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Abstract. Transferable e-cash is the most faithful digital analog of
physical cash, as it allows users to transfer coins between them in isola-
tion, that is, without interacting with a bank or a “ledger”. Appropriate
protection of user privacy and, at the same time, providing means to
trace fraudulent behavior (double-spending of coins) have made instan-
tiating the concept notoriously hard. Baldimtsi et al. (PKC’15) gave a
first instantiation, but, as it relies on a powerful cryptographic primitive,
the scheme is not practical. We also point out a flaw in their scheme.

In this paper we revisit the model for transferable e-cash and propose
simpler yet stronger security definitions. We then provide the first con-
crete construction, based on bilinear groups, give rigorous proofs that it
satisfies our model, and analyze its efficiency in detail.

Keywords: Transferable/offline e-cash, strong anonymity.

1 Introduction

Contrary to so-called “crypto”-currencies like Bitcoin [Nak08], a central ambition
of the predating cryptographic e-cash has been user anonymity. Introduced by
Chaum [Cha83], the goal was to realize a digital analog of physical cash, which
allows users to pay without revealing their identity; and there has been a long line
of research since [CFN88, Bra93, CHL05, BCKL09, FHY13, CPST16, BPS19]
(to name only a few). In e-cash, a bank issues electronic coins to users, who can
then spend them with merchants, who in turn can deposit them at the bank to
get their account credited. User privacy should be protected in that not even
the bank can link the withdrawing of a coin to its spending.

The main difference to the physical world is that digital coins can easily
be duplicated, and therefore a so-called “double-spending” of a coin must be
prevented. This can be readily achieved when all actors are online and connected
(as with cryptocurrencies), since every spending is broadcast and payees simply
refuse a coin that has already been spent.

Even in “anonymous” cryptocurrencies like Monero [vS13], which now also
uses confidential transactions [Max15], or systems based on the Zerocoin/-cash
[MGGR13, BCG+14] protocol, like Zcash [Zec20], or on Mimblewimble [Poe16,



FOS19], users must be connected when they accept a payment, in order to pre-
vent double-spending.

When users are allowed to spend coins to other users (or merchants) without
continuous connectivity, then double-spending cannot be prevented; however,
starting with [CFN88], ingenious methods have been devised in order to reveal
a double-spender’s identity while guaranteeing the privacy of all honest users.

Transferable e-cash. In all traditional e-cash schemes, including such “offline”
e-cash, once a coin is spent (transferred) after withdrawal, it must be deposited
at the bank by the payee. A more powerful concept, and much more faithful to
physical e-cash, is transferable e-cash, which allows users to re-transfer obtained
coins, while at the same time remaining offline. Note that cryptocurrencies are
inherently online, and every transfer of a coin could be seen as depositing a coin
(and marking it spent) and re-issuing a new one (in the ledger).

Transferable e-cash was first proposed by Okamoto and Ohta [OO89, OO91],
but the constructions only guaranteed very weak forms of anonymity. It was
then shown [CP93] that unbounded adversaries can recognize coins they owned
before and that a coin must grow in size with every transfer (since information
about potential double-spenders needs to be encoded in it).

While other schemes [Bla08, CGT08] only achieve unsatisfactory anonymity
notions, Canard and Gouget [CG08] define a stronger notion (which we call coin
transparency): it requires that a (polynomial-time) adversary cannot recognize
a coin he has already owned when it is later given back to him. This is not
achieved by physical cash, as banknotes can be marked by users (or the bank);
however, if an e-cash scheme allowed a merchant to identify users by tracing
the coins given out as change, then it would violate the central claim of e-
cash, namely anonymous payments. (Anonymous cryptocurrencies also satisfy a
notion analogous to coin transparency.) A limitation of this notion is that the
bank (more specifically, the part dealing with deposits) must be honest, as it
needs to link occurrences of the same coin when detecting double-spending.

Prior schemes. The first scheme achieving coin transparency [CG08] was com-
pletely impractical, as at every transfer, the payer sends a proof of (a proof of
(. . . )) a coin that she received earlier. The first practical scheme was given by
Fuchsbauer et al. [FPV09], but it makes unacceptable compromises elsewhere:
when a double-spending is detected, all (even innocent) users up to the double-
spender must give up their anonymity.

Blazy et al. [BCF+11] overcome this problem and propose a scheme that
assumes a trusted party (called the “judge”) that can trace all coins and users
in the system and has to actively intervene in order to identify double-spenders.
The scheme thus reneges on the promise that users remain anonymous as long
as they follow the protocol. Moreover, their proof of anonymity was flawed, as
shown by Baldimtsi et al. [BCFK15].

Despite all its problems, Blazy et al.’s [BCF+11] scheme, which elegantly
combined randomizable non-interactive zero-knowledge (NIZK) proofs [BCC+09]
and commuting signatures [Fuc11], serves as starting point for our construction.
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In their scheme a coin consists of a signature by the bank and at every transfer
the spender adds her own signature (thereby committing to her spending). To
achieve anonymity, these signatures are not given in the clear; instead, coins are
NIZK proofs of knowledge of signatures. Since the proofs can be rerandomized
(that is, from a proof, anyone can produce a new proof of the same statement
that looks unrelated to the original one), coins can change appearance after ev-
ery transfer. Users will thus not recognize a coin when they see it again later,
that is, the scheme satisfies coin transparency.

Baldimtsi et al. [BCFK15] give an instantiation that avoids the “judge” by
using a double-spending-tracing mechanism from classical offline e-cash. They
add “tags” to the coin that hide the identity of the owner of the coin, except
when she spends the coin twice, then the bank can from two such tags compute
the user’s identity. Users must also include signatures in the coin during transfer,
which represent irrefutable proof of double-spending.

The main drawback of their scheme is efficiency. They rely on the concept
of malleable signatures [CKLM14], a generalization of digital signatures, where
a signature on a message m can be transformed into a signature on a message
T (m) for any allowed transformation T . Simulation unforgeability requires that
from a signature one can extract all transformations it has undergone (even when
the adversary that created it has seen “simulated” signatures).

In their scheme [BCFK15] a coin is a malleable signature computed by the
bank, which can be transformed by a user if she correctly encodes her identity
in a double-spending tag, adds an encryption (under the bank’s public key) to
it and randomizes all encryptions of previous tags cointained in the coin.

None of the previous schemes explicitly considers denominations of coins
(and neither do we). This is because efficient (“compact”) withdrawing and
spending can be easily achieved if the bank associates different keys to different
denominations (since giving change is readily supported in transferable e-cash).
Note that, in contrast to cryptocurrencies, where every transaction is publicly
posted, hiding the amount of a payment is meaningless in transferable e-cash.

Our contribution. Our contribution is two-fold:

Security model. We revisit the formal model for transferable e-cash, starting
from [BCFK15], whose model was a refined version of earlier ones. We first give
a definition of correctness, which was lacking in previous works. We then exhibit
attacks against users who follow the protocol, against which previous models did
not protect:

– When a user receives a coin (that is, the protocol accepts the received coin),
then previous models did not guarantee that this coin will be accepted by
other (honest) users when transferred. An adversary could thus send a mal-
formed coin to a user, which the latter accepts but can then not spend.

– There were also no guarantees against a malicious bank which at coin deposit
refuses to credit the user’s account (e.g., by claiming that the coin was invalid
or had been double-spent). In our model, when the bank refuses a coin, it
must accuse a user of double-spending and provide a proof for this.
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We then simplify the anonymity definitions, which in earlier version had
been cluttered with numerous oracles the adversary has access to, and for which
the intuitive notion that they were formalizing was hard to grasp. While our
definitions are simpler, they are stronger in that they imply previous definitions
(except for the previous notion of “spend-then-receive (StR) anonymity”, whose
existing formalizations we argue are not relevant in practice).

We also show that the proof of “StR anonymity” (a notion similar to coin
transparency) of the scheme from [BCFK15] is flawed and that it only satisfies
a weakening of the notion (Sect. 3.2).

Instantiation. Our main contribution is a transferable e-cash scheme, which we
prove satisfies our security model, and which is much more efficient than the
only previous realization [BCFK15]. Unfortunately, the authors do not provide
concrete numbers, as they use malleable signatures in a blackbox way. These sig-
natures are the main source of inefficiency, due to their generality and the strong
security notions in the spirit of simulation-sound extractability, requiring that a
coin (i.e., a malleable signature) stores every transformation it has undergone.

In contrast, we give a direct construction from the following primitives:
Groth-Sahai proofs [GS08], which are randomizable; structure-preserving sig-
natures [AFG+10], which are compatible with GS proofs; and rerandomizable
encryption satisfying RCCA-security [CKN03] (the corresponding variant of
CCA security, see Fig. 6). While we use signature schemes from the literature
[AGHO11, Fuc11], we construct a new RCCA-secure encryption scheme that is
tailored to our scheme, basing it on prior work [LPQ17]. Finally, our scheme also
uses the (efficient) double-spending tags used previously [BCFK15].

Due to the existence of an omnipotent “judge”, no such tags were required
by Blazy et al. [BCF+11]. Interestingly, although we do not assume any active
trusted parties, we achieve a comparable efficiency, which is a result of realizing
the full potential of the tags: previously [BCFK15], they had only served to
encode a user’s identity; but, as we show, they can in addition be used to commit
the user. This allows us, contrary to all previous instantiations, to completely
forgo the inclusion of user signatures in the coins, which considerably reduces
their size. For a more detailed (informal) overview of our scheme see Sect. 5.1.

In terms of efficiency, our coins grow by around 100 elements from a bilinear
group per transfer (see table on p. 30). We view this as practical by current stan-
dards, especially in view of numbers for deployed schemes: e.g., the parameters
for Zcash consist of several 100 000 bilinear-group elements [Zec20].

2 Definition of transferable e-cash

The syntax and security definitions we present in the following are refinements
of earlier work [CG08, BCF+11, BCFK15].

2.1 Algorithms and protocols

An e-cash scheme is set up by running ParamGen and the bank generating its key
pair via BKeyGen. The bank maintains a list of users UL and a list of deposited
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coins DCL. Users run the protocol Register with the bank to obtain their secret
key, and their public keys are added to UL. With her secret key a user can run
Withdraw with the bank to obtain coins, which she can transfer to others via the
protocol Spend.

Spend is also used when a user deposits a coin at the bank. After receiving a
coin, the bank runs CheckDS (for “double-spending”) on it and the previously
deposited coins in DCL, which determines whether to accept the coin. If so, it is
added to DCL; if not (in case of double-spending), CheckDS returns the public
key of the accused user and a proof Π, which can be verified using VfyGuilt.

ParamGen(1λ), on input the security parameter λ in unary, outputs public pa-
rameters par, which are an implicit input to all of the following algorithms.

BKeyGen() is run by the bank B and outputs its public key pkB and its secret
key skB = (skW , skD, skCK), where skW is used to issue coins in Withdraw
and to register users in Register; skD is used as the secret key of the receiver
when coins are deposited via Spend; and skCK is used for CheckDS.

Register〈B(skW),U(pkB)〉 is a protocol between the bank and a user. The user
obtains a secret key sk and the bank gets pk, which it adds to UL. In case
of error, they both obtain ⊥.

Withdraw〈B(skW),U(skU ,pkB)〉 is run between the bank and a user, who outputs
a coin c (or ⊥), while the bank outputs ok (in which case it debits the user’s
account) or ⊥.

Spend〈U(c, sk,pkB),U ′(sk′,pkB)〉 is run between two users and lets U spend a
coin c to U ′ (who could be the bank). U ′ outputs a coin c′ (or ⊥), while U
outputs ok (or ⊥).

CheckDS(skCK,UL,DCL, c), run by the bank, takes as input its checking key,
the lists of registered users UL and of deposited coins DCL and a coin c. It
outputs an updated list DCL (when the coin is accepted) or a user public
key pkU and an incrimination proof Π.

VfyGuilt(pkU , Π) can be executed by anyone. It takes a user public key and an
incrimination proof and returns 1 (acceptance of Π) or 0 (rejection).

Note that we define a transferable e-cash scheme as stateless, in that there is
no state information shared between the algorithms. A withdrawn coin, whether
it was the first or the n-th coin issues to a specific user, is always distributed
the same. Moreover, a received coin will only depend on the spent coin (and not
on other spent or received coins). Thus, the bank and the users need not store
anything about past transactions for transfer; the coin itself must be sufficient.

In particular, the bank can separate withdrawing from depositing, in that
CheckDS, used during deposit, need not be aware of the withdrawn coins.

2.2 Correctness properties

These properties were not stated in previous models. They are important in that
they preclude schemes that satisfy security notions by not doing anything.

Let par be an output of ParamGen(1λ) and (skB = (skW , skD, skCK),pkB) be
output by BKeyGen(par). Then the following holds:
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– none of the outputs is ⊥;
– any execution of Register〈B(skW),U(pkB)〉 yields output pk for B and sk

for U .

Further, let sk and sk′ be two user outputs of Register; then:

– any execution of Withdraw〈B(skW),U(sk,pkB)〉 yields ok for B and c for U ;
– in an execution of Spend〈U(c, sk,pkB),U ′(sk′,pkB)〉, no party outputs ⊥;
– skD works as a user secret key sk′.

(Note that correctness of CheckDS and VfyGuilt is implied by the security notions
below.)

2.3 Security definitions

Global variables. In our security games, we store all information about users
and their keys in the user list UL. Its entries are of the form (pki, ski,udsi),
where udsi indicates how many times user Ui has double-spent.

In the coin list CL, we keep information about the coins created in the system.
For each withdrawn or spent coin c, we store a tuple (owner, c, cds, origin), where
owner stores the index i of the user who withdrew or received the coin (coins
withdrawn or received by the adversary are not stored). We also include cds,
which counts how often this specific instance of the coin has been spent. We set
origin to “B” if the coin was issued by the honest bank and to “A” if it originates
from the adversary; if the coin was originally spent by the challenger itself, we
store a pointer indicating which original coin this transferred coin corresponds
to. Finally, we maintain a list of deposited coins DCL.

Oracles. We now define oracles used in the security definitions, which differ
depending on whether the adversary impersonates a corrupt bank or users. If
during the oracle execution an algorithm fails (i.e., it outputs ⊥) then the oracle
also stops. Otherwise the call to the oracle is considered successful; a successful
deposit oracle call must also not detect any double-spending.

Registration and corruption of users. The adversary can instruct the creation of
honest users and either play the role of the bank during registration, or passively
observe registration. It can moreover “spy” on users, meaning it can learn the
user’s secret key. This will strengthen yet simplify our anonymity games com-
pared to [BCFK15], where once the adversary had learned the secret key of a user
(by “corrupting” her), the user could not be a challenge user in the anonymity
games anymore (yielding selfless anonymity, while we achieve full anonymity).

BRegist() plays the bank side of Register and interacts with A. If successful, it
adds (pk,⊥,uds = 0) to UL (where uds is the number of double-spends).

URegist() plays the user side of the Register protocol when the bank is controlled
by the adversary. Upon successful execution, it adds (pk, sk, 0) to UL.

Regist() plays both parties in the Register protocol and adds (pk, sk, 0) to UL.

Spy(i), for i ≤ |UL|, returns user i’s secret key ski.
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Withdrawal oracles. The adversary can either withdraw a coin from the bank,
play the role of the bank, or passively observe a withdrawal.

BWith() plays the bank side of the Withdraw protocol. Coins withdrawn by A
(and thus unknown to the experiment) are not added to the coin list CL.

UWith(i) plays user i in Withdraw when the bank is controlled by the adversary.
Upon obtaining a coin c, it adds (owner= i, c, cds=0, origin=A) to CL.

With(i) simulates a Withdraw protocol execution playing both B and user i. It
adds (owner= i, c, cds=0, origin=B) to CL.

Spend and deposit oracles.

Spd(j) spends the coin from the j-th entry (ownerj , cj , cdsj , originj) in CL to
A, who could be impersonating a user, or the bank during a deposit. The
oracle plays U in the Spend protocol with secret key skownerj . It increments
the coin spend counter cdsj by 1. If afterwards cdsj > 1, then the owner’s
double-spending counter udsownerj is incremented by 1.

Rcv(i) makes honest user i receive a coin from A. The oracle plays U ′ with user
i’s secret key in the Spend protocol. It adds a new entry (owner= i, c, cds=0,
origin=A) to CL.

S&R(j, i) spends the j-th coin in CL to user i. It runs (ok, c) ← Spend〈U(cj ,
skownerj ,pkB),U ′(ski,pkB)〉 and adds (owner = i, c, cds = 0,pointer = j) to
CL. It increments the coin spend counter cdsj by 1. If afterwards cdsj > 1,
then udsownerj is incremented by 1.

BDepo() lets A deposit a coin. It runs U ′ in Spend using the bank’s secret key skD
with the adversary playing U . If successful, it runs CheckDS on the received
coin and updates DCL accordingly; else it outputs a pair (pk, Π).

Depo(j), the honest deposit oracle, runs Spend between the owner of the j-th
coin in CL and an honest bank. If successful, it increments cdsj by 1; if
afterwards cdsj > 1, it also increments udsownerj . It runs CheckDS on the
received coin and either updates DCL or returns a pair

(
pk, Π

)
.

(Note that no oracle “UDepo” is required, since Spd lets the adversarial bank
have an honest user deposit a coin.)

2.4 Economic properties

We distinguish two types of security properties of transferable e-cash schemes.
Besides anonymity notions, economic properties ensure that neither the bank
nor users will incur an economic loss when participating in the system.

