Ỹ) = (g̃x, g̃y) for the secret key sk := (x, y) with
x← Zp and y ← Z∗p. The signature is computed by sampling h← G∗1 and setting

σ := (σ1, σ2) = (h, hx+y·m). The verification holds for e(σ1, X̃ · Ỹ m) = e(σ2, g̃).
In order to provide message-independent updates, we can sample ∆1 ← Z∗p and
∆2 ← Zp, set the update token to ∆ := (∆1, ∆2), and compute the updated

key pair as sk′ := (x ·∆1 +∆2, y ·∆1) and pk′ := (X̃ ′, Ỹ ′) = (X̃∆1 · g̃∆2 , Ỹ ∆1).
Then, the update procedure is performed by sampling a random r ← Z∗p and

computing σ′ := (σ′1, σ
′
2) = (σr1, σ

r·∆1
2 · σr·∆2

1).

4.3 Towards Updatable Signatures from Lattices

In this section, we aim to construct an US scheme from lattices. In particular,
we start from the well-known GPV signature scheme [GPV08] and, by using
methods inspired by the lattice-based proxy re-signature approach in [FL19],
we obtain an US scheme that we call USGPV. In order to prove its US-EUF-
CMA security, however, we have to restrict the capabilities of the adversary, but
will provide evidence that this does not seem to make a huge difference in the
practical use of the scheme compared to the original leakage profile.

Let us briefly recall the construction of the GPV signature scheme in its prob-
abilistic full-domain hash (FDH) variant. For a recollection of lattice preliminar-
ies we refer the reader to Appendix A. In the following let H : {0, 1}∗ → Znq be a

22

hash function modeled as a random oracle. The GPV signature scheme consists
of the following algorithms:

– Gen(1n): Run TrapGen(n,m, q, s) to get pair (A,TA) (A is an n×m matrix
over Zq and TA is a short basis of Λ⊥(A)). Output (pk = A, sk = TA).

– Sig(M, sk = TA): Sample t ← {0, 1}n, compute y = H(M ||t), and output
(u, t), where u is a short vector computed via u← SamplePre(A,TA, s,y).

– Ver((u, t),M, pk = A): Compute y = H(M ||t). Output 1 if and only if
A · u = y and ‖u‖ is small enough, and 0 otherwise.

To transform this scheme into an updatable one, we can apply a method similar
to the one used in [FL19] to generate the re-signing keys and re-sign signatures:
given the secret key of epoch e+1, using the SamplePre algorithm, it is possible to
compute a small norm matrix∆e+1 (for the sake of conciseness, we do not include
the old public key as part of the update token) that maps, by left multiplication,
the current public key to the previous one, i.e., pke+1 ·∆e+1 = pke. Then, we can
use this matrix to map, by right multiplication, a signature valid in the previous
epoch to a signature valid in the current one. The small norm of ∆e+1 ensures
that, in the update process, the norm of the signature does not increase “too
much”. Figure 8 describes the so obtained lattice-based US scheme USGPV.

Public parameters: security parameter λ, T = polylog(λ) maximum allowed
updates, q = nO(T), n = poly(λ), m = O(n log q), s = ω(

√
logn) and B = ω(2T).

KeyGen(1λ):
– Let (A1,TA1)← TrapGen(n,m, q, s).
– Return (sk1 := TA1 , pk1 := A1).
Next(pke, ske):
– Let (Ae+1,TAe+1)← TrapGen(n,m, q, s).
– Let ∆e+1 ← SamplePre(Ae+1,TAe+1 , s,Ae).
– Return (ske+1 := TAe+1 , pke+1 := Ae+1,∆e+1).
Sig(ske,M):
– Sample t← {0, 1}k.
– Compute y = H(M ||t), and τe ← SamplePre(Ae,TAe , s,y).
– Return σe = (τe, t).
Update(∆e+1, σe):
– Parse σe = (τe, t).
– Compute τe+1 = ∆e+1 · τe.
– Return σe+1 = (τe+1, t).
Ver(pke,M, σe):
– Parse σe = (τe, t).
– Compute y = H(M ||t).
– Return 1 if ||τe|| < B and pke · τe = y, otherwise return ⊥.

Fig. 8. Message-independent unidirectional US from GPV.

Correctness and leakage profile. In the Next algorithm, the token ∆e is
computed by running SamplePre(Ae+1,TAe+1 , s,Ae). In this way we obtain an
m×m matrix ∆e+1 (of short norm) such that

Ae+1 ·∆e+1 = Ae.

23

If σe = (τe, t) is a valid signature of M under the public key Ae, we must have
that Ae · τe = H(M ||t), and that τe is of small norm. When we update the
signature σe we get τe+1 = ∆e+1 · τe. Since both ∆e and τe are of small norm,
so is τe+1. Moreover

Ae+1 · τe+1 = Ae+1 · (∆e+1 · τe) = (Ae+1 ·∆e+1) · τe
= Ae · τe = H(M ||t),

which proves correctness of the updated signature. As a signature produced by
algorithm Sign has size O(s

√
m), and after each update, the size grows at the

rate of O(sm), as in [FL19], we set the parameter used in verification to be
B = ω(2T). The US construction can support T = polylog(λ) updates using the
subexponential SIS assumption.
Modified leakage profile. As far as the leakage profile is concerned, in order
to be able to prove the US-EUF-CMA security of USGPV, we need to add a re-
striction that the adversary is not allowed to query the update oracle at epoch
e−−1 to obtain signatures at epoch e−. We note that this restriction is needed to
allow the challenger to simulate all responses to the oracle queries of the adver-
sary. In the general case, this weakened model would allow to prove US schemes
US-EUF-CMA which leak the token when seeing a signature and its updated
version (such as Schnorr type signatures). However, as proven in Proposition 1
below, even updating a large but limited amount of signatures will not leak the
token for the USGPV scheme. Consequently, weakening the model merely seems
to be an artifact that results from our proof technique, but does not seem to
represent a significant weakness in practice.