The following property was not required in any previous formalization of
transferable e-cash in the literature and is analogous the property clearing de-
fined for classical e-cash [BPS19].
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ExptsoundA (λ):

par← ParamGen(1λ); pkB ← A(par)
(b, i1, i2)← AURegist,Spy

If b = 0 then run UWith(i1) with A
Else run Rcv(i1) with A
If this outputs ⊥ then return 0
Run S&R(1, i2); if one party outputs ⊥ then return 1
Return 0

Fig. 1. Game for soundness (protecting users from financial loss)

Soundness. If an honest user accepted a coin during a withdrawal or a transfer,
then she is guaranteed that the coin will be accepted by others, either honest
users when transferring, or the bank when depositing. The game is formalized
in Fig. 1 where i2 plays the role of the receiver of a spending or the bank. For
convenience, we define probabilistic polynomial-time (PPT) adversaries A to be
stateful in all our security games.

Definition 1 (Soundness). A transferable e-cash system is sound if for any
PPT A, we have Advsound

A (λ) := Pr[ExptsoundA (λ) = 1] is negligible in λ.

Unforgeability. This notion covers both unforgeability and user identification
from [BCFK15] (which were not consistent as we explain in Sect. 3.2). It protects
the bank, ensuring that no (coalition of) users can spend more coins than the
number of coins they withdrew.

Unforgeability also guarantees that whenever a coin is deposited and refused
by CheckDS, the latter also returns the identity of a registered user, who is ac-
cused of double-spending. (Exculpability, below, ensures that no innocent user
will be accused.) The game is formalized in Fig. 2 and lets the adversary imper-
sonate all users.

Definition 2 (Unforgeability). A transferable e-cash system is unforgeable if
Advunforg

A (λ) := Pr[ExptunforgA (λ) = 1] is negligible in λ for any PPT A.

ExptunforgA (λ):

par← ParamGen(1λ); (skB, pkB)← BKeyGen(par)
ABRegist,BWith,BDepo (par, pkB)
If in a BDepo call, CheckDS does not return a coin list:

Return 1 if any of the following hold:
– CheckDS outputs ⊥
– CheckDS outputs (pk, Π) and VfyGuilt (pk, Π) = 0
– CheckDS outputs (pk, Π) and pk 6∈ UL

Let qW be the number of calls to BWith

If qW < |DCL|, then return 1
Return 0

Fig. 2. Game for unforgeability (protecting the bank from financial loss)
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ExptexculA (λ):

par← ParamGen(1λ); pkB ← A (par)

(i∗, Π∗)← AURegist,Spy,UWith,Rcv,Spd,S&R,UDepo (par)
Return 1 if all of the following hold:

– VfyGuilt(pki∗ , Π
∗) = 1

– There was no call Spy(i∗)
– udsi∗ = 0

Return 0

Fig. 3. Game for exculpability (protecting honest users from accusation)

Exculpability. This notion, a.k.a. non-frameability, ensures that the bank, even
when colluding with malicious users, cannot wrongly accuse an honest user of
double-spending. Specifically, it guarantees that an adversarial bank cannot pro-
duce a double-spending proof Π∗ that verifies for the public key of a user i∗ that
has never double-spent. The game is formalized as in Fig. 3.

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
Advexcul

A (λ) := Pr[ExptexculA (λ) = 1] is negligible in λ for any PPT A.

2.5 Anonymity properties

Instead of following previous anonymity notions [BCF+11, BCFK15], we intro-
duce new ones which clearly distinguish between the adversary’s capabilities; in
particular, whether it is able to detect double-spending. When the adversary im-
personates the bank, we consider two cases: user anonymity and coin anonymity
(and explain why this distinction is necessary).

As transferred coins necessarily grow in size [CP93], we can only guarantee
indistinguishability of comparable coins. We therefore define comp(c1, c2) = 1 iff
size (c1) = size (c2), where size(c) = 1 after c was withdrawn and it increases
by 1 after each transfer.

Coin anonymity. This notion is closest to (and implies) the anonymity notion
of classical e-cash: an adversary, who also impersonates the bank, issues two coins
to the challenger and when she later receives them (via a deposit in classical e-
cash), she should not be able to associate them to their issuances. In transferable
e-cash, we allow the adversary to determine two series of honest users via which
the coins are respectively transfered before being given back to the adversary.

The experiment is specified on the left of Fig. 4: users i(0)0 and i(1)0 withdraw
a coin from the adversarial bank, user i(0)0 passes it to i(0)1 , who passes it to i(0)2 ,
etc., In the end, the last users of the two chains spend the coins to the adversary,
but the order in which this happens depends on a bit b that parametrizes the
game, and which the adversary must decide.

User anonymity. Coin anonymity required that users who transfer the coin are
honest. If one of the users through which the coin passes colluded with the bank,
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Exptc-anA,b (λ):

par← ParamGen(1λ)
pkB ← A(par)

i
(0)
0 ← AURegist,Spy; run UWith(i

(0)
0 ) with A

i
(1)
0 ← AURegist,Spy; run UWith(i

(1)
0 ) with A(

(i
(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)
← AURegist,Spy

If k0 6= k1 then return 0
For j = 1, . . . , k0:

Run S&R
(
2j − 1, i

(0)
j

)
Run S&R

(
2j, i

(1)
j

)
Run Spd(2k0 + 1 + b) with A
Run Spd(2k0 + 2− b) with A
b∗ ← A ; return b∗

Exptu-anA,b (λ):

par← ParamGen(1λ)
pkB ← A (par)

(i
(0)
0 , i

(1)
0 )← AURegist,Spy

Run Rcv(ib) with A(
(i

(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)

← AURegist,Spy

If k0 6= k1 then return 0
For j = 1, . . . , k0:

Run S&R
(
j, i

(b)
j

)
Run Spd(k0 + 1) with A
b∗ ← A ; return b∗

Fig. 4. Games for coin and user anonymity (protecting users from a malicious bank)

there would be a trivial attack: after receiving the two challenge coins, the bank
simulates the deposit of one of them and the deposit of the coin intercepted by
the colluding user. If a double-spending is detected, it knows that the received
coin corresponds to the sequence of users which the colluder was part of.

Since double-spending detection is an essential feature of e-cash, attacks
of this kind are impossible to prevent. However, we still want to guarantee
that, while the bank can trace coins, the involved users remain anonymous.
We formalize this in the game on the right of Fig. 4, where, in contrast to
coin anonymity, there is only one coin and the adversary must distinguish the
sequence of users through which the coin passes before returning to her. In con-
trast to coin anonymity, we now allow the coin to already have some “history”,
rather than being freshly withdrawn.

Coin transparency. This is in some sense the strongest anonymity notion and
it implies that a user that transfers a coin cannot recognize it if she receives it
again. As the bank can necessarily trace coins (for double-spending detection),
it is assumed to be honest for this notion. Actually, only the detection key skCK
must remain hidden from the adversary, while skW and skD can be given.

The game formalizing this notion, specified in Fig. 5, is analogous to coin
anonymity, except that the challenge coins are not freshly withdrawn; instead,
the adversary spends two coins of its choice to users of its choice, both are passed
through a sequence of users of the adversary’s choice and one of them is returned
to the adversary.

There is another trivial attack that we need to exclude: the adversary could
deposit the coin that is returned to him and one, say the first, of the coins
he initially transfered to an honest user. Now if the deposit does not succeed
because of double-spending, the adversary knows that it was the first coin that
was returned to him. Again, this attack is unavoidable due to the necessity of
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Exptc-trA,b (λ):

par← ParamGen(1λ); ((skW , skD, skCK), pkB)← BKeyGen(par)
DCL′ ← ∅ // lists the challenge coins
ctr← 0 // counts how often a challenge coin was deposited

i(0) ← AURegist,BDepo′,Spy (par, pkB, skW , skD)
// BDepo′ uses CheckDS′ (·, ·, ·, ·,DCL′) (see below) instead of CheckDS

Run Rcv(i(0)) with A; let c0 be the received coin stored in CL[1]
x0 ← CheckDS(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1 //c0 had been deposited
DCL′ ← CheckDS(skCK, ∅, ∅, c0) //add c0 to list of challenge coins

i(1) ← AURegist,BDepo,Spy

Run Rcv(i(1)) with A; let c1 be the received coin stored in CL[2]
x1 ← CheckDS(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1 //c1 had been deposited
If comp(c0, c1) 6= 1 then abort
x2 ← CheckDS(skCK, ∅,DCL′, c1) //add c1 to list of challenge coins
If x2 6= ⊥ then DCL′ ← x2 // (c1 could be a double-spending of c0)(
(i

(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)
← AURegist,BDepo′,Spy

If k0 6= k1 then abort

If (kb 6= 0) then run S&R
(
b+ 1, i

(b)
1

)
// spend coin cb to user i

(b)
1 . . .

For j = 2, . . . , k0: // . . . the received coin is placed in CL[3]

Run S&R
(
j + 1, i

(b)
j

)
// spend coins consecutively

Run Spd(k0 + 2) with A // and transfer it back to A
b∗ ← ABDepo′ ; return b∗

CheckDS′ (skCK,UL,DCL, c,DCL′): // used by BDepo′

x← CheckDS (skCK, ∅,DCL′, c)
If x = ⊥: // the deposited coin c is a double-spending of c0 or c1

ctr← ctr + 1
If ctr > 1 then abort

Output CheckDS (skCK, ∅,DCL, c)

Fig. 5. Game for coin transparency (protecting users from malicious users)

double-spending detection. It is a design choice that lies outside of our model
to implement sufficient deterrence from double-spending, so it would exceed the
utility of breaking anonymity.

This is the reason why the game aborts if the adversary deposits twice a
coin from the set of “challenge coins” (consisting of the two coins the adversary
transfers and the one it receives). The variable ctr counts how many times a
coin from this set was deposited. Note also that because A has skW , and can
therefore create unregistered users, we do not consider UL in this game.

Definition 4 (Anonymity). For x ∈ {c-an, u-an, c-tr} a transferable e-cash
scheme satisfies x if Advx

A(λ) := Pr[ExptxA,1 (λ) = 1]− Pr[ExptxA,0 (λ) = 1] is
negligible in λ for any PPT adversary A.
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3 Comparison with previous work

3.1 Model comparison

In order to justify our new model, we start with discussing a security vulnera-
bility of the previous model [BCFK15].

Issues with economical notions. As already pointed out in Sect. 2.2, the
correctness properties were missing in previous models.

No soundness guarantees. In none of the previous models was there a security
notion that guaranteed that an honest user could successfully transfer a coin to
another honest user or the bank, even if the coin was obtained regularly.

Fuzzy definition of “unsuccessful deposit”. Previous models defined a protocol
called “Deposit”, which we separated into an interactive (Spend) and a static
part (CheckDS). In their definition of unforgeability, the authors [BCFK15] use
the concept of “successful deposit”, which was not clearly defined, since an “un-
successful deposit” could mean one of the following:

– The bank detects a double-spending and provides a proof accusing the
cheater (who could be different from the depositer).

– The user did not follow the protocol (e.g., by sending a malformed coin), in
which case we cannot expect a proof of guilt from the bank.

– The user followed the protocol but using a coin that was double-spent (either
earlier or during deposit); however, the bank does not obtain a valid proof
of guilt and outputs ⊥.

Our interpretation of the definition in [BCFK15] is that it does not distinguish
the second and the third case. This is an issue, as the second case cannot be
avoided (and must be dealt with outside the model, e.g. by having users sign
their messages). But the third case should be avoided so the bank does not lose
money without being able to accuse the cheater. This is now guaranteed by our
unforgeability notion in Def. 2.

Simplification of anonymity definitions. We believe that our notions are
more intuitive and simpler (e.g. by reducing the number of oracles of previous
work). Our notions imply prior notions from the literature: we can prove that
the existence of an adversary in a game from a prior notion implies the existence
of an adversary in one of our games. (The general idea is to simulate most of the
oracles using the secret keys of the bank or users, which in our notions can be
obtained via the Spy oracle.) In particular, the implications are the following:

c-an⇒ OtR-fa and u-an⇒ StR*-fa

where OtR-fa is observe-then-receive full anonymity [CG08, BCF+11, BCFK15]
and StR*-fa is a variant of spend-then-receive full anonymity from [BCFK15].
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The earlier notion StR-fa [CG08, BCF+11] is similar to our coin trans-
parency c-tr, with the following differences: in StR-fa, when the adversary
deposits a coin, the bank provides a guilt proof when it can; and StR-fa lets
the adversary obtain user secret keys. Coin transparency would imply StR-fa if
CheckDS replaced its argument UL by ∅. This change is justified since (in both
StR-fa and c-tr) the adversary can create unregistered users (using skW), and
thus CheckDS could return ⊥ because it cannot accuse anyone in UL.

Moreover, no previous scheme, including [BCFK15] achieves StR-fa, as we
show next.

3.2 A flaw in a proof in BCFK15

The authors of [BCFK15] claim that their scheme satisfies StR-fa as defined in
[BCF+11] (after having discovered an error in the StR-fa proof of the scheme
of that paper). To achieve this anonymity notion (the most difficult one, as they
note), they use malleable signatures, which guarantee that whenever an adver-
sary, after obtaining simulated signatures, outputs a valid message/signature
pair (m,σ), it must have derived the pair from received signatures. Formally,
there exists an extractor that can extract a transformation from σ that links m
to the messages on which the adversary queried signatures.

In the game formalizing StR-fa [BCF+11] (analogously to Exptc-tr in Fig. 5)
the adversary receives skW , which formalizes the notion that the part of the bank
that issues coins can be corrupt. In their scheme [BCFK15], skW contains the
signing key for the malleable signatures. However, with this the adversary can
easily compute a fresh signature, and thus no extractor can recover a trans-
formation explaining the signed message. This shows that a scheme based on
malleable signatures only satisfies a weaker notion of StR-fa/c-tr, where all
parts of the bank must be honest.

In contrast, we prove that our scheme satisfies c-tr, and it can therefore be
seen as the first scheme to satisfy the “spirit” of StR-fa, which is captured by
our notion c-tr.

4 Primitives used in our construction

4.1 Bilinear groups

The building blocks of our scheme will be defined over a (Type-3, i.e., asymmet-

ric) bilinear group, which is a tuple Gr = (p,G, Ĝ,GT , e, g, ĝ), where G, Ĝ and

GT are groups of prime order p; 〈g〉 = G, 〈ĝ〉 = Ĝ, and e : G × Ĝ → GT is a
bilinear map (i.e., for all a, b ∈ Zp: e(ga, ĝb) = e(g, ĝ)ab) so that e(g, ĝ) generates
GT . We assume that the groups are discrete-log-hard and other computational
assumptions (DDH, CDH, SXDH, etc. defined in Appendix D) hold as well.
We assume that there exists an algorithm GrGen that, on input the security
parameter λ in unary, outputs the description of a bilinear group with p ≥ 2λ−1.
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4.2 Randomizable proofs of knowledge and signatures

Commit-and-prove proof systems. As coins must be unforgeable, at their
core lie digital signatures. To achieve anonymity, these must be hidden, which can
be achieved via non-interactive zero-knowledge (NIZK) proofs of knowledge; if
these proofs are re-randomizable, then they can not even be recognized by a past
owner. We will use Groth-Sahai NIZK proofs [GS08], which are randomizable
[FP09, BCC+09] and include commitments to the witnesses.

We let V be set of values that can be committed, C be the set of commitments,
R the randomness space and E the set of equations (containing equality) whose
satisfiability can be proved. We assume that V and R are groups. We will use
an extractable commitment scheme, which consists of the following algorithms:

C.Setup(Gr) takes as input a description of a bilinear group and returns a com-
mitment key ck, which implicitly defines the sets V, C,R and E .

C.ExSetup(Gr) returns an extraction key xk in addition to a commitment key ck.
C.SmSetup(Gr) returns a commitment key ck and a simulation trapdoor td.
C.Cm(ck, v, ρ), on input a key ck, a value v ∈ V and randomness ρ ∈ R, returns

a commitment in C.
C.ZCm(ck, ρ), used when simulating proofs, is defined as C.Cm(ck, 0V , ρ).
C.RdCm(ck, c, ρ) randomizes a commitment c to a fresh c′ using randomness ρ.
C.Extr(xk, c), on input extraction key xk and a commitment c, outputs a value

in V. (This is the only algorithm that might not be polynomial-time.)

We extend C.Cm to vectors in Vn: for M = (v1, . . . , vn) and ρ = (ρ1, . . . , ρn)
we define C.Cm(ck,M, ρ) :=

(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn)

)
and likewise

C.Extr(xk, (c1, . . . , cn)) :=
(
C.Extr(xk, c1), . . . ,C.Extr(xk, cn)

)
.

We now define a NIZK proof system that proves that committed values satisfy
given equations from E . Given a proof for commitments, the proof can be adapted
to a randomization (via C.RdCm) of the commitments using C.AdptPrf.

C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn)), on input a key ck, a set of equations E ⊂ E ,
values (v1, . . . , vn) and randomness (ρ1, . . . , ρn), outputs a proof π.

C.Verify(ck, E, c1, . . . , cn, π), on input a commitment key ck, a set of equations
in E , a commitment vector (c1, . . . , cn), and a proof π, outputs a bit b.

C.AdptPrf(ck, E, c1, ρ1, . . . , cn, ρn, π), on input a set of equations, commitments
(c1, . . . , cn), randomness (ρ1, . . . , ρn) and a proof π, outputs a proof π′.

C.SmPrv(td, E, ρ1, . . . , ρn), on input the simulation trapdoor, a set of equations
E with n variables and randomness (ρ1, . . . , ρn), outputs a proof π.

M-structure-preserving signatures. To prove knowledge of signatures, we
require a scheme that is compatible with Groth-Sahai proofs [AFG+10].

S.Setup(Gr), on input the bilinear group description, outputs signature parame-
ters parS , defining a message space M. We require M⊆ Vn for some n.

S.KeyGen(parS), on input the parameters parS , outputs a signing key and a
verification key (sk, vk). We require that vk is composed of values in V.
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S.Sign(sk,M), on input a signing key sk and a message M ∈ M, outputs a
signature Σ. We require that Σ is composed of values in V.