Moreover, as updated signatures are distinguishable from fresh ones, one has
to keep track of the different signatures given to the adversary: for this reason,
in the security proof we will split the set S into sets S ′ and U ′, which will consist
of the fresh and updated signatures respectively. In addition to also supporting
the feature of message-independence, interestingly, the USGPV scheme satisfies
also unidirectional updates: by construction, the secret key of epoch e alone is
required to produce the update token ∆e. In particular this implies that the
token cannot be used to backward adapt signatures, since this will contradict
the unforgeability of the underlying signature scheme. This “feature” can be
seen as one reason for the weakening of the model, as it is incompatible with the
proof technique used for the other US constructions.

Security of USGPV. For this construction, we can prove the following theorem:

Theorem 2. Assuming the hardness of SISq,n,m,2B, the US scheme USGPV from
Figure 8 is US-EUF-CMA secure, with the above discussed restriction on the
adversary, in the random oracle model.

Proof (Sketch). We can follow, here as well, the proof of Theorem 1: we guess
the forgery period e∗ and the window [e−, e+[(by the above discussion regarding
the uni-directionality of the US under consideration, the window will be, in this
case, one-sided, i.e., we can even assume that A has access to ∆e+). Outside
of the window, we will behave in our simulation as in the original game and

24

will know all secret keys and update tokens. Inside the window, we start by
embedding the SIS matrix A∗ as public key of the forgery epoch e∗. We then
have to distinguish the right part of the window, e ∈]e∗, e+[, from the left part,
e ∈ [e−, e∗[. For all epochs e in the right part, we can produce pke and∆e as in the
real game (and thus we also have the corresponding secret key ske). For those in
the left part, we start by sampling ∆e∗ ← DZm×m,s and set pke∗−1 := pke∗ ·∆e∗ .
Since this distribution is statistically close to the one of the matrices output
by the SamplePre algorithm, the adversary will not be able to distinguish the
simulation from the real game. We then iterate this process till we obtain pke− .
In this way we can respond to all secret key and token corruption queries. As
far as the signature queries are concerned, we rely on the programmability of
the random oracle model: when the adversary queries the signature oracle, we
first sample the short vector that will serve as signature and then program the
random oracle H accordingly. The presence of the “salt” t guarantees us that,
except with negligible probability, we will be able to reply to all signing queries
(e.g., even if the adversary asks for signature of the same message in different
epochs, which would not be possible if there was no “salt” involved in the signing
algorithm). The update queries can be answered as in the real game as, by the
restriction imposed on the adversary, we will know all the tokens require to run
the allowed update queries. Since simulation and real game are computationally
indistinguishable, the reduction can derive a SIS solution from the forgery tuple.

ut

We provide a full proof in Appendix B.

Remark 1. The above USGPV scheme does not achieve US-UU-CMA security:
Firstly, the tag associated to a signature is not changed during the update and,
secondly, the norm of the signature acts as distinguishing feature between fresh
and updated signatures.

The following proposition shows that, under the parameter restriction required
by the TrapGen algorithm, i.e., m ≥ 5n log q, we can update a large but limited
amount of signatures, namely k, without leaking the update token ∆ to the
adversary.

Proposition 1. Let m ≥ 5n log q and k ≤ n. For any PPT adversary A, the
probability that A on input (pke, ske, pke+1) and any k pairs of updated signatures
(τMi,ti,e, ∆e+1 · τMi,ti,e) outputs the update token ∆e+1 is negligible.

Proof. By the second claim of Lemma 5.2 from [GPV08], ∆e+1 is distributed ac-
cording to a discrete Gaussian over Zm×m, which has, by Lemma 2.10 from [GPV08],
at least min-entropy m(m − 1). By the chain rule of min-entropy, every pair of
updated signatures (τe, ∆e+1 · τe) lowers the entropy of ∆e+1 by m log q. Hence
the min-entropy of ∆e+1 conditioned on the view of the adversary is at least
m(m− 1)− k ·m log q, which is greater than n by our bounds on k and m. ut

25

4.4 Overview and Discussion

We provide a compact overview of US schemes obtained from different KH sig-
natures as well as our dedicated BLS-, PS- and GPV-based constructions in
Table 1. We present the scheme along with the required hardness assumption,
whether it is in the standard model, in the generic group model (GGM) or re-
quire random oracles (RO), whether it is unlinkable (UU-CMA), whether it is
message-dependent or -independent (MD/MI) and whether it supports an un-
bounded number of epochs (UB), i.e,. at least polynomially many in the security
parameter, or a concrete bound T on the number of updates.

Table 1. Overview of updatable signature schemes.

Scheme Assumption Model UU-CMA MD/MI UB

BLS (Sec. 4.2) co-CDH RO 3 MI 3

BLS (Sec. 4.1) co-CDH RO 3 MD 3

PS (Sec. 4.2) P-LRSW GGM 3 MI 3

PS (Sec. 4.1) P-LRSW GGM 3 MD 3

Waters (Sec. 4.1) co-CDH SM 3 MD 3

GPV (Sec. 4.3)† SIS RO 7 MI T
†
Provides US-EUF-CMA security only in a weakened model.

As far as efficiency is concerned (counting only expensive operations), and in
order to provide some intuition, the BLS construction requires 1 exponentia-
tion for the Next algorithm, while the Update algorithm needs 1 hash to group
operation and 1 exponentiation. On the other hand, the message-independent
BLS from Section 4.2 requires 1 exponentiation in the Next algorithm and only
1 exponentiation in the Update algorithm. PS requires 2 exponentiations for the
Next algorithm, followed by 3 exponentiations in the Update algorithm. On the
other hand, message-independent PS from Section 4.2 requires 3 exponentiations
for the Next algorithm, followed by 3 exponentiations in Update.

5 Construction of Updatable MACs

In this section we present a generic constructions of UMACs from (almost) key-
homomorphic PRFs and then present a dedicated construction of a UMAC from
the Naor, Pinkas, and Reingold (NPR) PRF [NPR99].

Before we start, we will discuss a well-known approach to turn a PRF F :
K × X → Y into a MAC by setting σ ← Π.Sig(sk,M) := F (sk,M) with the
canonical verification that recomputes the tag σ and compares it to the obtained
one. Analogously, a KH-PRF gives a KH-MAC due to the key-homomorphism
property and security of the PRF. However, if we use an “almost” KH-PRF, then
the canonical verification needs to be replaced with an “approximate” canonical
verification (i.e., noisy equality check), where the verification involves a metric
function (e.g., Euclidean distance) that gives the distance between input tag
and recomputed tag, and verification only succeeds if the distance is smaller
than some bound δ.

26

Clearly, the above discussed approach only yields a fixed-length MAC with
message space X . If the message space is too small, however, we can use a
collision-resistant hash function family (GenH , H) with H : S × {0, 1}∗ → X
to obtain a variable-length MAC that supports arbitrary length messages by
defining Π ′.Sig(sk,M) := F (sk,H(s,M)). For that construction we can show
the following (cf. [Bel06]):

Lemma 7. If Π is a fixed-length EUF-CMA secure MAC for message space X
and (GenH , H) a collision resistant hash function family, then Π ′ is a variable-
length EUF-CMA secure MAC for messages of arbitrary length.

Proof (Sketch). Let A be the adversary in the experiment Expeuf-cma
Π,A and let

(M1, . . . ,Mq) be the messages queried by A to oracle Sig′ and (M∗, σ∗) be the
valid forgery output by the adversary. Now, we have two cases: In the first case
i) we have that H(s,M∗) = H(s,Mi) for some i ∈ [q], which yields a collision
pair (M∗,Mi) for H, contradicting collision-resistance of (GenH , H). In the sec-
ond case ii) we have that H(s,M∗) 6= H(s,Mi) for all i ∈ [q]. However, this
means that (H(s,M∗), σ∗) represents a valid tag (signature) for a new message
H(s,M∗) and thus a valid forgery for Π. ut

Subsequently, in our generic construction we consider KH PRFs, which we can
equivalently view as KH MACs for fixed-length inputs. We will not make it
explicit in our construction, but straightforwardly applying Lemma 7 to our
generic construction in Section 5.1 will yield UMACs for variable-length inputs.

5.1 UMACs from KH PRFs

Now we show how to obtain UMACs from (almost) KH-PRFs generically. For K
we write ⊕ as the group operation and −k as the inverse of k. For the group Y,
we use the common addition. The UMAC obtained from a KH-PRF can be seen
in Figure 9, where the text in blue color is only required when using “almost”
KH-PRF and Dχ represents the error distribution (e.g., error distribution used
in lattice-based constructions). We can show the following:

Theorem 3. If F : K × X → Y is a secure (almost) key-homomorphic PRF
(equivalently an EUF-CMA secure (approximate) MAC for message space X),
then the UMAC construction in Figure 9 is UMAC-EUF-CMA secure and UMAC-
UU-CMA secure.

The proof of UMAC-EUF-CMA security follows exactly the strategy in the proof
of Theorem 1 with the only exceptions that within the window we need to
simulate the Ver′ oracle, and for the almost KH-PRF we need to account for
the additional error terms. For completeness, we provide a sketch of the proof
in Appendix C.
A note on almost KH-PRFs. In the notion of almost KH-PRFs such as those
from the (R)LWE assumption [BLMR13, Kim20, BEKS20] every homomorphic
operations increases the error χ and thus the constructions are only T -time

27

Setup(1λ, n):
– Sample a random key k1 ∈ K and output k1.

Next(ke) :
– Sample a random key ke+1 ∈ K.
– Compute ∆e+1 = ke+1 ⊕−ke and (ke+1,∆e+1).

Sig(ke,M) :
– Sample (χ2, . . . , χe)←$Dχ.
– Compute σe = F (ke,M) +

∑e
i=2 χi and output (M,σe).

Update(∆e+1,M, σe) :
– Compute σe+1 = σe + F (∆e+1,M) and output (M,σe+1).

Ver(ke,M, σe) :
– If F (ke,M) = σe (‖σe − F (ke,M)‖ ≤ δ) output 1, otherwise output 0.

Fig. 9. Bi-directional UMAC from (almost) KH-PRF. Blue parts correspond to the
changes when using almost KH-PRF.

correct. This means, that UMACs constructed from such KH-PRFs by default
will not satisfy the UMAC-UU-CMA notion, while the tags obtained from the
Update algorithm will have higher error compared to fresh tags obtained from the
Sig algorithm, thus making them trivially distinguishable. In order to circumvent
this issue, in Figure 9, we use the trick to make the error depend on the epoch
e that we are in. Hence, freshly computed tags and updated ones have the same
amount of error, which makes them indistinguishable, and allows us to achieve
the UMAC-UU-CMA notion.

Another issue to consider is the effect of the approximate canonical verifica-
tion on the security of the UMAC. Since we have a noisy equality check during
the verification algorithm, we can consider that we have a ball centered around
the tag σ, such that verification accepts any vector within this ball as a valid
tag. This implies that an adversary can just change the low-order bits of a valid
tag σ to produce another valid tag σ′ that will be within this ball and pass the
verification, and hence, break the strong unforgeability. However, since in this
work we are only interested in conventional unforgeability of the MAC (i.e., do
not require strongly unforgeable MACs), this approach is not useful to a valid
adversary against our UMAC. The adversary in our case is required to come up
with a valid tag that lies sufficiently far away from any tags that it was provided
with. Though, the adversary cannot do this due to the security of the underlying
KH-PRF. Nevertheless, the security of the KH-MAC obtained from KH-PRF is
correlated with the verification bound. If the verification bound is extremely
large, then we have that the balls around the valid tags are overlapping (i.e., the
balls are so large that they cover the entire space), and then with high probabil-
ity any random vector is sufficiently close to a random tag. However, by setting
the parameters appropriately we can bound this probability to be negligible.
More precisely, when using lattice-based almost KH-PRFs as MACs, for a MAC
verification bound δ, modulus q and lattice dimension n, we have that the ball
around a valid tag σ takes up (δ/q)n of the area, where the entire space has area
of qn. If the space taken by the ball is negligible, then it is hard for the adversary
to forge a valid tag. Since this will depend on the instantiation and parameters

28

of the almost KH-PRF, we leave it as an open problem to setup tighter bounds
and compute exact parameters. For our construction in Figure 9, we can set the
verification bound to δ = T ·B, for a constant T denoting the maximum number
of epochs for our UMAC, and B the bound on the errors sampled from Dχ.