S.Verify(vk,M,Σ), on input a verification key vk, a message M and a signature
Σ, outputs a bit b. We require that S.Verify proceeds by evaluating equations
from E (which we denote by ES.Verify(·,·,·)).

M-commuting signatures. As in a previous construction of transferable e-
cash [BCF+11], we will use commuting signatures [Fuc11], which let the signer,
given a commitment to a message, produce a commitment to a signature on that
message, together with a proof, via the following functionality:

SigCm(ck, sk, c), given a signing key sk and a commitment c of a message M ∈
M, outputs a committed signature cΣ and a proof π that the signature in cΣ
is valid on the value in c, i.e., the committed values satisfy S.Verify(vk, ·, ·).

SmSigCm(xk, vk, c, Σ), on input the extraction key xk, a verification key vk, a
commitment c and a signature Σ, outputs a committed signature cΣ and a
proof π of validity for cΣ and c (the key xk is needed to compute π for c).

Correctness and soundness properties. We require the following properties
of commitments, proofs and signatures, when the setup algorithms are run on
any output Gr ← GrGen(1λ) for any λ ∈ N:

Perfectly binding commitments: C.Setup and the first output of C.ExSetup are
distributed equivalently. Let (ck, xk) ← C.ExSetup; then for every c ∈ C
there exists exactly one v ∈ V such that c = C.Cm(ck, v, ρ) for some ρ ∈ R.
Moreover, C.Extr(xk, c) extracts that value v.

V ′-extractability: We require that committed values from a subset V ′ ⊂ V can be
efficiently extracted. Let (ck, xk)← C.ExSetup; then C.Extr(xk, ·) is efficient
on all values c = C.Cm(ck, v, ρ) for any v ∈ V ′ and ρ ∈ R.

Proof completeness: Let ck ← C.Setup; then for all (v1, . . . , vn) ∈ Vn satisfying
E ⊂ E , and (ρ1, . . . , ρn) ∈ Rn and π ← C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn)) we
have C.Verify(ck, E,C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn), π) = 1.

Proof soundness: Let (ck, xk) ← C.ExSetup, E ⊂ E , and (c1, . . . , cn) ∈ Cn. If
C.Verify(ck, E, c1, . . . , cn, π) = 1 for some π, then letting vi := C.Extr(xk, ci),
for all i, we have that (v1, . . . , vn) satisfy E.

Randomizability: Let ck ← C.Setup and E ⊂ E ; then for all (v1, . . . , vn) ∈ Vn
that satisfy E and ρ1, ρ

′
1, . . . , ρn, ρ

′
n ∈ R the following two are distributed

equivalently:(
C.RdCm(C.Cm(ck, v1, ρ1), ρ′1), . . . ,C.RdCm(C.Cm(ck, vn, ρn), ρ′n),

C.AdptPrf
(
ck, E,C.Cm(ck, v1, ρ1), ρ′1, . . . ,C.Cm(ck, vn, ρn), ρ′n,

C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn))
))

and(
C.Cm(ck, v1, ρ1 + ρ′1), . . . ,C.Cm(ck, vn, ρn + ρ′n),

C.Prv(ck, E, (v1, ρ1 + ρ′1), . . . , (vn, ρn + ρ′n))
)
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Signature correctness: Let (sk, vk) ← S.KeyGen(S.Setup) and M ∈ M; then we
have S.Verify(vk,M, S.Sign(sk,M)) = 1.

Correctness of signing committed messages: Let (ck, xk) ← C.ExSetup and let

(sk, vk)← S.KeyGen(S.Setup), and M ∈M; if ρ, ρ′
$←− R, then the following

three are distributed equivalently:(
C.Cm

(
ck,S.Sign(sk,M), ρ′

)
, C.Prv

(
ck, ES.Verify(vk,·,·), (M,ρ), (Σ, ρ′)

))
and

SigCm
(
ck, sk,C.Cm(ck,M, ρ)

)
and

SmSigCm
(
xk, vk,C.Cm(ck,M, ρ),S.Sign(sk,M)

)
The first equality also holds for ck← C.Setup, since it is distributed like ck
output by C.ExSetup.

Security properties

Mode indistinguishability: LetGr ← GrGen(1λ); then the outputs of C.Setup(Gr)
and the first output of C.SmSetup(Gr) are computationally indistinguishable.

Perfect zero-knowledge in hiding mode: Let (ck, td) ← C.SmSetup(Gr), E ⊂ E
and v1, . . . , vn ∈ V such that E(v1, . . . , vn) = 1. For ρ1, . . . , ρn

$←− R the
following are distributed equivalently:(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn),C.Prv

(
ck, E, (v1, ρ1), . . . , (vn, ρn)

))
and

(
C.ZCm(ck, ρ1), . . . ,C.ZCm(ck, ρn),C.SmPrv

(
td, E, ρ1, . . . , ρn

))
Signature unforgeability (under chosen message attack): No PPT adversary that

is given vk output by S.KeyGen and an oracle for adaptive signing queries
on messages M1,M2, . . . of its choice can output a pair (M,Σ), such that
S.Verify(vk,M,Σ) = 1 and M /∈ {M1,M2, . . . }.

4.3 Rerandomizable encryption schemes

In order to trace double-spenders, some information must be retrievable from
the coin by the bank. For anonymity, we encrypt this information. Since coins
must change appearance in order to achieve coin transparency (Def. 4), we use
rerandomizable encryption. In our e-cash scheme we will prove consistency of
encrypted messages with values used elsewhere, and to produce such a proof,
knowledge of parts of the randomness is required; we therefore make this an
explicit input of some algorithms, which thus are still probabilistic.

A rerandomizable encryption scheme E consists of 4 poly.-time algorithms:

E.KeyGen(Gr), on input the group description, outputs an encryption key ek and
a corresponding decryption key dk.

E.Enc(ek,M, ν) is probabilistic and on input an encryption key ek, a message M
and (partial) randomness ν outputs a ciphertext.

E.ReRand(ek, C, ν′), on input an encryption key, a ciphertext and (partial) ran-
domness, outputs a new ciphertext. If no randomness is explicitly given to
E.Enc or E.ReRand then it is assumed to be chosen uniformly.

16



E.Dec(dk, C), on input a decryption key and a ciphertext, outputs either a mes-
sage or ⊥ indicating an error.

In order to prove statements about encrypted messages, we add two function-
alities: E.Verify lets one check that a ciphertext encrypts a given message M ,
for which it is also given partial randomness ν. This will allow us to prove that
a commitment cM and a ciphertext C contain the same message. For this, we
require that the equations defining E.Verify are in the set E supported by C.Prv.

This lets us define an equality proof π̃ = (π, cν), where cν is a commitment
of the randomness ν, and π proves that the values in cM and cν verify the equa-
tions E.Verify(ek, ·, ·, C). To support rerandomization of ciphertexts, we define a
functionality E.AdptPrf, which adapts a proof (π, cν) to a rerandomization.

E.Verify(ek,M, ν, C), on input an encryption key, a message, randomness and a
ciphertext, outputs a bit.

E.AdptPrf(ck, ek, cM , C, π̃ = (π, cν), ν′), a probabilistic algorithm which, on in-
put a commitment key, an encryption key, a commitment, a ciphertext, an
equality proof (i.e., a proof and a commitment) and randomness, outputs a
new equality proof (π′, c′ν).

Correctness properties. We require the scheme to satisfy the following cor-
rectness properties for all key pairs (ek,dk)← E.KeyGen(Gr) forGr ← GrGen(1λ):

– For all M ∈M and randomness ν we have: E.Enc(ek,M, ν) = C if and only
if E.Verify(ek,M, ν, C) = 1.

– For all M ∈ M and ν: E.Verify(ek,M, ν, C) = 1 implies E.Dec(dk, C) = M .
(These two notions imply the standard correctness notion.)

– For all M ∈ M and randomness ν, ν′, if C ← E.Enc(ek,M, ν) then the fol-
lowing are equally distributed: E.ReRand(ek, C, ν′) and E.Enc(ek,M, ν + ν′).

– For all ck ← C.Setup, all (ek,dk) ← E.KeyGen, M ∈ M and randomness
ν, ν′, ρM , ρν , if we let

cM ← C.Cm(ck,M, ρM ) C ← E.Enc(ek,M, ν)

cν ← C.Cm(ck, ν, ρν) π ← C.Prv
(
ck,E.Verify(ek, ·, ·, C), (M,ρM ), (ν, ρν)

)
then the following are equivalently distributed (with ρ′ν is picked uniformly
at random in R):

E.AdptPrf
(
ck, ek, cM ,E.Enc(ek, C, ν), (π, cν), ν′

)
and(

C.Prv(ck,E.Verify(ek, ·, ·,ReRand(ek, C, ν′)), (M,ρM ), (ν + ν′, ρν + ρ′ν)),

C.RdCm(ck, cν , ρ
′
ν)
)

Security properties. We require two properties from rerandomizable encryp-
tion: the first one is the standard (strongest possible) variant of CCA security;
the second one is a new notion, which is easier to achieve.

17



ExptRCCAA,b (λ):

(ek, dk)← E.KeyGen(1λ)

(m0,m1)← AE.Dec(dk,·)(ek)
C ← E.Enc(ek,mb)

b′ ← AGDec(·)(C)
Return b′.

GDec(C):
m← E.Dec(dk, C)
If m 6∈ {m0,m1}

Return m
Else return replay

ExptIACRA,b (λ):

(ek, dk)← KeyGen(1λ)
(C0, C1)← A(ek)
C ← E.ReRand(ek, Cb)
b′ ← A(ek, C)
Return b′

Fig. 6. Security games for rerandomizable encryption schemes

Replayable-CCA (RCCA) security. We use the definition from Canetti et al.
[CKN03], formalized in Fig. 6.

Indistinguishability of adversarially chosen and randomized ciphertexts (IACR).
An adversary that is given a public key, chooses two ciphertexts and is then given
the randomization of one of them cannot, except with a negligible advantage,
distinguish which one it was given. The game is formalized in Fig. 6.

Definition 5. For x ∈ {RCCA, IACR}, a rerandomizable encryption scheme is
x-secure if Pr[ExptxA,1(λ) = 1] − Pr[ExptxA,0(λ) = 1] is negligible in λ for any
PPT A.

4.4 Double-spending tag schemes

Our e-cash scheme will follow earlier approaches [BCFK15], where the bank
represents a coin in terms of its serial number sn = sn0‖ . . . ‖snk, which grows
with every transfer. In addition, a coin contains a tag tag = tag1‖ . . . ‖tagk,
which enables tracing of double-spenders. The part sni is chosen by a user when
she receives the coin, while the tag tagi is computed by the sender as a function
of sni−1, sni and her secret key.

Baldimtsi et al. [BCFK15] show how to construct such tags so they perfectly
hide user identities, except when a user computes two tags with the same sni−1

but different values sni, in which case her identity can be computed from the
two tags. Note that this precisely corresponds to double-spending the coin that
ends in sni−1 to two users that choose different values for sni when receiving it.

We use the tags from [BCFK15], which we first formally define, and then
show that its full potential had not been leveraged yet: in particular, we real-
ize that the tag can also be used as method for users to authenticate the coin
transfer. In earlier works [BCF+11, BCFK15], at each transfer the spender com-
puted a signature that was included in a coin, and that committed the user
to the spending (and made her accountable in case of double-spending). Our
construction does not require any user signatures and thus gains in efficiency.

Furthermore, in [BCFK15] (there were no tags in [BCF+11]), the malleable
signatures took care of ensuring well-formedness of the tags, while we give
an explicit construction. To be compatible with Groth-Sahai proofs, we define
structure-preserving proofs of well-formedness for serial numbers and tags.
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Syntax. An M-double-spending tag scheme T is composed of the following
polynomial-time algorithms:

T.Setup(Gr), on input a group description, outputs the parameters parT (which
are an implicit input to all of the following).

T.KeyGen(), on (implicit) input the parameters, outputs a tag key pair (sk,pk).

T.SGen(sk, n), the serial-number generation function, on input a secret key and
a nonce n ∈ N (the nonce space), outputs a serial-number component sn
and a proof sn-pf of well-formedness.

T.SGeninit(sk, n) , a variant of T.SGen, outputs a message M ∈ M instead of a
proof. (SGeninit is used for the first SN component, which is signed by the
bank using a signature scheme that requires messages to be in M.)

T.SVfy(pk, sn, sn-pf), on input a public key, a serial number and a proof verifies
that sn is consistent with pk by outputting a bit b.

T.SVfyinit(pk, sn,M), on input a public key, a serial number and a message in
M, checks their consistency by outputting a bit b.

T.SVfyall, depending on the type of the input, runs T.SVfyinit or T.SVfy.

T.TGen(sk, n, sn), the double-spending tag function, takes as input a secret key,
a nonce n ∈ N and a serial number, and outputs a double-spending tag
tag ∈ T (the set of the double-spending tags) and a tag proof t-pf .

T.TVfy(pk, sn, sn′, tag, t-pf), on input a public key, two serial numbers, a double-
spending tag, and a proof, checks consistency of the tag w.r.t. the key and
the serial numbers by outputting a bit b.

T.Detect(sn, sn′, tag, tag′,L), double-spending detection, takes as input two se-
rial numbers sn and sn′, two tags tag, tag′ ∈ T and a list of public keys L
and outputs a public key pk (of the accused user) and a proof Π.

T.VfyGuilt(pk, Π), the incrimination-proof verification function, takes as input a
public key and a proof and outputs a bit b.

Correctness properties. For any double-spending tag scheme T we require
that for all parT ← T.Setup(Gr) the following hold:

Verifiability: For every n, n′ ∈ N , and after computing

– (sk,pk)← T.KeyGen ; (sk′,pk′)← T.KeyGen
– (sn, X)← T.SGen(sk, n) or (sn, X)← T.SGeninit(sk, n)
– (sn′, sn-pf ′)← T.SGen(sk′, n′)
– (tag, t-pf)← T.TGen(sk, n, sn′)

we have T.TVfy(pk, sn, sn′, tag, t-pf) = T.SVfyall(pk, sn, X) = 1.

SN-identifiability: For all tag public keys pk1 and pk2, all serial numbers sn and
all X1 and X2, which can be messages in M or SN proofs, if

T.SVfyall(pk1, sn, X1) = T.SVfyall(pk2, sn, X2) = 1

then pk1 = pk2.
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Expttag-anonA,b (λ):

Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
k := 0
(sk0, sk1)← A(parT)

b∗ ← AO1(skb),O2(skb,·,·)(parT, sk0, sk1)
Return (b = b∗)

O1(sk):

n
$←− N ; T [k] := n; k := k + 1

(sn, sn-pf)← T.SGen(sk, n)
Return sn.

O2(sk, sn′, i):
If T [i] = ⊥, abort the oracle call
n := T [i]; T [i] := ⊥
(tag, t-pf)← T.TGen(sk, n, sn′)
Return tag

Fig. 7. Game for tag anonymity (with oracles also used in exculpability) for double-
spending tag schemes

Bootability: There do not exist an SN message M , serial numbers sn1 6= sn2 and
tag keys (not necessarily distinct) pk1,pk2 such that:

T.SVfyinit(pk1, sn1,M) = T.SVfyinit(pk2, sn2,M) = 1.

2-show extractability: Let pk0, pk1 and pk2 be tag public keys, sn0, sn1 and sn2

be serial numbers, X0 be either an SN proof or a message inM, and sn-pf1
and sn-pf2 be SN proofs. Let tag1 and tag2 be tags, and t-pf1 and t-pf2 be
tag proofs, and let L be a set of tag public keys with pk0 ∈ L. If

T.SVfyall

(
pk0, sn0, X0

)
= 1

T.SVfy
(
pk1, sn1, sn-pf1

)
= T.SVfy

(
pk2, sn2, sn-pf2

)
= 1

T.TVfy
(
pk1, sn0, sn1, tag1, t-pf1

)
= T.TVfy

(
pk2, sn0, sn2, tag2, t-pf2

)
= 1

and sn1 6= sn2 then T.Detect(sn1, sn2, tag1, tag2,L) extracts (pk0, Π) effi-
ciently and we have T.VfyGuilt(pk0, Π) = 1.

N -injectivity: For any secret key sk, the function T.SGen(sk, ·) is injective.

Security properties.

Exculpability: This notion formalizes soundness of double-spending proofs, in
that no honestly behaving user can be accused. Let parT ← T.Setup and
(sk,pk) ← T.KeyGen(parT). Then we require that for an adversary A that
is given pk and can obtain SNs and tags for receiver SNs of its choice, both
produced with sk (but no two tags for the same sender SN), is computation-
ally hard to return a proof Π with T.VfyGuilt(pk, Π) = 1. Formally, A gets
access to oracles O1(sk) and O2(sk, ·, ·) defined in Fig. 7.

Tag anonymity: Finally, our anonymity notions for transferable e-cash should
hold even against a malicious bank, which gets to see the serial numbers and
double-spending tags for deposited coins, and the secret keys of the users.
Thus, we require that as long as the nonce n is random and only used once,
serial numbers and tags reveal nothing about the user-specific values, such
as sk and pk, that were used to generate them. The game is given in Fig. 7.
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Definition 6 (Tag anonymity). A double-spending tag scheme is anonymous
if Pr[Expttag-anonA,1 (λ) = 1] − Pr[Expttag-anonA,0 (λ) = 1] is negligible in λ for any
PPT A.

5 Our transferable e-cash construction

5.1 Overview

The bank validates new users in the system and creates money, and digital
signatures can be used for both purposes: when a new user joins, the bank signs
her public key, which serves as proof of being registered; during a coin issuing,
the bank signs a message Msn that is associated to the initial serial-number
(SN) component sn0 of a coin (chosen by the user withdrawing the coin), and
this signature makes the coin unforgeable.