5.2 Message-Independent UMAC from the NPR PRF

Since UMACs from KH-PRFs are inherently message-dependent, we now present
a dedicated construction of a variable-length UMAC scheme that is message-
independent (MI) from the PRF due to Naor, Pinkas, and Reingold (NPR) [NPR99].
Let us recall the NPR PRF and therefore let G be a cyclic group of prime oder
p in which the DDH assumption holds and H : {0, 1}∗ → G a hash function
modeled as a random oracle, then the NPR PRF with F : Z∗p × {0, 1}∗ → G is

defined as F (k,M) := H(M)k. It is secure under the DDH assumption in the
random oracle model. In contrast to the key-homomorphic variant of the NPR
PRF which considers keys from the additive group Zp, we consider key updates
multiplicatively with ∆ ∈ Z∗p, in the vein of the multiplicative variant of the US
from the BLS scheme in Section 4.2. Note that as in Section 4.2 we consider MI
to be a feature of UMACs for practical applications where one can assume that
one operates on valid UMACs.

Setup(1λ, n):
– Run G = (G, p, g) ← GGen(1λ), choose a hash function H : {0, 1}∗ → G1

uniformly at random from hash function family {Hk}k.
– Sample a random key k1 ∈ Z∗p and return (G, H, k1).

Next(ke) :
– Choose ∆e+1 ← Z∗p and return (ke+1 := (G, H, ke ·∆e+1),∆e+1).

Sig(ke,M) :
– Compute σe = H(M)ke and return (M,σe).

Update(∆e+1, σe) :

– Compute σe+1 = σ
∆e+1
e and return σe+1.

Ver(ke,M, σe) :
– If H(M)ke = σe return 1, otherwise return 0.

Fig. 10. Bi-directional variable-length UMAC from NPR PRF.

To show the security of this construction, we can exactly follow the proof of
Theorem 3 with the only exception that we do not use the key-homomorphic

property of the PRF in Update, but choose ∆ei+1 ← Z∗p and compute σ = σ∆
−1
ei+1

or σ = σ∆ei+1 if we have to switch PRF evaluations back (from epoch ei + 1
to epoch ei) or forth (from epoch ei to epoch ei + 1). Checking correctness is
straightforward and we obtain the following:

Corollary 2. Let F be the NPR PRF, then the construction in Figure 7 is an
UMAC-EUF-CMA-secure and UMAC-UU-CMA secure UMAC.

29

5.3 Overview and Discussion

We provide a compact overview of UMACs obtained from different KH-PRFs
as well as our dedicated NPR-based construction in Table 2. We use the same
criteria for comparison as in Section 4.4.

Table 2. Overview of updatable MACs.

Scheme Assumption Model UU-CMA MD/MI UB

BLMR (NPR) [BLMR13] DDH RO X MD X
NPR (Sec.5.2) DDH RO X MI X
BEKS [BEKS20] RLWE RO X MD T
Kim [Kim20] LWE SM X MD T

Regarding efficiency (again only counting expensive operations), for the key-
homomorphic NPR UMAC for instance Update requires 1 hashing to the group
as well as 1 exponentiation and Next only cheap operations. The variant of the
NPR UMAC from Sec. 5.2 requires instead 1 exponentiation for Update and Next
also only cheap operations.

Acknowledgements. We thank the anonymous reviewers for their comments.
This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement n◦871473 (KRAKEN),
European Union’s Horizon 2020 ECSEL Joint Undertaking project under grant
agreement n◦783119 (SECREDAS), by the Austrian Science Fund (FWF) and
netidee SCIENCE grant P31621-N38 (PROFET) and FWF grant W1255-N23.

References

[ABK20] Vivek Arte, Mihir Bellare, and Louiza Khati. Incremental cryptography
revisited: PRFs, nonces and modular design. In Karthikeyan Bhargavan,
Elisabeth Oswald, and Manoj Prabhakaran, editors, INDOCRYPT 2020,
volume 12578 of LNCS, pages 576–598. Springer, Heidelberg, December
2020.

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
Sanitizable signatures. In Sabrina De Capitani di Vimercati, Paul F. Syver-
son, and Dieter Gollmann, editors, ESORICS 2005, volume 3679 of LNCS,
pages 159–177. Springer, Heidelberg, September 2005.

[ACJ17] Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography
with updates. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 445–472.
Springer, Heidelberg, April / May 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. Comput. Com-
plex., 15(2):115–162, 2006.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı
Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, ICALP
99, volume 1644 of LNCS, pages 1–9. Springer, Heidelberg, July 1999.

30

[App20] Apple. Code signing, 2020. https://developer.apple.com/support/

code-signing/.
[Arc20] Arch Linux Wiki. pacman/package signing, 2020. https://wiki.

archlinux.org/index.php/Pacman/Package_signing.
[ARS20] Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-

shift: Obtaining simulation extractable subversion and updatable SNARKs
generically. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 20, pages 1987–2005. ACM Press, November
2020.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 127–144. Springer, Heidelberg, May / June
1998.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and
Jens Groth. Foundations of fully dynamic group signatures. In Mark
Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16,
volume 9696 of LNCS, pages 117–136. Springer, Heidelberg, June 2016.

[BCN+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bog-
dan Warinschi. Get shorty via group signatures without encryption. In
Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of
LNCS, pages 381–398. Springer, Heidelberg, September 2010.

[BDGJ20] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast
and secure updatable encryption. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
464–493. Springer, Heidelberg, August 2020.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving
speed and security in updatable encryption schemes. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 559–589. Springer, Heidelberg, December 2020.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without
collision-resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 602–619. Springer, Heidelberg, August 2006.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk.
Security of sanitizable signatures revisited. In Stanislaw Jarecki and
Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 317–336.
Springer, Heidelberg, March 2009.