After a coin has been transferred k times, its core consists of a list of SNs
sn0, sn1, . . . , snk, together with a list of tags tag1, . . . , tagk (for a freshly with-
drawn coin, we have k = 0). When a user spends such a coin, the receiver
generates a fresh SN component snk+1, for which the spender must generate
a tag tagk+1, which is also associated with her public key and the last serial
number snk (which she generated when she received the coin.)

These tags allow the bank to identify the cheater in case of double-spending,
while they preserve honest users’ anonymity, also towards the bank. A coin more-
over contains the users’ public key w.r.t. which the tags were created, as well as
certificates from the bank on them. To provide anonymity, all these components
are not given in the clear, but as a zero-knowledge proof of knowledge. As we
use a commit-and-prove proof system, a coin contains commitments to its se-
rial number, its tags, the user public keys and their certificates and proofs that
ensure all of them are consistent.

Recall that a coin also includes a signature by the bank on (a message related
to) the initial SN component. To achieve anonymity towards the bank (coin
anonymity), the bank must sign this message blindly, which is achieved by using
the SigCm functionality: the user sends a commitment to the serial number, and
the bank computes a committed signature on the committed value.

Finally, the bank needs to be able to detect whether a double-spending oc-
curred and identify the user that committed it. One way would be to give the
serial numbers and the tags (which protect the anonymity of honest users) in
the clear. This would yield a scheme that satisfies coin anonymity and user
anonymity (note that in these two notions the bank is adversarially controlled).
In contrast, coin transparency, the most intricate anonymity notion, would not
be achieved, since the owner of a coin could easily recognize it when she receives
it again by looking at its serial number.

Coin transparency requires to hide the serial numbers (and the associated
tags), and to use a randomizable proof system, since the appearance of a coin
needs to change after every transfer. At the same time we need to provide the
bank access to them; we thus include encryptions, under the bank’s public key,
in the coin. And we add proofs of consistency of the encrypted values. Now
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all of this must interoperate with the randomization of the coin, which is why
we require rerandomizable encryption. Moreover, this has to be tied into the
machinery of updating the proofs, which is necessary every time the ciphertexts
and the commitments contained in a coin are refreshed.

5.2 Technical description

Primitives used. The basis of our transferable e-cash scheme is a random-
izable extractable NIZK commit-and-prove scheme C to which we add com-
patible schemes: an M-structure-preserving signature scheme S that admits an
M-commuting signature add-on SigCm, as well as a (standard) M′-structure-
preserving signature scheme S′ (all defined in Sect. 4.2).

Our scheme moreover uses rerandomizable encryption (Sect. 4.3), a scheme
E, which only needs to be IACR-secure, and an RCCA-secure scheme E′, which
will only be used for a single ciphertext per coin. (One can instantiate E with a
possibly more efficient scheme.) Finally, we use a double-spending tag scheme T
(Sect. 4.4). We require E, E′ and T to be compatible with the proof system C,
that is, the equations for T.SVfy, T.SVfyinit and T.TVfy, as well as E.Verify and
E′.Verify, are all in the set E of equations supported by C.

Auxiliary functions. To simplify the description of our scheme, we first de-
fine several auxiliary functions. We let Rand denote an algorithm that random-
izes a given tuple of commitments and ciphertext, as well as proofs for them
(and adapts the proofs to the randomizations) by internally running C.RdCm,
E.ReRand, C.AdptPrf and E.AdptPrf with the same randomness.

Below, we define C.Prvsn,init that produces a proof that a committed ini-
tial serial number sn was correctly generated w.r.t. a committed key pkT and
a committed message M (given the used randomness ρpk, ρsn and ρM ); and
C.Verifysn,init that verifies such proofs. C.Prvsn and C.Verifysn do the same for
non-initial serial numbers (for which there are no messages, but which require a
proof of well-formedness instead).

C.Prvsn,init(ck,pkT, sn,M, ρpk, ρsn, ρM ):

– Return π ← C.Prv
(
ck,T.SVfyinit(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (M,ρM )

)
C.Verifysn,init(ck, cpk, csn, cM , πsn):

– Return (C.Verify(ck,T.SVfyinit(·, ·, ·) = 1, cpk, csn, cM , πsn))

C.Prvsn(ck,pkT, sn, sn-pf , ρpk, ρsn, ρsn-pf ):

– π ← C.Prv
(
ck,T.SVfy(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn-pf , ρsn-pf )

)
– Return (π,C.Cm(ck, sn-pf , ρsn-pf ))

C.Verifysn(ck, cpk, csn, π̃sn = (πsn, csn-pf )):

– Return C.Verify(ck,T.SVfy(·, ·, ·) = 1, cpk, csn, csn-pf , πsn)

C.Prvtag produces a proof that a committed tag was correctly generated w.r.t.
committed serial numbers sn and sn′; and C.Verifytag verifies such proofs.
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C.Prvtag(ck,pkT, sn, sn
′, tag, ρpk, ρsn, ρ

′
sn, ρtag, t-pf , ρt-pf )

– π ← C.Prv
(
ck,T.TVfy(·, ·, ·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn′, ρ′sn),

(tag, ρtag), (t-pf , ρt-pf )
)

– Return (π,C.Cm(ck, t-pf , ρt-pf ))

C.Verifytag(ck, cpk, csn, c
′
sn, ctag, πtag = (π, ct-pf )):

– Return C.Verify(ck,T.TVfy(·, ·, ·, ·) = 1, cpk, csn, c
′
sn, ctag, ct-pf , π)

C.E.Prvenc produces a proof that a ciphertext c̃ of M and C.Cm(ck,M, ρM ) con-
tain the same message; C.E.Verifyenc verifies such proofs. (Note that the output
of C.E.Prvenc is the same π as in the input of E.AdptPrf; moreover, since ρν is
not used outside of C.E.Prvenc, it can be sampled locally.)

C.E.Prvenc(ck, ek,M, ρM , νM , c̃):

– ρν
$←− R; π ← C.Prv(ck,E.Verify (ek, ·, ·, c̃) = 1, (M,ρM ), (νM , ρν))

– Return (π,C.Cm(ck, νM , ρν))

C.E.Verifyenc(ck, ek, cM , c̃M , π̃eq = (πeq, cν)):

– Return C.Verify(ck,E.Verify(ek, ·, ·, c̃M ) = 1, cM , cν , πeq)

Components of the coin. There are two types of components, the initial
components coininit, and the standard components coinstd. The first is of the
form

coininit =
(
c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, ε, ε, cM , c

0
σ, π

0
σ, c̃

0
sn, π̃

0
sn, ε, ε

)
, (1)

where the “c-values” are commitments to the withdrawer’s key pk, her certificate
cert, the initial serial number sn and the related message M , the bank’s signature
σ on M ; and c̃sn is an encryption of sn. Moreover, πcert and πsn prove validity
of cert and sn, and π̃sn proves that csn and c̃sn contain the same value. We
use “empty values” ε to pad so that both coin-component types have the same
format. Validity of an initial component is verified w.r.t. an encryption key for
E′ and two signature verification keys for S and S′:

VERinit

(
ek′, vk, vk′, coininit

)
: Return 1 iff the following hold: // coininit as in (1)

– C.Verify
(
ck,S′.Verify(vk′, ·, ·) = 1, c0pk, c

0
cert, π

0
cert

)
– C.Verify

(
ck,S.Verify(vk, ·, ·) = 1, cM , c

0
σ, π

0
σ

)
– C.Verifysn,init

(
ck, c0pk, c

0
sn, cM , π

0
sn

)
∧ C.E′.Verifyenc

(
ck, ek′, c0sn, c̃

0
sn, π̃

0
sn

)
Standard components of a coin are of the form

coinstd = (cipk, c
i
cert, π

i
cert, c

i
sn, π

i
sn, c

i
tag, π

i
tag, ε, ε, ε, c̃

i
sn, π̃

i
sn, c̃

i
tag, π̃

i
tag

)
, (2)

and instead of M and the bank’s signature they contain a commitment ctag and
an encryption c̃tag of the tag produced by the spender (and a proof πtag of validity
and π̃tag proving that the values in ctag and c̃tag are equal). A coin is verified by
checking the validity and consistency of each two consecutive components. If the
first is an initial component then the values ci−1

tag , π
i−1
tag , c̃

i−1
tag and π̃i−1

tag are ε; if it

is a standard component then cM , c
i−1
σ and πi−1

σ are ε.
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VERstd

(
ek, vk′,

(
ci−1
pk , ci−1

cert , π
i−1
cert , c

i−1
sn , πi−1

sn , ci−1
tag , π

i−1
tag , cM , c

i−1
σ , πi−1

σ , c̃i−1
sn ,

π̃i−1
sn , c̃i−1

tag , π̃
i−1
tag

)
, coinstd

)
: // coinstd as in (2)

Return 1 iff the following hold:

– heoneinC.Verify
(
ck,S′.Verify(vk′, ·, ·) = 1, cipk, c

i
cert, π

i
cert

)
– C.Verifysn

(
ck, cipk, c

i
sn, π

i
sn

)
∧ C.Verifytag

(
ck, ci−1

pk , ci−1
sn , cisn, c

i
tag, π

i
tag

)
– C.E.Verifyenc

(
ck, ek, cisn, c̃

i
sn, π̃

i
sn

)
∧ C.E.Verifyenc

(
ck, ek, citag, c̃

i
tag, π̃

i
tag

)
Our scheme. We now formally define our transferable e-cash scheme.

ParamGen(1λ):

– Gr ← GrGen(1λ)

– parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)

– parT ← T.Setup(Gr) ; ck← C.Setup(Gr)

– Return par = (1λ,Gr,parS,parS′ ,parT, ck)

Recall that par is an implicit input to all other algorithms; we assume that they
parse par as (1λ,Gr,parS,parS′ ,parT, ck).

BKeyGen():

– (sk, vk)← S.KeyGen(parS) ; (sk′, vk′)← S′.KeyGen(parS′)

– (ek′,dk′)← E′.KeyGen(Gr) ; (ek,dk)← E.KeyGen(Gr)

– (skT,pkT)← T.KeyGen(parT) // (skT, pkT, cert) let the bank act. . .

– cert← S′.Sign(sk′,pkT) // . . . as U ′ in Spend during deposit

– Return
(
skW = (sk, sk′), skCK = (dk′,dk),

skD = (cert,pkT, skT),pkB = (ek′, ek, vk, vk′)
)

Register
〈
B(skW = (sk, sk′)),U(pkB = (ek′, ek, vk, vk′))

〉
:

U : (skT,pkT)← T.KeyGen(parT ) ; send pkT to B
B: certU ← S′.Sign(sk′,pkT) ; send certU to U ; output pkT

U : If S′.Verify(vk′,pkT, certU ) = 1, output skU ← (certU ,pkT, skT) ; else ⊥

Withdraw
〈
B(skW = (sk, sk′),pkB = (ek′, ek, vk, vk′)),

U(skU = (certU ,pkT, skT),pkB)
〉
:

U : – n
$←− N ; ρpk, ρcert, ρsn, ρM

$←− R
– (sn,Msn)← T.SGeninit(skT, n)

– cpk ← C.Cm(ck,pkT, ρpk)

– ccert ← C.Cm(ck, certU , ρcert)

– csn ← C.Cm(ck, sn, ρsn)

– cM ← C.Cm(ck,Msn, ρM )

– πcert ← C.Prv(ck,S′.Verify(vk′, ·, ·) = 1, (pkT, ρpk), (certU , ρcert))

– πsn ← C.Prvsn,init(ck,pkT, sn,Msn, ρpk, ρsn, ρM )

– Send (cpk, ccert, πcert, csn, cM , πsn) to B
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B : – if C.Verify(ck,S′.Verify(vk′, ·, ·) = 1, cpk, ccert, πcert) or

C.Verifysn,init(ck, cpk, csn, cM , πsn) fail then abort and output ⊥.

– (cσ, πσ)← SigCm(ck, sk, cM ) ; send (cσ, πσ) to U ′ ; return ok

U : – if C.Verify(ck,S.Verify(vk, ·, ·) = 1, cM , cσ, πσ) fails, abort and output ⊥.

– νsn
$←− R ; c̃sn ← E′.Enc(ek′, sn, νsn)

– π̃sn ← C.E′.Prvenc(ck, ek′, sn, ρsn, νsn, c̃sn)

– ρ′pk, ρ
′
cert, ρ

′
sn, ρ

′
M , ρ

′
σ, ν
′
sn, ρ

′
π̃,sn

$←− R //since π̃sn contains a commitment,

we also sample randomness for it

– c0 ← Rand
(
(cpk, ccert, πcert, csn, πsn, cM , cσ, πσ, c̃sn, π̃sn),

(ρ′pk, ρ
′
cert, ρ

′
sn, ρ

′
M , ρ

′
σ, ν
′
sn, ρ

′
π̃,sn)

)
– Output

(
c0, n, sn, ρsn + ρ′sn, ρpk + ρ′pk

)
Spend

〈
U(c, skU = (cert,pkT, skT),pkB = (ek′, ek, vk, vk′)),

U ′(sk′U = (cert′,pk′T, sk
′
T),pkB)

〉
:

U ′ : – n′
$←− N ; ρ′pk, ρ

′
cert, ρ

′
sn, ρ

′
sn-pf , ν

′
sn

$←− R
– (sn′, sn-pf ′)← T.SGen(parT, sk

′
tag, n

′)

– c′pk ← C.Cm(ck,pk′T, ρ
′
pk) ; c′cert ← C.Cm(ck, cert′, ρ′cert)

– c′sn ← C.Cm(ck, sn′, ρ′sn) ; c′sn-pf ← C.Cm(ck, sn-pf ′, ρ′sn-pf )

– c̃′sn ← E.Enc(ek, sn′, ν′sn)

– π′cert ← C.Prv(ck,S.Verify(vk′, ·, ·) = 1, (pk′T, ρ
′
pk), (cert′, ρ′cert))

– π′sn ← C.Prvsn(ck,pk′T, sn
′, sn-pf , ρ′pk, ρ

′
sn, ρ

′
sn-pf )

– π̃′sn ← C.E.Prvenc(ck, ek, sn′, ρ′sn, ν
′
sn, c̃

′
sn)

– Send (sn′, ρ′sn) to U

U : – Parse c as
(
c0,
(
cj=(cjpk, c

j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag,

c̃jsn, c̃
j
tag, π̃

j
sn, π̃

j
tag)
)i
j=1

, n, sn, ρsn, ρpk
)

// i could be 0

– ρtag, νtag, ρt-pf
$←− R

– (tag, t-pf)← T.TGen(parT, skT, n, sn
′)

– ctag ← C.Cm(ck, tag, ρtag) ; c̃tag ← E.Enc(ek, tag, νtag)

– πtag ← C.Prvtag(ck,pkT, sn, sn
′, tag, t-pf , ρpk, ρsn, ρ

′
sn, ρtag, ρt-pf )

– π̃tag ← C.E.Prvenc(ck, ek, tag, ρtag, νtag, c̃tag)

– Send c′ =
(
c0, (cj)ij=1, ctag, πtag, c̃tag, π̃tag

)
to U ′ ; output ok

U ′ : – If any of the following fail then abort and output ⊥:

– VERinit(ek
′, vk, vk′, c0)

– VERstd(ek, vk, vk′, cj−1, cj), for j = 1, . . . , i

– C.Verifytag(ck, cipk, c
i
sn, c

′
sn, ctag, πtag)

– C.E.Verifyenc(ck, ek, ctag, c̃tag, π̃tag)

– pick uniform random ~ρ′′

– c′′←Rand
(
((cj)ij=0, c

′
pk, c

′
cert, π

′
cert, c

′
sn, π

′
sn, ctag, πtag, c̃

′
sn, π̃

′
sn, c̃

′
tag, π̃

′
tag), ~ρ

′′
)

– Output
(
c′′, n′, sn′, ρ′sn + ( ~ρ′′)sn′ , ρ

′
pk + ( ~ρ′′)pk′

)
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CheckDS
(
skCK = (dk′,dk),DCL,UL, c

)
:

– Parse c as
(
c0 = (c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, c

0
M , cσ, πσ, c̃

0
sn, π̃

0
sn),

(cj = (cjpk, c
j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag, c̃

j
sn, π̃

j
sn, c̃

j
tag, π̃

j
tag))

i
j=1, n, sn, ρsn, ρpk

)
– ~sn←

(
E′.Dec(dk′, c̃0sn),E.Dec(dk, c̃1sn), . . . ,E.Dec(dk, c̃isn)

)
– ~tag←

(
E.Dec(dk, c̃1tag), . . . ,E.Dec(dk, c̃

i
tag)
)

– If for all ( ~sn′, ~tag′) ∈ DCL: (~sn)0 6= ( ~sn′)0 // initial SN of checked coin. . .

then return DCL‖ (~sn, ~tag) // . . . different from those of deposited coins

– Else let j be minimal so that (~sn)j 6= ( ~sn′)j // double-spent at j-th transfer

– (pkT, Π)← T.Detect
(
(~sn)j , ( ~sn′)j , ( ~tag)j , ( ~tag′)j ,UL

)
– Return (pkT, Π)

VfyGuilt(pkT, Π): Return T.VfyGuilt(pkT, Π)

5.3 Correctness and security analysis

Theorem 7. Our transferable e-cash scheme satisfies all correctness proper-
ties and is perfectly sound.

The first four correctness properties follow in a straightforward way from the
correctness properties of S, S′ and C, and verifiability of T. The fifth property
follows from the fact that skD has the form of a user secret key.

Because a user verifies the validity of all components of a coin before accepting
it, perfect soundness of our scheme is a direct consequence of the correctness
properties of S, S′ and C, as well as perfect soundness of C and verifiability of T.

Detailed proofs of the following theorems can be found in Appendix A. We
omit the proof for u-an as it is analogous to the one for c-an.

Theorem 8. Let N be the nonce space and S be the space of signatures of
scheme S. Let A be an adversary that wins the unforgeability game with ad-
vantage ε and makes at most d calls to BDepo. Suppose that C is perfectly sound
and (M∪S)-extractable. Then there exist adversaries against the unforgeability
of the signature schemes S and S′ with advantages εsig and ε′sig, resp., such that

ε ≤ εsig + ε′sig + d2/|N |.

Assume that during the adversary’s deposits the bank never picks the same
final nonce twice. (The probability that there is a collision is at most d2/|N |.)
In this case, there are two ways for the adversary to win:
(1) CheckDS outputs ⊥, or an invalid proof, or an unregistered user: Suppose
that, during a BDepo call for a coin c, CheckDS does not return a coin list. Recall
that, by assumption, the final part (chosen by the bank at deposit) of the serial
number of c is fresh. Since CheckDS runs T.Detect, by soundness of C and two-
extractability of T, this will output a pair (pk, Π), such that VfyGuilt(pk, Π) = 1.
Since a coin contains a commitment to a certificate for the used tag key (and
proofs of validity), we can, again by soundness of C, extract an S′-signature on
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pk. Now if pk is not in UL, then it was never signed by the bank, and A has
thus broken unforgeability of S′.
(2) qW < |DCL|: If the adversary creates a valid coin that has not been with-
drawn, then by soundness of C, we can extract a signature by the bank on a new
initial serial number and therefore break unforgeability of S.

Theorem 9. Let A be an adversary that wins the game exculpability with
advantage ε and makes u calls to the oracle URegist. Then there exist adversaries
against mode-indistinguishability of C and tag-exculpability of T with advantages
εm-ind and εt-exc, resp., such that

ε ≤ εm-ind + u · εt-exc.

An incrimination proof in our e-cash scheme is simply an incrimination proof of
the tag scheme T. Thus, if the reduction correctly guesses the user u that will
be wrongfully incriminated by A (which it can with probability 1/u), then we
can construct an adversary against exculpability of T. The term εm-ind comes
from the fact that we first need to switch C to hiding mode, so we can simulate
πsn and πtag for the target user, since the oracles O1 and O2 in the game for tag
exculpability (see Fig. 7) do not return sn-pf and t-pf .

Theorem 10. Let A be an adversary that wins the coin anonymity game
(c-an) with advantage ε and let k be an upper-bound on the number of users
transferring the challenge coins. Then there exist adversaries against mode-
indistinguishability of C and tag-anonymity of T with advantages εm-ind and εt-an,
resp., such that

ε ≤ 2
(
εm-ind + (k + 1) εt-an

)
.

Theorem 11. Let A be an adversary that wins the user anonymity game
(u-an) with advantage ε and let k be a bound on the number of users transferring
the challenge coin. Then there exist adversaries against mode-indistinguishability
of C and tag-anonymity of T with advantages εm-ind and εt-an, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an.

In the proof of both theorems, we first define a hybrid game in which the commit-
ment key is switched to hiding mode (hence the loss εm-ind, which occurs twice
for b = 0 and b = 1). All commitments are then perfectly hiding (and proofs
reveal nothing either) and the only information contained in a coin are the serial
numbers and tags. They are encrypted, but the adversary, impersonating the
bank, can decrypt them.

We then argue that, by tag anonymity of T, the adversary cannot link a
user to a pair (sn, tag), even when it knows the users’ secret keys. We define
a sequence of k + 1 hybrid games (as k transfers involve k + 1 users); going
through the user vector output by the adversary, we can switch, one by one, all
users from the first two the second vector. Each switch can be detected by the
adversary with probability at most εt-an. Note that the additional factor 2 for
εt-an in game c-an is due to the fact that there are two coins for which we switch
users, whereas there is only one in game u-an.

27



Theorem 12. Let A be an adversary that wins the coin-transparency game
(c-tr) with advantage ε, let ` be the size of the two challenge coins, and k be an
upper-bound on the number of users transferring the challenge coins. Then there
exist adversaries against mode-indistinguishability of C, tag-anonymity of T,
IACR-security of E and RCCA-security of E′ with advantages εm-ind, εt-an, εiacr

and εrcca, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an + (2 ` + 1) εiacr + εrcca.

The crucial difference to the previous anonymity theorems is that the bank
is honest (which makes this strong notion possible). We therefore must rely on
the security of the encryptions, for which the reduction thus does not know the
decryption key. At the same time, the reduction must be able to detect double-
spendings, when the adversary deposits coins. Since we use RCCA encryption,
the reduction can do so by using its own decryption oracle.

As for c-an and u-an, the reduction first makes all commitments perfectly
hiding and proofs perfectly simulatable (which loses εm-ind twice). Since all ci-
phertexts in the challenge coin given to the adversary are randomized, the re-
duction can replace all of them, except the initial one, by IACR-security of E.
(Note that in the game these ciphertexts never need to be decrypted.) The fac-
tor 2` is due to the fact that there are at most ` encryptions of SN/tag pairs.
Finally, replacing the initial ciphertext (the one that enables detection of double-
spending) can be done by a reduction to RCCA-security of E′: the oracle Depo′

can be simulated by using the reduction’s own oracles Dec and GDec (depending
on whether Depo′ is called before or after the reduction receives the challenge
ciphertext) in the RCCA-security game. Note that, when during a simulation
of CheckDS, oracle GDec outputs replay, the reduction knows that a challenge
coin was deposited, and uses this information to increase ctr.

6 Instantiation of the building blocks and efficiency

The instantiations we use are all proven secure in the standard model under
non-interactive hardness assumptions.

Commitments and proofs. The commit-and-prove system C will be instan-
tiated with Groth-Sahai proofs [GS08], of which we use the instantiation based
on SXDH (defined in Appendix D).

Theorem 13 ([GS08]). The Groth-Sahai scheme, allowing to commit values

from V := Zp ∪ G ∪ Ĝ is perfectly complete, perfectly sound and randomizable;

it is (G ∪ Ĝ)-extractable, mode-indistinguishable assuming SXDH, and perfectly
hiding in hiding mode.

We note that moreover, all our proofs can be made zero-knowledge [GS08], and
thus simulatable, because all pairing-product equations we use are homogeneous
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(i.e., the right-hand term is the neutral element). We have (efficient) extractabil-
ity, as we only need to efficiently extract group elements from commitments (and
no scalars) in our reductions. (Note that for information-theoretic arguments
concerning soundness, Extr can also be inefficient.)

Signature schemes. For efficiency and type-compatibility reasons, we use two
different signature schemes. The first one, S, must support the functionality
SigCm, which imposes a specific format of messages. The second scheme, S′, is
less restrictive, which allows for more efficient instantiations. While all our other
components rely on standard assumptions, we instantiate S with a scheme that
relies on a non-interactive q-type assumption defined in [AFG+10].

Theorem 14. The signature scheme from [AFG+10, Sect. 4] with message space
M := {(gm, ĝm) |m ∈ Zp} is (strongly) unforgeable assuming q-ADHSDH and
AWFCDH (see Appendix D), and it supports the SigCm functionality [Fuc11].

Theorem 15. The signature scheme from [AGHO11, Sect. 5] is structure-pre-

serving with message spaceM′ := Ĝ and (strongly) unforgeable assuming SXDH.

Randomizable encryption schemes. To instantiate the RCCA-secure scheme
E′ we follow the approach from Libert et al. [LPQ17]. Their construction is only
for one group element, but by adapting the scheme, it can support encryption
of a vector in Gn for arbitrary n. In our e-cash scheme, we need to encrypt
a vector in G2, and since it is not clear whether more recent efficient schemes
like [FFHR19] can be adapted to this, we give an explicit construction, which
we detail in Appendix B.2.

Recall that the RCCA-secure scheme E′ is only used to encrypt the initial
part of the serial number; using a less efficient scheme does thus not have a
big impact on the efficiency of our scheme. From all other ciphertexts contained
in a coin (which are under scheme E) we only require IACR security, which
standard ElGamal encryption satisfies under DDH(!). Thus, we instantiate E
with ElGamal vector encryption. (Note that our instantiation of E′ is also built
on top of ElGamal). We prove the following in the appendix.

Theorem 16. Assuming SXDH, our randomizable encryption scheme in Ap-
pendix B.2 is RCCA-secure and the one in Appendix B.3 is IACR-secure.

Double-spending tags. We will use a scheme that builds on the one given
in [BCFK15]. We have optimized the size of the tags and made explicit all the
functionalities not given previously. We defer this to Appendix B.1.

Efficiency analysis

We conclude by summarizing the sizes of objects in our scheme in the table
below and refer to Appendix C for the details of our analysis.

For a group G ∈ {G, Ĝ,Zp}, let |G| denote the size of an element of G.
Let cbtsrap denote the coin output by U at the end of the Withdraw protocol
(which corresponds to cinit plus secret values, like n, ρsn, etc., to be used when
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transferring the coin), and let cstd denote one (non-initial) component of the
coin. After k transfers the size of a coin is |cbtsrap|+ k|cstd|.

|skB| 9|Zp|+ 2|G|+ 2|Ĝ|
|pkB| 15|G|+ 8|Ĝ|
|skU | |Zp|+ 2|G|+ 2|Ĝ|
|pkU | |Ĝ|

|Πguilt| 2|G|
|cbtstrap| 6|Zp|+ 147|G|+ 125|Ĝ|
|cstd| 54|G|+ 50|Ĝ|
|( ~sn, ~tag)| (4t+ 2)|G|
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A Security proofs

Some of our theorems in the appendix are more general than stated in the body
of the paper: they also work for a scheme C that only satisfies computational
soundness (whereas in the body we assumed perfect soundness).

A.1 Unforgeability

Theorem 17. Suppose that there exists an adversary A against unforgeability
(Def. 2) of our transferable e-cash scheme with advantage εunforg making at most
d calls to oracle BDepo. Suppose that M and the signature space of S are con-
tained in V ′. Then we can build a polynomial-time adversary B1 against the
unforgeability of the signature scheme S with advantage εsig, an adversary B2

against the unforgeability of S′ with advantage ε′sig, and B3 and B4 against the
soundness of the commitment scheme C with advantage εh,1 and εh,2. Then

εunforg ≤ εh,1 + εh,2 + εsig + ε′sig +
d2

|N |
.

Proof. Note that the adversary has two possibilities to win the game: either
it creates a counterfeit (i.e., qW < |CL|), or it wins by making a deposit fail
(i.e., CheckDS does neither output a list nor a valid pair with a registered user
key). In our proof we will consider these two aspects separately. First we will
prove in Proposition 18, that creating counterfeit is harder than breaking the
unforgeability of S, or proving a false statement in C. In Proposition 19, we prove
that if fresh nonces are picked during each deposits, then it is harder to make
Deposit fail than breaking the unforgeability of S′, or proving a false statement
in C.

We first recall the unforgeability against the e-cash system:

ExptunforgA (λ):
par← ParamGen(1λ); (skB,pkB)← BKeyGen(par)
ABRegist,BWith,BDepo(par,pkB)
If in a BDepo call, CheckDS does not return a coin list
Return 1 if any of the following hold:

– CheckDS did not output a pair (pk, Π)
– VfyGuilt(pk, Π) = 0
– pk 6∈ UL

Let qW be the number of calls to BWith

If qW < |DCL| then return 1
Return 0

and the unforgeability game against a signature scheme:
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Expt
sig-uf
S,B (λ)

par← S.Setup
(
1λ
)

(sk, vk)← S.KeyGen (par)
Q := ∅
(m,σ)← BS.Sign∗(sk,·,Q)(par, vk)
Return

(
m 6∈ Q ∧ S.Verify(vk,m, σ)

)

Oracle: S.Sign∗ (sk,m,Q):
Q := Q ∪ {m}
Return S.Sign (sk,m)

Finally, the soundness of the commitment scheme:

ExptsoundnessC,B (λ):
(ck, xk)← C.ExSetup(1λ)
Q := ∅; (E, c1, . . . , cn)← B(ck)
Return

(
C.Verify (ck, E, c1, . . . , cn) ∧ ¬E (C.Extr (xk, c1) , . . . ,C.Extr (xk, cn))

)
Let Eunforg be the event that A wins the game, that is, at some point after

a call to BDepo, CheckDS did not output a list, or qW < |DCL|. We partition
Eunforg as follows:

– EDecrypt-fails: In CheckDS, a decryption fails or does not output any serial
number and tag, when it is supposed to

– Esame: In CheckDS, there is no j such that ~snj 6= ~sn′j
– EDDS-fails: In CheckDS, algorithm T.Detect does not output any (pkT, ΠG)
– Eincorrect: CheckDS outputs (pki∗ , ΠG) such that VfyGuilt (pki∗ , ΠG) = 0
– Enot-register: pki∗ 6∈ UL
– Ecounterfeit: qW < |DCL|

We first build an adversary B1 against the unforgeability of S, which will bet on
Ecounterfeit: qW < |DCL| (i.e., A creates valid money). Thus, A has produced a
committed signature for a fresh serial number and thus forged a signature for a
fresh serial number or a false proof for the equation S.Verify (In this second case
adversary B3 will break soundness). Note that to simulate SigCm, adversary B1

needs xk and SmSigCm.

Adversary BA,S.Sign
∗(sk,·)

1 (parS, vk):
Obtain Gr from parS
(ck, xk)← C.ExSetup (Gr)
parS′ ← S′.Setup (Gr)(
sk′, vk′

)
← S′.KeyGen (parS′)

parT ← T.Setup (Gr)
par←

(
1λ,Gr,parS,parS′ ,parT, ck

)
CoinsD := ∅
CoinsW := ∅
(ek,dk)← E.KeyGen (Gr)(
ek′,dk′

)
← E′.KeyGen (Gr)

pkB ←
(
ek′, ek, vk, vk′

)
(skT,pkT)← T.KeyGen(Gr)
skD ← (ε, skT,pkT)
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Run ABRegist,BWith∗,BDepo (par,pkB)
In each call of BWith, add the coin received to the list CoinsW
In each call of BDepo, add the coin received to the list CoinsD
BWith∗ is similar to BWith, except instead of using SigCm, it uses SigCm∗:

SigCm∗(c):
m← C.Extr (xk, c)
Use the oracle to obtain Σ ← S.Sign∗(sk,m)
(cσ, π)← SmSigCm(xk, vk, c, Σ)
Return (cσ, π)

Let qW be the number of successful calls to BWith

If qW ≥ |DCL| then abort
Let D := ∅
Let W := ∅
For c ∈ CoinsW:

Parse c as
(
c0, (cj)ij=1, n, sn, ρsn, ρpk

)
Parse c0 as

(
c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, cM , c

0
σ, π

0
σ, c̃

0
sn, π̃

0
sn

)
M := C.Extr (xk, cM )
σ := C.Extr

(
xk, c0σ

)
W := W ∪ {(M,σ)}

For c ∈ CoinsD:

Parse c as
(
c0,
(
cj
)i
j=1

, n, sn, ρsn, ρpk
)

Parse c0 as
(
c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, cM , c

0
σ, π

0
σ, c̃

0
sn, π̃

0
sn

)
M := C.Extr (xk, cM )
σ := C.Extr

(
xk, c0σ

)
D := D ∪ {(M,σ)}

If ∃ (M,σ) ∈W \D:
then return (M,σ)

Else abort

We let ε identify the part of the secret key that is ignored in the entire game
(because the bank never spent a coin). By correctness of the committed signature
of S, the simulation will be perfect. And by (M∪S)-extractability of C, we deduce
that B1 is efficient.

We now construct a first adversary B3 against soundness:

Adversary BA3 (ck):
Obtain Gr from ck
parS ← S.Setup (Gr)
parS′ ← S′.Setup (Gr)
parT ← T.Setup (Gr)
par←

(
1λ,Gr,parS,parS′ ,parT, ck

)
S := ∅
(pkB =

(
ek′, ek, vk, vk′

)
, skW = (sk, sk′), skD, skCK)← BKeyGen()

Run ABRegist,BWith,BDepo (par,pkB)
In each call of BDepo, add the entire coin received in the list CoinsD
Let qW be the number of successful calls to BWith
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If qW ≥ |DCL|, then abort
Let D := ∅
For c ∈ CoinsD:

Parse c as
(
c0, (cj)

i
j=1, n, sn, ρsn, ρpk

)
Add c0 to S

Parse S as
{(
cipkT , c

i
cert, π

i
cert, c

i
sn, π

i
sn, c

i
M , c

i
σ, π

i
σ, c̃

i
sn, π̃

i
sn

)}
1≤i≤|S|

Parse π̃isn as
(
ci, πi

)
Return

( |S|∧
i=1

(
E′.Verify

(
ek′, Xi

1, X
i
2, c̃

i
sn

)
∧ S.Verify

(
vk, Xi

3, X
i
4

)
= 1 ∧

T.SVfyinit

(
Xi

5, X
i
1, X

i
3

) )
,

c1sn, c
1, c1M , c

1
σ, c

1
pkT
, . . . , c

|S|
sn , c|S|, c

|S|
M , c

|S|
σ , c

|S|
pkT
,
|S|∧
i=1

(
πi ∧ πiσ ∧ πisn

))
We define the following events:

Esig: B1 breaks the unforgeability of the signature scheme S; and
Ecom,1: B3 breaks the soundness of the commitment scheme C.

Proposition 18. Ecounterfeit ⊂ Esig ∪ Ecom,1.

Suppose that we are in case Ecounterfeit \ Esig. Because the coin has been ac-
cepted during Spend in a call to BDepo, the proofs output by B3 are correct.

Let
(
sn1, ν1,M1,pk1

T, σ
1, . . . , sn|S|, ν|S|,M |S|,pk

|S|
T , σ|S|

)
be the values that the

challenger of the soundness game extracts from the commitments output by B3.
If for some i: S.Verify

(
vk,M i, σi

)
6= 1, then B3 wins the soundness game.