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique
Schröder. Unlinkability of sanitizable signatures. In Phong Q. Nguyen
and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
444–461. Springer, Heidelberg, May 2010.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography: The case of hashing and signing. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 216–233. Springer, Heidelberg,
August 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography and application to virus protection. In 27th ACM STOC, pages
45–56. ACM Press, May / June 1995.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti

31

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://wiki.archlinux.org/index.php/Pacman/Package_signing
https://wiki.archlinux.org/index.php/Pacman/Package_signing

and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of
LNCS, pages 514–532. Springer, Heidelberg, December 2001.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-
homomorphic pseudorandom functions. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
353–370. Springer, Heidelberg, August 2014.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In Tetsu Iwata and Jung Hee Cheon, edi-
tors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 262–288.
Springer, Heidelberg, November / December 2015.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs
and keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM
Press, November 2014.

[DS16] David Derler and Daniel Slamanig. Key-homomorphic signatures: Defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Cryptology ePrint Archive, Report 2016/792, 2016. https:

//eprint.iacr.org/2016/792.

[DS18] David Derler and Daniel Slamanig. Highly-efficient fully-anonymous dy-
namic group signatures. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages
551–565. ACM Press, April 2018.

[DS19] David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

[Ele14] Nikolay Elenkov. Android Security Internals: An In-Depth Guide to An-
droid’s Security Architecture. No Starch Press, 2014.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel
Scott. Key rotation for authenticated encryption. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 98–129. Springer, Heidelberg, August 2017.

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. Efficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 301–330. Springer, Hei-
delberg, March 2016.

[FL19] Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from
lattices. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and
Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages 363–382.
Springer, Heidelberg, June 2019.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Hei-
delberg, August 1984.

32

https://eprint.iacr.org/2016/792
https://eprint.iacr.org/2016/792

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, ed-
itors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728.
Springer, Heidelberg, August 2018.

[Goo19] Google Developers. Sign your app, 2019. https://developer.android.

com/studio/publish/app-signing.
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for

hard lattices and new cryptographic constructions. In Richard E. Lad-
ner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
FOCS, pages 294–304. IEEE Computer Society Press, November 2000.

[Jia20] Yao Jiang. The direction of updatable encryption does not matter much. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 529–558. Springer, Heidelberg, December
2020.

[JKR19] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable obliv-
ious key management for storage systems. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 379–393. ACM Press, November 2019.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 159–188. Springer, Heidelberg, May 2019.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
Homomorphic signature schemes. In Bart Preneel, editor, CT-RSA 2002,
volume 2271 of LNCS, pages 244–262. Springer, Heidelberg, February
2002.

[JS18] Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-
grained state compromise: The safety of messaging. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[Kim20] Sam Kim. Key-homomorphic pseudorandom functions from LWE with
small modulus. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 576–607. Springer,
Heidelberg, May 2020.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updat-
able encryption with integrity protection. In Yuval Ishai and Vincent Ri-
jmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
68–99. Springer, Heidelberg, May 2019.

[Kra05] Martin F. Krafft. The Debian System: Concepts and Techniques. No
Starch Press Series. No Starch Press, 2005.

[Lip20] Helger Lipmaa. Key-and-argument-updatable QA-NIZKs. In Clemente
Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS,
pages 645–669. Springer, Heidelberg, September 2020.

[LSW10] Hans Löhr, Ahmad-Reza Sadeghi, and Marcel Winandy. Patterns for se-
cure boot and secure storage in computer systems. In ARES, pages 569–
573. IEEE Computer Society, 2010.

33

https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing

[LT18] Anja Lehmann and Björn Tackmann. Updatable encryption with post-
compromise security. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 685–716.
Springer, Heidelberg, April / May 2018.

[Mic20] Microsoft. Sign a windows 10 app package, 2020.
https://docs.microsoft.com/en-us/windows/msix/package/

signing-package-overview.
[MNT06] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication

and integrity in outsourced databases. TOS, 2(2):107–138, 2006.
[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-

random functions and KDCs. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 327–346. Springer, Heidelberg, May 1999.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126.
Springer, Heidelberg, February / March 2016.

[Red18] Red Hat. How to sign rpms with gpg, 2018. https://access.redhat.

com/articles/3359321.
[San20] Olivier Sanders. Efficient redactable signature and application to anony-

mous credentials. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS,
pages 628–656. Springer, Heidelberg, May 2020.

[SBZ02] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction
signatures. In Kwangjo Kim, editor, ICISC 01, volume 2288 of LNCS,
pages 285–304. Springer, Heidelberg, December 2002.

[WG18] Grisha Weintraub and Ehud Gudes. Data integrity verification in column-
oriented nosql databases. In DBSec, volume 10980 of LNCS, pages 165–
181. Springer, 2018.

[WLX+19] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu Meng, and Yao Guo.
Characterizing android app signing issues. In ASE, pages 280–292. IEEE,
2019.

[ZRAA10] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. End-to-end data integrity for file systems: A
ZFS case study. In FAST, pages 29–42. USENIX, 2010.

34

https://docs.microsoft.com/en-us/windows/msix/package/signing-package-overview
https://docs.microsoft.com/en-us/windows/msix/package/signing-package-overview
https://access.redhat.com/articles/3359321
https://access.redhat.com/articles/3359321

Appendix

A Lattice Preliminaries

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. A lattice has
rank k ≤ n if it is generated as the set of all Z-linear combinations of some k
linearly independent basis vectors. We say Λ is full-rank if k = n. For a positive
semidefinite matrix Σ ∈ Rn×n, we define the continuous Gaussian distribution
DΣ as the probability distribution over Rn whose density function is propor-
tional to ρΣ(x) = exp(−πxtΣ−1x). For a (full-rank) lattice Λ ⊂ Rn, we define
ρΣ(Λ) =

∑
x∈Λ ρΣ(x). Then, the discrete Gaussian distribution over Λ of co-

variance parameter Σ is defined as DΛ,Σ = ρΣ(x)/ρΣ(Λ).

We now recall the Short Integer Solution (SIS) problem, upon which the
security of the GPV signature scheme [GPV08] is based.

Definition 14 (SIS). Let n,m, q,B ∈ N be positive integers. For a given ad-
versary A, we define the following experiment:

– The challenger samples A← Zn×mq , and gives A to the adversary A.

– The adversary A outputs some non-zero vector z ∈ Zmq .

We define A’s advantage in solving the SIS problem for the set of parameters
n,m, q,B, denoted SISAdvn,m,q,B [A], to be the probability that Az = 0 mod q
and ||z|| ≤ B.

The following proposition specifies the properties of the GPV’s KeyGen algo-
rithm.

Proposition 2 ([Ajt99]). For any prime q = poly(n) and any m ≥ 5n log q,
there is a probabilistic polynomial-time algorithm that, on input 1n, outputs a
matrix A ∈ Zn×mq and a full-rank set S ⊂ Λ⊥(A), where the distribution of A
is statistically close to uniform over Zn×mq and the length of ||S|| ≤ L = m2.5.

Moreover, the set S can be converted efficiently to a “good” basis T of Λ⊥(A)
such that ||T̃|| ≤ ||S̃|| ≤ L.

The following theorem describes the features of the GPV’s Sign algorithm.

Theorem 4 ([GPV08]). There is a probabilistic polynomial-time algorithm
that, given a basis B of an n-dimensional lattice Λ = L(B), a parameter s ≥
||B̃|| ·ω(

√
log n), and a center c ∈ Rn, outputs a sample from a distribution that

is statistically close to DΛ,s,c.

The next sequence of lemmas describe the properties of the discrete Gaussian
which are necessary in the proof simulation.

Lemma 8 ([GPV08]). For any m-dimensional lattice Λ, center c ∈ Rm, pos-
itive ε > 0, and s ≥ 2ηε(Λ) and for every x ∈ Λ, we have

DΛ,s,c(x) ≤ 1 + ε

1− ε
· 2−m.

In particular, for ε < 1
3 , the min-entropy of DΛ,s,c(x) is at least m− 1.

In other words, the probability that an adversary A correctly guesses x← DΛ,s,c,
given c, is less than 2−(m−1).

Lemma 9 ([GPV08]). Let n and q be positive integers with q prime, and let
m ≥ 2n log q. Then, for all but a 2q−n fraction of all A ∈ Zn×mq and for any

s ≥ ηε(Λ⊥(A)), with ε ∈ (0, 12), the distribution of the syndrome u = Ae mod q
is statistically close to uniform over Znq , where e ∼ DZm,s.

The above lemma justifies the use of a random oracle to simulate the hash of
the messages and the one below proves that sampling from a discrete Gaussian
over the lattice Λ⊥t (A) = {x ∈ Zmq | Ax = t mod q}, is the same as sampling
from the discrete Gaussian over Zmq conditioned on that the sampled vector x
satisfies Ax = t mod q.

Lemma 10 ([GPV08]). Assume the columns of A ∈ Zn×mq generate Znq , and

let ε ∈ (0, 12) and s ≥ ηε(Λ
⊥(A)). Then, for e ∼ DZm,s, the distribution of the

syndrome u = Ae mod q is within statistical distance 2ε of uniform over Znq .
Furthermore, fix u ∈ Znq and let t ∈ Zm be an arbitrary solution to At = u
mod q. Then, the conditional distribution of e ∼ DZm,s given Ae = u mod q is
exactly t +DΛ⊥,s,−t.

Finally, we recall the definition of collision-resistant preimage sampleable
function (PSFs) and the fact the algorithms of the GPV signatures scheme pro-
vide a PSFs instantiation.

Definition 15 ([GPV08]). A collection of collision-resistant preimage sam-
pleable functions (PSFs) is a tuple of probabilistic polynomial-time algorithms

(˜TrapGen, ˜SampleDom, ˜SamplePre) satisfying the following properties:

1. ˜TrapGen(1n) outputs (a, t), where a is the description of an efficiently-computable
function fa : Dn → Rn (for some efficiently recognizable domain Dn and
range Rn depending on n), and t is some trapdoor information for fa;

2. ˜SampleDom(1n) samples an x from some distribution over Dn, for which the
distribution of fa(x) is uniform over Rn;

3. for every y ∈ Rn, ˜SamplePre(a, t, y) samples from the conditional distribution

x← ˜SampleDom(1n), given fa(x) = y;
4. for any PPT algorithm A, the probability that A(1n, a, y) ∈ f−1a (y) ⊂ Dn is

negligible, where the probability is taken over the choice of a, the target value
y ← Rn chosen uniformly at random, and A’s random coins;

36

5. for every y ∈ Rn, the conditional min-entropy of x← ˜SampleDom(1n) given
fa(x) = y is at least ω(log n);

6. for any PPT algorithm A, the probability that A(1n, a) outputs distinct x, x′ ∈
Dn such that fa(x) = fa(x′) is negligible, where the probability is taken over
the choice of a and A’s random coins.

A collection of PSFs based on the average-case hardness of SIS can be con-
structed as follows. Let q, m, and L be as in Proposition 2 and s ≥ L ·ω(

√
log n).

– The function generator uses the algorithms from Proposition 2 to choose
(A,T), where A ∈ Zn×mq is statistically close to uniform and T ⊂ Λ⊥(A)

is a good basis with ||T̃|| ≤ L. The matrix A (and q) defines the function
fA(·), and the good basis T is its trapdoor.

– The function fA is defined as fA(e) = Ae mod q, with domain Dn = {e ∈
Zm : ||e|| ≤ s

√
m} and range Rn = Znq . The input distribution is DZm,s,

which can be sampled using SampleDom from [GPV08], with the standard
basis of Zm.

– The trapdoor inversion algorithm SamplePre(A,T, s,u) samples from f−1A (u)
as follows: it computes via linear algebra t ∈ Zm such that At = u mod q.
Then, samples v ∼ DΛ⊥,s,−t using the trapdoor T and output e = t + v.

Theorem 5 ([GPV08]). The algorithms described above give a collection of
collision-resistant PSFs if SISq,n,m,2s

√
m is hard.

B Proof of Lattice Construction

B.1 Preliminaries

Before presenting the proof of Theorem 2, we need to adapt the definition of
“window” from Lemma 1 to the leakage profile under consideration here.

Lemma 11. Let A be a valid adversary that produces a forgery in epoch 0 <
e∗ < emax in the US-EUF-CMA experiment with respect to the weakened leakage
profile of USGPV described in Sec. 4.3, then there exists a maximum integer 0 <
e− ≤ e∗ and a minimum integer e∗ < e+ ≤ emax s.t. A

1) does not obtain the token ∆e− ,
2) obtains no secret key ske for all e− ≤ e < e+, and
3) can obtain all tokens ∆e for e− < e < e+,

from the queries made to the oracles, given the leakage profile. Subsequently, we
often denote the interval [e−, e+[as the window.