Suppose that
∧|S|
i=1 S.Verify

(
vk,M i, σi

)
= 1. Since we are not in Esig, all

values M i correspond to coins that have been withdrawn. But there are only qW
such coins and thus qW such messages M . Thus, we have

∣∣{M i}|S|i=1

∣∣ ≤ qW .

If
∧|S|
i=1 T.SVfyinit

(
pkiT, sn

i,M i
)
6= 1, then B3 won the soundness game.

Assume
∧|S|
i=1 T.SVfyinit

(
pkiT, sn

i,M i
)

= 1. Since T is bootable, it must hold

that
∣∣{sni}|S|i=1

∣∣ ≤ ∣∣{M i}|S|i=1

∣∣, from which we get
∣∣{sni}|S|i=1

∣∣ ≤ qW < |DCL| (the
last inequality follows since we assumed to be in Ecounterfeit).

Note that by construction of DCL, all the initial serial numbers of the el-
ements of DCL are different. Let us call this set I. From |I| = |DCL|, we

deduce |I| >
∣∣{sni}|S|i=1

∣∣. By construction, |I| =
∣∣{E′.Dec(dk′, c̃isn)}|S|i=1

∣∣, and

thus
∣∣{E′.Dec(dk′, c̃isn)}|S|i=1

∣∣ > ∣∣{sni}|S|i=1

∣∣. Let i0 be such that E′.Dec(dk′, c̃i0sn) /∈∣∣{sni}|S|i=1

∣∣. By correctness of E′, we have E′.Enc
(
pk, sni0 , νi0

)
6= c̃i0sn, and thus

(again by correctness of E′) E′.Verify
(
pk, sni0 , νi0 , c̃i0sn

)
6= 1.

We deduce that
∧|S|
i=1 E

′.Verify
(
pk, sni, νi, c̃isn

)
6= 1, and consequently B3 won

the soundness game. We thus have Ecounterfeit \ Esig ⊂ Ecom,1. ut

We build an algorithm to break unforgeability of S′:
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Adversary BA,S
′.Sign∗(sk′,·)

2

(
parS′ , vk

′):
Initialize UL as empty list
Obtain Gr from parS′
(ck, xk)← C.ExSetup (Gr)
parS ← S.Setup (Gr)
(sk, vk)← S.KeyGen (Gr)
parT ← T.Setup (Gr)
par←

(
1λ,Gr,parS,parS′ ,parT, ck

)(
ek′,dk′

)
← E′.KeyGen (Gr)

(ek,dk)← E.KeyGen (Gr)
(skT,pkT)← T.KeyGen (Gr)
skD ← (ε,pkT, skT)
pkB ←

(
ek′, ek, vk, vk′

)
Run ABRegist,BWith,BDepo (par,pkB)
Each time we would use S′.Sign in an oracle call we use

S′.Sign∗
(
sk′, ·

)
, and we add the input to UL

Let (pk, Π) be the output of the last call to BDepo

If such a pair is never returned by BDepo, then abort
Let c1 be the last coin sent by the user
Parse c1 as

(
c0, (cj)ij=1, n, sn, ρsn, ρpk

)
Let j be minimal such that (~sn)j−1 6= ( ~sn′)j−1

(using the notation from CheckDS)

Parse cj−1 as
(
cj−1
pkT

, cj−1
cert , π

j−1
cert , c

j−1
sn , πj−1

sn , cj−1
tag , π

j−1
tag , cM , c

j−1
σ , πj−1

σ ,

c̃j−1
sn , π̃j−1

sn , c̃j−1
tag , π̃

j−1
tag

)
pkT := C.Extr

(
xk, cj−1

pkT

)
σ := C.Extr

(
xk, cj−1

cert

)
If pkT 6∈ UL:

then return (pkT, σ)
Else abort

We denote by ε the part of the secret key that could be ignored in the protocols
(e.g., the certificate cert of a receiver is never used). Let E′sig be the event that

B2 breaks the unforgeability of S′.
We construct a second adversary against soundness of C:

Adversary BA4 (ck):
Obtain Gr from ck
parS ← S.Setup (Gr) ; parS′ ← S′.Setup (Gr) ; parT ← T.Setup (Gr)
par←

(
1λ,Gr,parS,parS′ ,parT, ck

)
(pkB =

(
ek′, ek, vk, vk′

)
, skW = (sk, sk′), skD, skCK)← BKeyGen()

Run ABRegist,BWith,BDepo (par,pkB)
Let (pk, Π) be the output of the last call to BDepo

If such a pair is never returned by BDepo, then abort
Let c be the last coin sent by the user and i be its size
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Parse c as
(
c0, (ck)ik=1, n, sn, ρsn, ρpk

)
Let j be minimal such that (~sn)j−1 6= ( ~sn′)j−1

(using the notation from CheckDS)

Parse c(j−1) as
(
c
(j−1)
pk , c

(j−1)
cert , π

(j−1)
cert , c

(j−1)
sn , π

(j−1)
sn , c

(j−1)
tag , π

(j−1)
tag , cM ,

c
(j−1)
σ , π

(j−1)
σ , c̃

(j−1)
sn , π̃

(j−1)
sn , c̃

(j−1)
tag , π̃

(j−1)
tag

)
Do the same for all k ∈ {0, . . . , i}
If j 6= 1, then parse π

(j−1)
sn as

(
π

(j−1)
sn,valid, c

(j−1)
sn-pf

)
Else

(
π

(j−1)
sn,valid, c

(j−1)
sn-pf

)
←
(
π

(j−1)
sn , cM

)
Parse πjsn as

(
πjsn,valid, c

j
sn-pf

)
and πjtag as

(
πjtag,valid, c

j
t-pf

)
For all k ∈ {0, . . . , i}:

Parse π̃ksn as
(
ckνsn , π

k
sn,eq

)
and parse π̃ktag as

(
ckνtag , π

k
tag,eq

)
Let c′ be the coin that collides with c and i′ be its size

Parse c′ as
(
c′0, (c′k)i

′

k=1, n
′, sn′, ρ′sn, ρ

′
pk

)
Parse c′(j−1) as

(
c
′(j−1)
pk , c

′(j−1)
cert , π

′(j−1)
cert , c

′(j−1)
sn , π

′(j−1)
sn , c

′(j−1)
tag ,

π
′(j−1)
tag , c

′(j−1)
M , c

′(j−1)
σ , π

′(j−1)
σ , c̃

′(j−1)
sn , π̃

′(j−1)
sn , c̃

′(j−1)
tag , π̃

′(j−1)
tag

)
Do the same for all k ∈ {0, . . . , i′}
Parse π′jsn as

(
π′jsn,valid, c

′j
sn-pf

)
Parse π′jtag as

(
π′jtag,valid, c

′j
t-pf

)
Parse π̃

′(j−1)
sn as

(
c
′(j−1)
νsn , π

′(j−1)
sn,eq

)
Parse π̃′jsn as

(
c′jνsn , π

′j
sn,eq

)
Parse π̃′jtag as

(
c′jνtag , π

′j
tag,eq

)
Return

(
E′.Verify(ek′, Y0, Y1, c̃

0
sn) ∧

i∧
k=1

E.Verify
(
ek, Y2k, Y2k+1, c̃

k
sn

)
∧

i∧
k=1

E.Verify
(
ek, Y2i+2k, Y2i+2k+1, c̃

k
tag

)
∧

S′.Verify
(
vk′, X1, X2

)
= 1∧

E.Verify
(
ek, X5, X6, c̃

(j−1)
sn

)
∧ E.Verify

(
ek, X7, X8, c̃

′(j−1)
sn

)
∧

E.Verify
(
ek, X9, X10, c̃

j
sn

)
∧ E.Enc

(
ek, X11, X12, c̃

′j
sn

)
∧

T.SVfyall (X1, X5, X13) = 1∧
T.SVfy (X1, X9, X14) = 1 ∧ T.SVfy (X3, X11, X15) = 1∧
E.Verify

(
ek, X16, X17, c̃

j
tag

)
∧ E.Enc

(
ek, X18, X19, c̃

′j
tag

)
∧

T.TVfy (X1, X5, X9, X16, X20) = 1∧
T.TVfy (X1, X7, X11, X18, X21) = 1,
c0sn, c

0
νsn , . . . , c

k
sn, c

k
νsn , c

1
tag, c

1
νtag , . . . , c

k
tag, c

k
νtag ,

c
(j−1)
pk , c

(j−1)
cert , cjpk, c

′j
pk, c

(j−1)
sn , c

(j−1)
νsn , c

′(j−1)
sn , c

′(j−1)
νsn , cjsn, c

j
νsn , c

′j
sn, c

′j
νsn ,

c
(j−1)
sn-pf , c

j
sn-pf , c

′j
sn-pf , c

j
tag, c

j
νtag , c

′j
tag, c

′j
νtag , c

j
t-pf , c

′j
t-pf ,

i∧
k=0

πksn,eq

i∧
k=1

πktag,eq ∧ π
(j−1)
cert ∧ π(j−1)

sn,eq ∧ π′(j−1)
sn,eq ∧ πjsn,eq ∧ π′jsn,eq ∧

π
(j−1)
sn,valid ∧ π

j
sn,valid ∧ π

′j
sn,valid ∧ π

j
tag,eq ∧ π

′j
tag,eq ∧ π

j
tag,valid ∧ π

′j
tag,valid

)
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where Yj is the variable in the equations representing the purported values in
the j-th commitment, and the Xi’s are the last 21 variables.

We define the following two events:
Ecom,2: B4 breaks the soundness of C, and
Esame-nonce: the same nonce is picked twice by the bank during two different calls

to BDepo.

Proposition 19. Eunforg \ Ecounterfeit ⊂ Esame ∪ Ecom,2 ∪ E′unforg.

Suppose that we are in Eunforg \ (Ecom,2 ∪Ecounterfeit ∪Esame). Because the coin
has been accepted, the proofs are correct (as they are verified in the Spend
protocol, during a call to BDepo). We are thus in a case where the extracted
commitment will verify the equations. Let(
sn0, . . . , sni, tag1, . . . , tagi,pk

(j−1)
tag , cert(j−1),pkjtag,pk

′j
tag, sn

(j−1), ν(j−1)
sn , sn′(j−1),

ν′(j−1)
sn , snj , νjsn, sn

′j , ν′jsn, sn-pf
(j−1), sn-pf j , sn-pf ′j , tagj , νjtag, tag

j′, νj′tag, t-pf
j , t-pf ′j

)
be what the challenger of the soundness game extracts from the commitments
output by B4. Since we are not in Ecom,2 we have that B4 loses the game: for all
k ∈ {1, . . . , i}:

E′.Verify
(
ek′, sn0, ν0

sn, c̃
0
sn

)
= E.Verify

(
ek, snk, νksn, c̃

k
sn

)
= 1,

and for all k ∈ {1, . . . , i}:

E.Verify
(
ek, tagk, νksn, c̃

k
tag

)
= 1.

By correctness of E and E′, we deduce that EDecrypt-fails will not happen. Being in
Eunforg \ Ecounterfeit means that CheckDS detected that the first SN-component
of c is the same as that of another coin (here c′). Note that the last sn of a
deposited coin is generated (with the key skT) and encrypted by the bank itself.
Now because we are not in Esame, we have that CheckDS will find some j, such
that ~snj 6= ~sn′j .

By construction, E.Dec
(
dk, c̃jsn

)
= E.Dec

(
dk, c̃′jsn

)
, which by correctness of E

(and because we are not in Ecom, 2) means sn(j−1) = sn′(j−1). Since

1 = T.SVfy
(
pkjT, sn

j , sn-pf j
)

= T.SVfy
(
pk′jT , sn

′j , sn-pf ′j
)

= T.TVfy
(
pk

(j−1)
T , sn(j−1), snj , tagj , t-pf j

)
= T.TVfy

(
pk
′(j−1)
T , sn(j−1), sn′j , tag′j , t-pf ′j

)
= T.SVfyall

(
pk

(j−1)
T , sn(j−1), sn-pf (j−1)

)
,

and, because T is SN-identifiable, we get that pkjtag = pk′jtag.

Moreover, since T is two-extractable, we deduce that if pkjtag ∈ UL, and that
EDDSfails, Eincorrect and Enot-register will not happen.
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We have proved that
(
Eunforg\Ecounterfeit∪Esame∪Ecom, 2

)
=⇒ pkjtag 6∈ UL.

Finally note that if pkjtag 6∈ UL, and if Ecom, 2 ∪ Esame ∪ Ecounterfeit does not

happen, then B2 will win the unforgeability game against S′. This yields:

Eunforg \ (Ecom,2 ∪ Ecounterfeit) ⊂ Esame ∪ E′sig. ut

Now suppose we are in Esame. By correctness of E, we deduce that the serial
numbers were also identical before their encryption. Then by N -injectivity, we
have that the nonces picked during the deposits were the same, and we are
therefore in Esame-nonce. Thus Esame ⊂ Esame-nonce. From this we deduce

Eunforg ⊂ Ecom,2 ∪ Esame-nonce ∪ E′sig ∪ Ecom,2 ∪ Esig.

By considering the probabilities, we finally conclude that

ε ≤ εh,1 + εh,2 + εsig + ε′sig +
d2

N
. ut

A.2 Exculpability

Theorem 20. Suppose there is an adversary A against exculpability (Def. 3) of
our scheme with advantage ε that makes at most u calls to the oracle URegist.
Then there exist adversaries B1 against tag-exculpability with advantage εtag,
and B2 against mode-hiding of C with advantage εm-ind such that

ε ≤ u εtag + εm-ind.

We start with recalling the tag-exculpability game:

Experiment Expttag-exculpabilityT,B (Gr):

parT ← T.Setup (Gr)
(skT,pkT)← T.KeyGen

(
1λ
)

L := ∅
Π ′ ← BO1(skT),O2(skT,·) (pkT)
Return T.VfyGuilt (pkT, Π

′)

O1(sk):

n
$←− N ; T [k] := n; k := k + 1

(sn, sn-pf)← T.SGen(sk, n)
Return sn

O2(sk, sn′, i):
If T [i] = ⊥, abort the oracle call
n := T [i] T [i] := ⊥
(tag, t-pf)← T.TGen(sk, n, sn′)
Return tag

We construct the following adversary against tag-exculpability of T.

Adversary BO1(skT),O2(skT,·)
1 (parT,pkT):

Obtain Gr from parT
(ck, td)← C.SmSetup (Gr)
parS ← S.Setup (Gr)
parS′ ← S′.Setup (Gr)
par←

(
1λ,parS,parS′ ,parT, ck

)
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pkB ← A (par)

u∗
$←− {1, . . . , u}

(i∗, Π∗)← AURegist,Spy,UWith,Rcv,Spd,S&R,UDepo (par,pkB)
In the u∗-th call of URegist, use pkT (instead of running T.KeyGen)
If the adversary queries Spy (u∗), abort
If the adversary queries UWith, Rcv, Spd, S&R, UDepo on u∗,

use O1 and O2, and td (since skT is unknown)
If O2 fails, abort the entire procedure
Output Π∗

The game is perfectly simulated from A’s point of view, except when it calls
Spy(u∗), or makes that user double-spend, or if it detects that we are in hiding-
mode (which happens with probability at most εm-ind). Let Eex and Etag be the
events that A wins and that B1 wins, respectively. Suppose that we are in Eex.
This means that A forges a proof against one of the registered users (and does
not spy on her). The probability that this user is u∗ is at least 1

u . In this case,
we have:

– A did not spy on u∗ or make her double-spend (as in both cases we would
not be in Eex).

– VfyGuilt(pkT, Π
∗) = 1 (because we are in Eex); thus T.VfyGuilt(skT, Π

∗) = 1.

We thus deduce that
Pr[Eex] ≤ uPr[Etag]. ut

A.3 Coin anonymity

Theorem 21. Suppose there is an A against coin anonymity (c-an) of our
scheme with advantage ε and let k be an upper-bound on the number of users
transferring the challenge coins. Then there exist adversaries against mode-
indistinguishability of C and tag-anonymity of T with advantages εm-ind and εt-an,
resp., such that

ε ≤ 2
(
εm-ind + (k + 1)εt-an

)
.

Proof sketch. In the proof, we first define a hybrid game in which the commit-
ment key is switched to hiding mode (hence the loss εm-ind, which occurs twice
for b = 0 and b = 1). All commitments are then perfectly hiding and the only
information available to the adversary are the serial numbers and tags. (They are
encrypted in the coin, but the adversary, impersonating the bank, can decrypt
them.)

We then argue that, by tag anonymity of T, the adversary cannot link a
user to a pair (sn, tag), even when it knows the users’ secret keys. We define
a sequence of k + 1 hybrid games (as k transfers involve k + 1 users); going
through the user vector output by the adversary, we can switch, one by one, all
users from the first two the second vector. Each switch can be detected by the
adversary with probability at most 2εt-an.
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A technical difficulty occurs during the first swap: We would like to switch
the two initial serial numbers of c0 and c1, but this seems problematic, as during
the first withdraw (of c0), the challenger does not yet know i1 (and possibly this
user has not even been defined yet), and thus the initial serial number of c1. But
fortunately, we note (in Proposition 25) that in hiding mode of the proof system,
we do not need to compute the initial serial numbers during the withdraws! This
is because we only send to the adversary (playing the bank) committed elements
and proofs that reveal no information. We can therefore compute theses serial
numbers after these withdraws, and switch them at this later moment.

Full proof. We recall Exptc-anA,0 :

Exptc-anA,0 (λ):
par← ParamGen(1λ); pkB ← A(par)
i0 ← AURegist,Spy

Run UWith(i0) with A
i1 ← AURegist,Spy

Run UWith(i1) with A
( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure
Then repeat the following step for j = 1, . . . , k:

Run S&R(2j − 1, ( ~i(0))j); Run S&R(2j, ( ~i(1))j)
Run Spd(2k + 1 + b) with A
Run Spd(2k + 2− b) with A
b∗ ← A ; return b∗

In the game Exptc-anA,0,hiding, we will change the commitment key. If the adver-
sary detects this, it breaks the mode-indistinguishability of C. Thus the distri-
bution of the experiment will not change except with probability εm-ind (Prop-
erty 22).

Experiment Exptc-anA,0,hiding(λ):

Gr ← GrGen(1λ)

parT ← T.Setup(Gr)

parS ← S.Setup(Gr)

parS′ ← S′.Setup(Gr)

(ck, td)← C.SmSetup(Gr)

par← (1λ,Gr,parS,parS′ ,parT, ck)

pkB ← A(par)
i0 ← AURegist,Spy

Run UWith(i0) with A
i1 ← AURegist,Spy

Run UWith(i1) with A
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( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure
Then repeat the following for j = 1, . . . , k:

Run S&R(2j − 1, ( ~i(0))j); Run S&R(2j, ( ~i(1))j)
Run Spd(2k + 1 + b) with A
Run Spd(2k + 2− b) with A
b∗ ← A ; return b∗

Proposition 22. Exptc-an
A,0 (λ) and Exptc-an

A,0,hiding(λ) are εm-ind-statistically close.

Note that td is never used in Exptc-anA,0,hiding(λ). Therefore, the game can be
simulated using a mode-indistinguishability challenge (Gr, ck). If ck has been
generated by C.Setup, this simulates Exptc-anA,0,(λ); if ck has been generated by
C.SmSetup, this simulates Exptc-anA,0,hiding. This experiment can therefore be seen
as a mode-distinguisher. ut

Let C.SmPrvsn,C.SmPrvsn,init,C.SmPrvtag,C.E.SmPrvenc denote analogs of algo-
rithms C.Prvsn, C.Prvsn,init, C.Prvtag, C.E.Prvenc, except that every C.Prv is sub-
stituted by C.SmPrv and every C.Cm by C.ZCm.

Now each time the challenger is using an oracle, it uses C.ZCm instead of
C.Cm, C.SmPrv instead of C.Prv, C.SmPrvenc instead of C.Prvenc, etc.

Let S&RZK, UWithZK, SpdZK denote these modified oracles.

Experiment Exptc-anA,0,ZK(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
parS ← S.Setup(Gr)
parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,Gr,parS,parS′ ,parT, ck)
pkB ← A(par)
i0 ← AURegist,Spy

Run UWithZK(i0) with A
i1 ← AURegist,Spy

Run UWithZK(i1) with A
( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure
Then repeat the following step for j = 1, . . . , k:

Run S&RZK (2j − 1, ( ~i(0))j); Run S&RZK (2j, ( ~i(1))j)

Run SpdZK (2k + 1 + b) with A
Run SpdZK (2k + 2− b) with A
b∗ ← A ; return b∗

Because we are in the hiding mode, the following follows directly from perfect
zero-knowledge in hiding mode:
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Proposition 23. Exptc-an
A,0,hiding(λ) and Exptc-anA,0,ZK(λ) are equivalently distributed.

We now consider the following part of Exptc-anA,0,ZK(λ)) in more detail:

i0 ← AURegist,Spy

Run UWithZK (i0) with A
i1 ← AURegist,Spy

Run UWithZK(i1) with A

We would like to swap the serial numbers of i0 and i1 by using tag-anonymity.
The issue here is that in the first call to UWithZK, we do not know i1 yet (because
it is only chosen in a second round). Fortunately, at this step we only sent A
data that is unrelated to this serial number, since we are using ZCm. Thus, at
the end of this part, we can compute the ciphertexts of both initial coins.

We can decompose this part of the game as follows:

i0 ← AURegist,Spy

n(0) $←− N ; ρ
(0)
sn , ρ

(0)
cert, ρ

(0)
pk , ρ

(0)
M

$←− R
(sn(0),M

(0)
sn )← T.SGeninit(ski0 , n

(0))

c
(0)
cert, c

(0)
sn , c

(0)
pk , c

(0)
M ← C.ZCm(ck, ρ

(0)
cert, ρ

(0)
sn , ρ

(0)
pk , ρ

(0)
M )

π
(0)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(0)
pk , ρ

(0)
cert)

π
(0)
sn ← C.SmPrvsn,init(td, ρ

(0)
pk , ρ

(0)
sn , ρ

(0)
M )

Send (c
(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , c

(0)
M , π

(0)
sn ) to A

Receive (c
(0)
σ , π

(0)
σ ) from A

If C.Verify
(
ck,S.Verify(vk, ·, ·) = 1, c

(0)
M , c

(0)
σ , πσ

)
= 0, then return ⊥

ν
(0)
sn

$←− R
c̃
(0)
sn ← E.Enc(ek, sn(0), ν

(0)
sn )

π̃
(0)
sn ← C.SmPrvenc(td, ek, ρ

(0)
sn , c̃

(0)
sn )

Pick ~ρ(0)′ long enough to compute:

c
(0)
1 =

(
Rand((c

(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , π

(0)
sn , c

(0)
M , c

(0)
σ , π

(0)
σ , c̃

(0)
sn , π̃

(0)
sn ), ~ρ(0)′),

n(0), sn(0), ρ
(0)
sn + ( ~ρ(0)′)sn, ρ

(0)
pk + ( ~ρ(0)′)pk

)
CL ← [(i0, c

(0)
1 , 0,A)]

i1 ← AURegist,Spy

n(1) $←− N ; ρ
(1)
sn , ρ

(1)
cert, ρ

(1)
pk , ρ

(1)
M

$←− R;

(sn(1),M
(1)
sn )← T.SGeninit(ski1 , n

(1))

c
(1)
cert, c

(1)
sn , c

(1)
pk , c

(1)
M ← C.ZCm(ck, ρ

(1)
cert, ρ

(1)
sn , ρ

(1)
pk , ρ

(1)
M )

π
(1)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(1)
pk , ρ

(1)
cert)

π
(1)
sn ← C.SmPrvsn,init(td, ρ

(1)
pk , ρ

(1)
sn , ρ

(1)
M )

Send (c
(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , c

(1)
M , π

(1)
sn ) to A

Receive (c
(1)
σ , π

(1)
σ ) from A

If C.Verify
(
ck,S.Verify(vk, ·, ·) = 1, c

(1)
M , c

(1)
σ , π

(1)
σ

)
= 0, then return ⊥

ν
(1)
sn

$←− R
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c̃
(1)
sn ← E.Enc(ek, sn(1), ν

(1)
sn )

π̃
(1)
sn ← C.SmPrvenc(td, ek, ρ

(1)
sn , c̃

(1)
sn )

Pick ~ρ(1)′ long enough to compute the following:

c
(1)
1 =

(
Rand((c

(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , π

(1)
sn , c

(1)
M , c

(1)
σ , π

(1)
σ , c̃

(1)
sn , π̃

(1)
sn ), ~ρ(1)′),

n(1), sn(1), ρ
(1)
sn + ( ~ρ(1)′)sn, ρ

(1)
pk + ( ~ρ(1)′)pk

)
CL[2]← (i1, c

(1)
1 , 0,A)

We can do the sn-computations and the encryptions at the end of this part
(because they are not related to data sent to A). We can therefore replace the
previous instructions by the following algorithm DoubleUWith:

DoubleUWithA:
i0 ← AURegist,Spy

ρ
(0)
sn , ρ

(0)
cert, ρ

(0)
pk , ρ

(0)
M

$←− R; Compute:

c
(0)
cert, c

(0)
sn , c

(0)
pk , c

(0)
M ← C.ZCm(ck, ρ

(0)
cert, ρ

(0)
sn , ρ

(0)
pk , ρ

(0)
M )

π
(0)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(0)
pk , ρ

(0)
cert)

π
(0)
sn ← C.SmPrvsn,init(td, ρ

(0)
pk , ρ

(0)
sn , ρ

(0)
M )

Send
(
c
(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , c

(0)
M , π

(0)
sn

)
to A

Receive (c
(0)
σ , π

(0)
σ ) from A

If C.Verify(ck,S.Verify(vk, ·, ·) = 1, c
(0)
M , c

(0)
σ , πσ) = 0 then output ⊥

i1 ← AURegist,Spy

ρ
(1)
sn , ρ

(1)
cert, ρ

(1)
pk , ρ

(1)
M

$←− R; Compute:

c
(1)
pk ← C.ZCm(ck, ρ

(1)
pk ) ; c

(1)
cert ← C.ZCm(ck, ρ

(1)
cert)

c
(1)
sn ← C.ZCm(ck, ρ

(1)
sn ) ; c

(1)
M ← C.ZCm(ck, ρ

(1)
M )

π
(1)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(1)
pk , ρ

(1)
cert)

π
(1)
sn ← C.SmPrvsn,init(td, ρ

(1)
pk , ρ

(1)
sn , ρ

(1)
M )

Send
(
c
(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , c

(1)
M , π

(1)
sn

)
to A

Receive (c
(1)
σ , π

(1)
σ ) from A

If C.Verify(ck,S.Verify(vk, ·, ·) = 1, c
(1)
M , c

(1)
σ , π

(1)
σ ) = 0 then output ⊥

n(0), n(1) $←− N ; (sn(0),M
(0)
sn )← T.SGeninit(ski0 , n

(0))

(sn(1),M
(1)
sn )← T.SGeninit(ski1 , n

(1))

ν
(0)
sn , ν

(1)
sn

$←− R
c̃
(0)
sn ← E.Enc(ek, sn(0), ν

(0)
sn ); c̃

(1)
sn ← E.Enc(ek, sn(1), ν

(1)
sn )

π̃
(0)
sn ← C.SmPrvenc(td, ek, ρ

(0)
sn , c̃

(0)
sn )

π̃
(1)
sn ← C.SmPrvenc(td, ek, ρ

(1)
sn , c̃

(1)
sn )

Pick uniformly at random ~ρ(0)′, ~ρ(1)′ long enough to compute:

c
(0)
1 =

(
Rand((c

(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , π

(0)
sn , c

(0)
M , c

(0)
σ , π

(0)
σ , c̃

(0)
sn , π̃

(0)
sn ), ~ρ(0)′),

n(0), sn(0), ρ
(0)
sn + ( ~ρ(0)′)sn, ρ

(0)
pk + ( ~ρ(0)′)pk

)
c
(1)
1 =

(
Rand((c

(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , π

(1)
sn , c

(1)
M , c

(1)
σ , π

(1)
σ , c̃

(1)
sn , π̃

(1)
sn ), ~ρ(1)′),

n(1), sn(1), ρ
(1)
sn + ( ~ρ(1)′)sn, ρ

(1)
pk + ( ~ρ(1)′)pk

)
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CL[1]← (i0, c
(0)
1 , 0,A) ; CL[2]← (i1, c

(1)
1 , 0,A)

Return (i0, i1)

To express these instruction changes, we define the following game.

Experiment Exptc-anA,0,ZKV2(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
parS ← S.Setup(Gr)
parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)
pkB ← A(par)

(i0, i1)← DoubleUWithA

( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure
Then repeat the following for j = 1, . . . , k:

Run S&RZK (2j − 1, ( ~i(0))j , ); Run S&RZK (2j, ( ~i(1))j)
Run SpdZK (2k + 1 + b) with A
Run SpdZK (2k + 2− b) with A
b∗ ← A ; return b∗

Since this change is transparent for the adversary, we get the following:

Proposition 24. Exptc-an
A,0,ZK(λ) and Exptc-an

A,0,ZKV2(λ) are equally distributed.

Next we have to swap the serial numbers. We define two new procedures:

DoubleUWithArev:
i0 ← AURegist,Spy

ρ
(0)
sn , ρ

(0)
cert, ρ

(0)
pk , ρ

(0)
M

$←− R; Compute:

c
(0)
cert ← C.ZCm(ck, ρ

(0)
cert)

c
(0)
sn ← C.ZCm(ck, ρ

(0)
sn ); c

(0)
pk ← C.ZCm(ck, ρ

(0)
pk )

c
(0)
M ← C.ZCm(ck, ρ

(0)
M )

π
(0)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(0)
pk , ρ

(0)
cert)

π
(0)
sn ← C.SmPrvsn,init(td, ρ

(0)
pk , ρ

(0)
sn , ρ

(0)
M )

Send (c
(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , c

(0)
M , π

(0)
sn ) to A

Receive (c
(0)
σ , π

(0)
σ ) from A

If C.Verify
(
ck,S.Verify(vk, ·, ·) = 1, c

(0)
M , c

(0)
σ , πσ

)
= 0 then output ⊥

i1 ← AURegist,Spy

ρ
(1)
sn , ρ

(1)
cert, ρ

(1)
pk , ρ

(1)
M

$←− R; Compute:

c
(1)
cert ← C.ZCm(ck, ρ

(1)
cert)

c
(1)
sn ← C.ZCm(ck, ρ

(1)
sn )
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c
(1)
pk ← C.ZCm(ck, ρ

(1)
pk )

c
(1)
M ← C.ZCm(ck, ρ

(1)
M )

π
(1)
cert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ

(1)
pk , ρ

(1)
cert)

π
(1)
sn ← C.SmPrvsn,init(td, ρ

(1)
pk , ρ

(1)
sn , ρ

(1)
M )

Send (c
(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , c

(1)
M , π

(1)
sn ) to A

Receive (c
(1)
σ , π

(1)
σ ) from A

If C.Verify
(
ck,S.Verify(vk, ·, ·) = 1, c

(1)
M , c

(1)
σ , π

(1)
σ

)
= 0 then output ⊥

n(0), n(1) $←− N ; (sn(0),M
(0)
sn )← T.SGeninit( ski1 , n

(0))

(sn(1),M
(1)
sn )← T.SGeninit( ski0 , n

(1))

ν
(1)
sn , ν

(0)
sn

$←− R
c̃
(0)
sn ← E.Enc(ek, sn(0), ν

(0)
sn ); c̃

(1)
sn ← E.Enc(ek, sn(0), ν

(1)
sn )

π̃
(1)
sn ← C.SmPrvenc(td, ek, ρ

(1)
sn , c̃

(1)
sn )

π̃
(0)
sn ← C.SmPrvenc(td, ek, ρ

(0)
sn , c̃

(0)
sn )

Pick uniformly at random ~ρ(0)′, ~ρ(1)′ long enough to compute:

c
(0)
1 =

(
Rand

(
(c

(0)
pk , c

(0)
cert, π

(0)
cert, c

(0)
sn , π

(0)
sn , c

(0)
M , c

(0)
σ , π

(0)
σ , c̃

(0)
sn , π̃

(0)
sn ), ~ρ(0)′

)
,

n(0), sn(0), ρ
(0)
sn + ( ~ρ(0)′)sn, ρ

(0)
pk + ( ~ρ(0)′)pk

)
c
(1)
1 =

(
Rand

((
c
(1)
pk , c

(1)
cert, π

(1)
cert, c

(1)
sn , π

(1)
sn , c

(1)
M , c

(1)
σ , π

(1)
σ , c̃

(1)
sn , π̃

(1)
sn

)
, ~ρ(1)′

)
,

n(1), sn(1), ρ
(1)
sn + ( ~ρ(1)′)sn, ρ

(1)
pk + ( ~ρ(1)′)pk

)
CL[1]← (1, i0, c

(0)
1 , 0,A)

CL[2]← (i1, c
(1)
1 , 0,A)

S&RZK,inv(j, i, sk1, sk2):
c← CL[j].c

n′
$←− N ; ρ′sn, ρ

′
cert, ρ

′
pk, ρ

′
sn-pf , ν

′
sn

$←− R; Compute:

(sn′, sn-pf ′)← T.SGen(parT, sk2 , n
′)

c′cert, c
′
pk, c

′
sn, c

′
sn-pf ← C.ZCm(ck, ρ′cert, ρ

′
pk, ρ

′
sn, ρ

′
sn-pf )

c̃′sn ← E.Enc(ek, sn′, ν′sn)
π′cert ← C.SmPrv

(
td,S.Verify(vk′, ·, ·) = 1, ρ′vk, ρ

′
pk, ρ

′
cert

)
π′sn ← C.SmPrvsn(td,pk′tag, sn

′, sn-pf , ρ′pk, ρ
′
sn, ρ

′
sn-pf )

π̃′sn ← C.SmPrvenc(td, ek, ρ′sn, c̃
′
sn)

Parse c as
(
c0, (cj = (cjpk, c

j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag, c̃

j
sn, c̃

j
tag, π̃

j
sn, π̃

j
tag))

i
j=1,

n, sn, ρsn, ρpk
)

ρtag, νtag, ρt-pf
$←− R

(tag, t-pf)← T.Gen(parT, sk1 , n, sn
′)

ctag ← C.ZCm(ck, ρtag)
˜ctag ← E.Enc(ek, tag, νtag)
πtag ← C.SmPrvtag(td,pktag, sn, sn

′, tag, t-pf , ρpk, ρsn, ρ
′
sn, ρtag, ρt-pf )

π̃tag ← C.SmPrvenc(td, ek, ρtag, c̃tag)

Check VERinit(c
0) ∧

i∧
j=1

VERstd(cj−1, cj)∧
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T.Verify(ck, cipk, c
′
sn, ctag, πtag) ∧ C.Verifyenc(ck, ek, ctag, c̃tag, π̃tag),

if any of them rejects then output ⊥
Else choose a sufficiently long vector of randomness ~ρ′′ to compute:

c′′←Rand
(

(c0, (cj)ij=1, c
′
pk, c

′
cert, π

′
cert, c

′
sn, π

′
sn, ctag, πtag, c̃

′
sn, π̃

′
sn, c̃

′
tag, π̃

′
tag), ~ρ

′′
)

cnew :=
(
c′′, n′, sn′, ρ′sn + ( ~ρ′′)sn′ , ρ

′
pk + ( ~ρ′′)pk′

)
CL[|CL|+ 1] := (i, cnew, 0, j)

We define a new game for all l ∈ {0, . . . , k − 1}:

Experiment Exptc-anA,0,ZKV2,l(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
parS ← S.Setup(Gr)
parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)
pkB ← A(par)

(i0, i1)← DoubleUWithArev

( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure

Consider i0 as ( ~i(0))0, and i1 as ( ~i(1))0

For all b, j : sk
(b)
j ← UL[( ~i(b))j ].sk

Repeat the following for j = 1, . . . , l:

Run S&RZK,inv (2j − 1, ( ~i(0))j , sk
(1)
j−1, sk

(1)
j )

Run S&RZK,inv (2j, ( ~i(1))j , sk
(0)
j−1, sk

(0)
j )

Run S&RZK,inv (2l + 1, ( ~i(0))l+1, sk
(1)
l , sk

(0)
l+1)

Run S&RZK,inv (2l + 2, ( ~i(1))l+1, sk
(0)
l , sk

(1)
l+1)

Repeat the following for j = l + 2, . . . , k:

Run S&RZK (2j − 1, ( ~i(0))j); Run S&RZK (2j, ( ~i(1))j)
Run SpdZK (2k + 1 + b) with A
Run SpdZK (2k + 2− b) with A
b∗ ← A ; return b∗

Proposition 25. Exptc-an
A,0,ZKV2(λ) and Exptc-an

A,0,ZKV2,0(λ) are 2εt-an-statistically
close.