The proof of the above lemma is identical to the one for Lemma 1, as far as
e− is concerned. Regarding e+, the unidirectionality of the USGPV construction
implies that, for any epoch e, the knowledge of ske alone allows to obtain ∆e,
hence property 1) has to be changed accordingly, i.e., we do not require any
more that the adversary A does not obtain ∆e+ .

37

B.2 Proof of Theorem 2

We show now that, if there exists an adversary A that breaks the security as
defined in Definition 11 with probability ε, then it can be used to break the
underlying SISn,m,q,2B assumption with probability < e2max(ε+ negl(λ)), which
suffices to prove the theorem. The reduction is invoked on an instance of the SIS
assumption, namely A∗ ∈ Zn×mq , and is asked to return a solution e ∈ Zmq , such
that A∗ · e = 0 mod q and 0 6= ||e|| < 2B. We again proceed via a sequence of
games.

Game 0. This is the experiment Expus-euf-cma
US,A (λ, n).

Game 1. This is like the previous game with the exception that we guess the
left side e− of the window, and the epoch e∗ for which A outputs the forgery
and abort if our guess is incorrect.

Game 2. This game is like the previous one, but with the following differences.
We embed the SIS instance A∗ as the public key of the forgery period e∗,
i.e., we set pke∗ := A∗. We keep track of the queried hashes using a list
H, which is initially empty, and simulate the next, corrupt, hash, sign and
update oracles as follows:

- For call to Next′ in epoch e ∈ {e−, · · · , e∗ − 1} we proceed as follow. As
already stated, the public key of epoch e∗ is given by the SIS challenge A∗.
We then sample ∆e∗ ← DZm×m

s
and set pke∗−1 := pke∗ ·∆e∗ . We iterate

this process till we obtain pke− (we implicitly set ∆e− = ⊥).
- For each call to the Next′ oracle for epoch e ∈ {1, . . . , e−−1}∪{e∗, . . . , emax−

1}, we run (ske+1, pke+1) ← Σ.Gen(1λ) to obtain an independent key for
epoch e+1. The update token ∆e+1 can be computed as in the real scheme
by knowing only ske+1 (and pke). In this way we can respond to all Next′,
Update′ and Corrupt queries at epoch e.

- Whenever the adversary queries H on (M, t), we check if (M, t, ·) is in
H. If so, we return y such that (M, t,y) ∈ H. Otherwise, we let τe∗,M,t ←
SampleDom(1n), add (M, t,y) toH, where y = A∗·τe∗,M,t, add (e∗,M, σ =
(τe∗,M,t, t)) to S ′ and return y to the adversary.

- Whenever the adversary queries the signing oracle Sig′ on message M at
epoch e, we sample a random tag t←$ {0, 1}λ and proceed as follows:
• if (e,M, σ) is already in S ′ for some σ = (τ, t), we return σ to the

adversary;
• else if (·,M, σ) is in S ′ with σ = (·, t), then we abort;
• else if e ∈ {e−, . . . , e∗}, we let τe,M,t ← SampleDom(1n), add (M, t,y =
pke · τe,M,t) to H and (e,M, σ = (t, τe,M,t)) to S ′ and return it to the
adversary.

• else, we sample τe∗,M,t ← SampleDom(1n) and add (M, t,y = pk∗e ·
τe∗,M,t) to H. Then, using ske, we compute τe,M,t such that pke ·
τe,M,t = y (= pk∗e · τe∗,M,t), as in the real scheme, add (e,M, σ :=
(τe,M,t, t)) to S ′ and return σ to the adversary.

- Whenever the adversary queries the update oracle Update′ for signature
(M,σe−1), at epoch e − 1 6= e− − 1 (recall that e− − 1 is the only epoch

38

for which the adversary is not allowed to query the updated oracle by the
given weakened leakage profile), parse σe−1 = (τe−1,M,t, t) and verify that
σe−1 is a valid signature for message M with “salt” t at epoch e− 1, i.e.,
that pke−1 ·τe−1,M,t = y for (M, t,y) ∈ H, and that ||τe−1,M,t|| ≤ B. If any
of these checks does not pass, then return ⊥. Otherwise, add (e,M, σe :=
(τe,M,t := ∆e−1 · τe−1,M,t, t)) to S ′ and return σe to the adversary (notice
that this time the updated signatures are only added to the list U ′: we
have to distinguish between updated and fresh signatures as they are not
indistinguishable. We need to maintain a list with only the fresh signatures
in order to be able to answer the adversary’s queries to the Sig′ oracle
consistently with the real game).

Now, let us analyze the transitions:

Lemma 12. For any adversary A it holds that(
1

emax(emax − 1)

)
Pr [SA,0] ≤ Pr [SA,1] .

Proof. We guess the window and the forgery epoch by simply sampling e− ←
{0, ..., emax − 1} and e∗ ← {e−, ..., emax} uniformly at random. Thus, this guess
is correct with probability at least 1

emax(emax−1) and if the guess turns out to be

wrong, we abort. Note that such a window always exists for a valid adversary A
due to Lemma 11. ut

Lemma 13. For any adversary A it holds that

|Pr [SA,1]− Pr [SA,2]| ≤ (Qhash +Qsign)2

2k
.

Proof. We observe that due to its validity, by Lemma 11, the adversary A

1) does not obtain the token ∆e− ,
2) obtains no secret key ske for all e− ≤ e < e+, and
3) can obtain all tokens ∆e for e− < e < e+,

from the queries made to the oracles, given the leakage profile. Note that due
to 1) we know that there implicitly exists a token mapping keys and signatures
from e− − 1 to e−, (but we do not need to know it since the adversary will
never query the update oracle in epoch e− − 1). By Theorem 4 and Lemma 9,
all public keys and tokens given to A are distributed as expected. The only
difference between Game 2 and Game 1 occurs if we abort during a query to
Sig′. Such abort occurs when a newly sampled salt t for a message M is equal to
an already used salt for the same message. Disregarding the associated message
M , we can bound the salt’s collision probability by (Qhash +Qsign)2/2k, where
k is the salt’s bit-length and Qhash and Qsign represent the total hash and sign
queries respectively, made by the adversary. This proves the claim. ut

Lemma 14. For any adversary A it holds that

|Pr [SA,2]− SISAdvq,n,m,2B [A]| ≤ negl(λ).

39

Proof. Suppose A outputs a valid forgery (e∗,M∗, σ∗). Because σ∗ = (τ∗, t∗) is
a valid forgery of M∗ at epoch e∗, we have

pke∗τ
∗ = A∗τ∗ = H(M∗ || t∗) mod q, and 0 6= ||τ∗|| ≤ B.

It remains to check that τ∗ 6= τe∗,M∗,t∗ (the value of the random oracle on
input (M∗||t∗) must be know by the adversary, and hence, present in the list
H). Moreover, since the forgery produces by the adversary is valid, it must be
the case that A did not obtain any signature for the message M∗ with salt t∗

for epochs e ∈ {e−, . . . , e∗}. If that is the case, then we have a solution to the
SISq,n,m,2B problem as

A∗(τ∗ − τe∗,M∗,t∗) = 0 mod q, and 0 6= ||τ∗ − τe∗,M∗,t∗ || ≤ 2B.

Therefore we have that:

– A received H(M∗||t∗) = pk∗e · τe∗,M∗,t∗ for τe∗,M∗,t∗ ← SampleDom(1n) but
not τe∗,M∗,t∗ . By the preimage min-entropy property of the hash family (Defi-
nition 15 and Theorem 5), the min-entropy of τe∗,M∗,t∗ given fpke∗ (τe∗,M∗,t∗)
is at least ω(log n). Thus the signature τ∗ 6= τe∗,M∗,t∗ , except with negligible
probability 2−ω(logn).

This concludes the proof. ut

C Proof of Theorem 3

Proof (Sketch). We give the proof sketch here for the almost KH-PRF case, as
the case of KH-PRF with perfect correctness follows trivially without the addi-
tional complications that arise due to the handling of the error terms and noisy
equality check. First we observe that the correctness follows straightforwardly
from the construction. Secondly, in our construction the errors induced by the
almost KH-PRF are epoch-dependent. More precisely, for any message M ∈M,
key and token ke, ∆e ∈ K, we have that σe = F (ke,M) +

∑e
i=2 χi and σ′e =

σe−1 + F (∆e,M) with χi←$Dχ are identically distributed, as well as k′←$K
and ke ⊕ ∆ with ∆←$K are identically distributed and latter always yields a
valid key in K. Consequently, for the challenge tag σb the outputs of UMAC.Sig
and UMAC.UpdateCh are identically distributed and Advumac-uu-cma

UMAC,A (λ, n) = 0.
We can prove the UMAC-EUF-CMA security by relying on the EUF-CMA

security of the underlying (approximate) KH-MACΠ obtained from the (almost)
KH-PRF F . Though, we note that in order for the reduction to go through we
require that the approximate KH-MAC Π has a verification bound that is at
least twice that of the UMAC, i.e., δΠ ≥ 2δUMAC. The reason for this is that later
when we do the backwards adaption using the key-homomorphism property of
the PRF we increase the error term with every adaption. However, the error can
increase at most by δUMAC (assuming the forgery happens at the last epoch and
needs to be backwards adapted to the first epoch), hence, setting δΠ = 2δUMAC

suffices for our security proof.

40

Then, we proceed exactly as in the proof of Theorem 1 to guess our window
[e−, e+[and associate an EUF-CMA of an (approximate) KH-MAC Π to the
target epoch e∗ (also we can use the optimization using the key insulation tech-
nique from Klooß et al. [KLR19] and associate it to e−). Outside of the window,
i.e., for epochs up to e− − 1 and starting from e+ upwards, we will behave in
our simulation as in the original game and in particular choose and know all
secret keys and update tokens. Again, for all epochs inside the window we do
not know the secret keys associated to the epochs, but they are implicitly set
by choosing for every epoch ei in the window a random token ∆ei as in the real
Next algorithm. Thus, the secret keys are implicitly set as kei = kei−1

⊕∆ei for
e− < ei < e+. Now for any Sig′ query for message M and epoch ei within the
window, we query M to the EUF-CMA challenger of Π associated to e−, and
then, using the key-homomorphism property of the underlying PRF we adapt in
the forwards direction to obtain the tag for M in epoch ei within the window,
and furthermore, we add additional error terms sampled from Dχ to make the
error in the tag proportional to the epoch ei. Also, for any query to Ver′ within
the window we use the same strategy and call Ver of our EUF-CMA challenger.
Note that due to the increased error the distribution of tags from Sig or those
adapted to the respective epoch only differ by at most δUMAC, and hence, the
answers from the Ver′ oracle are consistent. The Update′ oracle is performed
as in the original game for all the epochs where the update token is knows.
For the remaining epochs, i.e., e− and e+, when asked to update (M,σe−−1)
(or (M,σe+−1), respectively), we query M to the EUF-CMA challenger of Π
associated to e− (or produce a fresh signature using ke+ , respectively), adjust
the error term in the output tag to match the epoch e− (or e+, respectively),
and return it to the adversary. Again by the added artificial error terms this is
indistinguishable. Now if A outputs a valid forgery (M∗, σ∗e∗) for epoch e∗, if
e∗ = e− we can directly output it. Otherwise, we use the key-homomorphism
property of the underlying PRF to adapt the forgery backwards into epoch e−

and output it. Note that in any case a valid forgery output by A represents a
valid forgery for the challenger of Π, as validity guarantees that we have never
queried M∗ throughout the game for any epoch inside the window. Furthermore,
the valid forgery needs to pass the verification with bound δUMAC, and the back-
wards adaption can increase the error term of the forged tag by at most another
δUMAC. However, since we set the verification bound of Π to δΠ = 2δUMAC, it
means that the backwards adapted forgery is a valid forgery for the challenger
of Π as well. This concludes the proof. ut

41

	Updatable Signatures and Message Authentication Codes