We receive a challenge parT in the tag-anon game for T (and not the tag ex-
culpability game, in contrast to the proof of Theorem 20), and we use parT as
parameter for the tags instead of generating it in Exptc-an

A,0,ZKV2.
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In DoubleUWith, we send to the tag-anon-challenger the secret keys of i0
and i1, and we use O1 to generate the serial number of i0 in DoubleUWith and
O2(0) to generate the corresponding tag in the first S&RZK

4.
If the challenger was in mode 0, this will not change the experiment. But if

the challenger was in mode 1, it will replace i0 by i1. Let Exptc-an
A,0,ZKV2,−1 denote

the game corresponding to this swap and ∆ be the statistical distance.
We have just proved that

∆
(
Exptc-an

A,0,ZKV2(λ),Exptc-an
A,0,ZKV2,−1(λ)

)
≤ εt-an.

Analogously, we replace i1 by i0, i.e., we show that

∆
(
Exptc-an

A,0,ZKV2,−1(λ),Exptc-an
A,0,ZKV2,0(λ)

)
≤ εt-an,

and therefore ∆
(
Exptc-an

A,0,ZKV2(λ),Exptc-an
A,0,ZKV2,0(λ)

)
≤ 2εt-an. ut

The proof is completely analogous for the following property, which lets us
swap multiple games.

Proposition 26. For all l ∈ {0, . . . , k−2}, we have that Exptc-an
A,0,ZKV2,l(λ) and

Exptc-an
A,0,ZKV2,l+1(λ) are 2εt-an-statistically close.

Finally, we define a last oracle to swap the last keys (and the corresponding
game):

SpdZK,inv(k, sk1):
Receive (sn′, ρ′sn) from A
c← CL[k].c

Parse c as
(
c0, (cj=(cjpk, c

j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag, c̃

j
sn, c̃

j
tag, π̃

j
sn, π̃

j
tag))

i
j=1,

n, sn, ρsn, ρpk
)

ρtag, νtag, ρt-pf
$←− R

(tag, t-pf)← T.Gen(parT, sk1 , n, sn
′)

ctag ← C.ZCm(ck, ρtag)
c̃tag ← E.Enc(ek, tag, νtag)
πtag ← C.SmPrvtag(td,pktag, sn, sn

′, tag, t-pf , ρpk, ρsn, ρ
′
sn, ρtag, ρt-pf )

π̃tag ← C.SmPrvenc(td, ek, ρtag, c̃tag)
Send

(
c0, (cj)ij=1, ctag, πtag, c̃tag, π̃tag

)
to A

Experiment Exptc-anA,0,ZKV2,k(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
parS ← S.Setup(Gr)
parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)

4 We use the oracle only in these step; for the other serial number and tag generations,
we use the secret keys (which we have generated) like in Exptc-anA,0,ZKV2.
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par← (1λ,parS,parS′ ,parT, ck)
pkB ← A(par)
(i0, i1)← DoubleUWithArev

( ~i(0), ~i(1))← AURegist,Spy

Let k := | ~i(0)|; if k 6= | ~i(1)|, abort the entire procedure

Consider i0 as ( ~i(0))0, and i1 as ( ~i(1))0

For all b, j : sk
(b)
j ← UL[( ~i(b))j ].sk

Then repeat the following for j = 1, . . . , k :

Run S&RZK,inv (2j − 1, ( ~i(0))j ,UL[( ~i(1))j−1].sk,UL[( ~i(1))j ].sk)

Run S&RZK,inv (2j, ( ~i(1))j ,UL[( ~i(0))j−1].sk,UL[( ~i(0))j ].sk)

Run SpdZK,inv (2k + 1 + b,UL[( ~i(1))k].sk) with A

Run SpdZK,inv (2k + 2− b,UL[( ~i(0))k].sk) with A
b∗ ← A ; return b∗

Analogously to previous two propositions, we get:

Proposition 27. Exptc-an
A,0,ZKV2,k−1(λ) and Exptc-an

A,0,ZKV2,k(λ) are 2εt-an-statis-
tically close.

By noting that two randomized commitments of the same type in the hiding-
mode have the (exact) same distribution, we get that Exptc-anA,0,ZKV2,k(λ) is
equally distributed as Exptc-anA,1,ZK(λ).

From a similar reasoning, we get that Exptc-anA,1,ZK(λ) is εm-ind statistically
close to Exptc-anA,1 (λ). Finally, we deduce that Exptc-anA,1 (λ) is 2(εZK+(k+1)εt-an)-
statistically-close to Exptc-anA,0 (λ). ut

Note that εt-an is the advantage against tag-anonymity of an adversary that is
making just one call to O1 and one to O2.

A.4 Coin transparency

Theorem 28. Let A be an adversary against coin-transparency (c-tr) of our
scheme with advantage ε, and let ` be the size of the challenge coins, and k be an
upper-bound on the number of users transferring the challenge coins. Then there
exist adversaries against mode-indistinguishability of C, tag-anonymity of T,
IACR-security of E and RCCA-security of E′ with advantages εm-ind, εt-an, εiacr

and εrcca, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an + (2 ` + 1) εiacr + εrcca.

The proof proceeds via an hybrid argument. We first recall game Exptc-trA,0 .

Experiment Exptc-trA,0 (λ):
par← ParamGen(1λ); (skB,pkB)← BKeyGen(par)
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DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′,Spy(par,pkB, skW , skD)
Run Rcv(i0) with A
Let c0 be the coin received
x0 ← CheckDS(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1
DCL′ ← CheckDS(skCK, ∅, ∅, c0)

i1 ← AURegist,BDepo′,Spy

Run Rcv(i1) with A
Let c1 be the coin received
x1 ← CheckDS(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 then return 0
x2 ← CheckDS(skCK, ∅,DCL′, c1)
If x2 6= ⊥ then DCL′ ← x2

(~i(0),~i(1))← AURegist,BDepo′,Spy

Let k := |~i(0)|; If k 6= |~i(1)| then return 0

If k 6= 0 then run S&R(1, (~i(0))1)
For j = 2, . . . , k:

Run S&R(j + 1, (~i(0))j)
Run Spd(k + 2) with A
b∗ ← ABDepo′ ; return b∗ // instead of CheckDS∗, BDepo′

uses CheckDS′(·, ·, ·, ·,DCL′) defined as follows:

CheckDS′(skCK,UL,DCL, c,DCL′):
x← CheckDS(skCK, ∅,DCL′, c)
If x = ⊥:

ctr← ctr + 1
If ctr > 1 then return 0

Return CheckDS(skCK, ∅,DCL, c)

Note that we are only interested in detecting double spending, and not tracing
the cheater (because CheckDS always run on an empty user list, which in our
instantiation implies that it will never accuse someone and will output ⊥ when it
detects a double-spending). We can therefore simplify CheckDS as follows (and
the distribution of the output of the experiment will be unchanged):

CheckDSsimple(skCK,UL,DCL, c):
sn← E′.Dec(dkinit, c̃

0
sn)

If sn ∈ DCL then return ⊥
Else DCL := DCL ∪ {sn}; return DCL

Let CheckDS′simple and BDepo′simple be similar variants of CheckDS′ and BDepo′,
respectively, that use CheckDSsimple instead of CheckDS. The beginning of the
proof will be very similar to the one of coin-anonymity.
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Note that we choose to only keep the initial serial numbers in DCL, since in
this game we only check if there is double-spending or not (in particular, we do
not send any proof of culpability). Thus only the first serial-number component
of a coin matters, and it will not change in the following game.

Using the same arguments as in Sect. A.3, we get the following.

Proposition 29. Exptc-tr
A,0(λ) and Exptc-tr

A,0,ZK(λ) are (εm-ind+tεt-an) statistically
close.

Experiment Exptc-trA,0,ZK(λ):

Gr ← GrGen(1λ)

parT ← T.Setup(Gr)

parS ← S.Setup(Gr)

parS′ ← S′.Setup(Gr)

(ck, td)← C.SmSetup(Gr)

par← (1λ,parS,parS′ ,parT, ck)

(pkB, skB)← BKeyGen
DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′simple,Spy(par,pkB, skW , skD)

Run RcvZK (i0) with A ; let c0 be the received coin

x0 ← CheckDSsimple(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1
DCL′ ← CheckDSsimple(skCK, ∅, ∅, c0)

i1 ← AURegist,BDepo′simple,Spy

Run RcvZK (i1) with A ; let c1 be the received coin

x1 ← CheckDSsimple(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 then return 0
x2 ← CheckDSsimple(skCK, ∅,DCL′, c1)
If x2 6= ⊥ then DCL′ ← x2

(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1): return 0

If k 6= 0, then run S&RZK (1, (~i
(1)

)1)

Then repeat the following for j = 3, . . . , (k + 1):

Run S&RZK (j, (~i
(1)

)j−1)

Run SpdZK (k + 1) with A
b∗ ← ABDepo′simple ; return b∗ // BDepo′simple uses CheckDS′simple

Now we can leverage zero-knowledge and randomizability to partially “remelt
(all the commits and proofs in) c0. The strategy is the following: Using Extract,
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defined below, we “break” c0 and c1 to extract all the relevant information (serial
numbers, tags and nonce). Using Remelt we remelt both coins, after switching
the following content:

– In Exptc-trA,0,iacr, we switch all the tags, and serial numbers (except the first
serial number).

– In Exptc-trA,0,rcca1, we switch the first serial numbers of both coins.

– In Exptc-trA,0,final, we switch the nonces.

Thus we define the two followings procedures:

Extract(skCK, c):
Parse c as:(
c0,
(
ck = (ckpk, c

k
cert, π

k
cert, c

k
sn, π

k
sn, c

k
tag, π

k
tag, c̃

k
sn, c̃

k
tag, π̃

k
sn, π̃

k
tag)
)`
k=1

,

n, sn, ρsn, ρpk
)

sn0 = E′.Dec(dkinit, c̃
0
sn)

Return
(
sn0, n, (c̃

1
sn, . . . , c̃

`
sn), (c̃1tag, . . . , c̃

`
tag)
)

Remelt(td, c̃sn, n, (c̃
1
sn, . . . , c̃

`
sn), (c̃1tag, . . . , c̃

`
tag)):

ρ0
sn, ρ

0
cert, ρ

0
pk, ρ

0
M , ρ

0
σ

$←− R
csn, ccert, cpk, cM , cσ ← C.ZCm(ck, ρ0

sn, ρ
0
cert, ρ

0
pk, ρ

0
M , ρ

0
σ)

πcert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρ0
pk, ρ

0
cert)

πσ ← C.SmPrv(td,S.Verify(vk, ·, ·) = 1, ρ0
M , ρ

0
σ)

πsn ← C.SmPrvsn,init(td, ρ
0
pk, ρ

0
sn, ρ

0
M )

π̃sn ← C.SmPrv′enc(td, ek′, ρ0
sn, c̃

0
sn)

c0 ← (cpk, ccert, πcert, csn, πsn, cM , cσ, πσ, c̃sn, π̃sn)
For k ∈ {1, . . . , `}:

ρksn, ρ
k
cert, ρ

k
pk, ρ

k
tag,

$←− R
cksn, c

k
tag, c

k
pk, c

k
M , c

k
σ ← C.ZCm(ck, ρksn, ρ

k
tag, ρ

k
pk, ρ

k
M , ρ

k
σ)

πkcert ← C.SmPrv(td,S′.Verify(vk′, ·, ·) = 1, ρkpk, ρ
k
cert)

πksn ← C.SmPrvsn(td, ρkpk, ρ
k
sn)

π̃ksn ← C.SmPrvenc(td, ek, ρksn, c̃
k
sn)

πktag ← C.SmPrvsn(td, ρkpk, ρ
k−1
sn , ρksn, ρ

k
tag)

π̃ktag ← C.SmPrvenc(td, ek, ρktag, c̃
k
tag)

ck ← (ckpk, c
k
cert, π

k
cert, c

k
sn, π

k
sn, c̃

k
sn, π̃

k
sn, c̃

k
sn, π

k
tag, π̃

k
tag)

Return
(
(ck)`k=0, n, sn, ρsn, ρpk

)
By the zero-knowledge property of C, the outputs of Exptc-trA,0,ZK(λ) and

Exptc-trA,0,remelt(λ) will follow perfectly the same distribution:

Proposition 30. Exptc-tr
A,0,remelt(λ) and Exptc-tr

A,0,ZK(λ) are equally distributed.

Experiment Exptc-trA,0,remelt(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr) ; parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
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par← (1λ,parS,parS′ ,parT, ck)
(pkB, skB)← BKeyGen()
DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′simple,Spy(par,pkB, skW , skD)
Run RcvZK(i0) with A ; let c0 be the received coin
x0 ← CheckDSsimple(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1

i1 ← AURegist,BDepo′,Spy

Run RcvZK(i1) with A ; let c1 be the received coin
x1 ← CheckDSsimple(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 then abort

sn0, n
(0), ~̃csn,0, ~̃ctag,0 ← Extract(skCK, c0)

sn1, n
(1), ~̃csn,1, ~̃ctag,1 ← Extract(skCK, c1)

ν
$←− R

c̃sn ← E′.Enc(ek′, sn0, ν)

c′0 ← Remelt(td, c̃sn, n
(0), ~̃csn,0, ~̃ctag,0)

DCL′ := {sn0, sn1}
(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1): return 0

CL[1].c← c′0

Run S&RZK(1, (~i(1))1)
Then repeat the following for j = 3, . . . , (k + 1):

Run S&RZK(j, (~i(1))j−1)
Run SpdZK(k + 1) with A
b∗ ← ABDepo′simple ; return b∗

The serial numbers and tags are encrypted. We can change the ciphertexts en-
crypted with E in Extract; each switch will affect the distribution of the output
of the overall experiment with probability at most εiacr. We deduce the following:

Proposition 31. Exptc-tr
A,0,remelt(λ) and Exptc-tr

A,0,iacr(λ) are 2 `-statistically close.

Experiment Exptc-trA,0,iacr(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr) ; parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)
(pkB, skB)← BKeyGen
DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′,Spy(par,pkB, skW , skD)
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Run Rcv(i0) with A ; let c0 be the received coin
x0 ← CheckDSsimple(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1

i1 ← AURegist,BDepo′,Spy

Run Rcv(i1) with A ; let c1 be the received coin
x1 ← CheckDSsimple(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 abort the entire procedure

sn0, n
(0), ~̃csn,0, ~̃ctag,0 ← Extract(skCK, c0)

sn1, n
(1), ~̃csn,1, ~̃ctag,1 ← Extract(skCK, c1)

ν
$←− R

c̃sn ← E′.Enc(ek′, sn0, ν)

c′0 ← Remelt(td, c̃sn, n
(0), ~̃csn,1, ~̃ctag,1 )

DCL′ := {sn0, sn1}
(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1) abort
CL[1].c← c′0
Run S&RZK(1, (~i(1))1)
Then repeat the following step for j = 3, . . . , (k + 1):

Run S&RZK(j, (~i(1))j−1)
Run SpdZK(k + 1) with A
b∗ ← ABDepo′simple ; return b∗

For the next step, we will rely on RCCA-security of E′.

Experiment Exptc-trA,0,rcca(Gr, ek′):
parT ← T.Setup(Gr) ; parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)

(vk, sk)← S.KeyGen

(vk′, sk′)← S.KeyGen

(ek,dk)← E.KeyGen

pkB := (ek′, ek, vk, vk′)

skW := (sk, sk′)

DCL′ := ∅; ctr← 0

(Use the Dec oracle call in all the BDepo′simple call from A;)

i0 ← AURegist,BDepo′,Spy(par,pkB, skW , skD)
Run Rcv(i0) with A ; et c0 be the received coin
x0 ← CheckDSsimple(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1

i1 ← AURegist,BDepo′,Spy
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Run Rcv(i1) with A ; let c1 be the received coin
x1 ← CheckDSsimple(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 abort the entire procedure

sn0, n
(0), ~sn0, ~tag0 ← Extract(skCK, c0)

sn1, n
(1), ~sn1, ~tag1 ← Extract(skCK, c1)

DCL′ := {sn0, sn1}
(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1) abort

Send sn0, sn1 as challenge for the rcca-security game and receive c̃

c′0 ← Remelt(td, c̃, n(0), ~̃csn,1, ~̃ctag,1)

(insert the challenge c̃ in this step as c̃0sn)

CL[1].c← c′0
Run S&RZK(1, (~i(1))1)
Then repeat the following step for j = 3, . . . , (k + 1):

Run S&RZK(j, (~i(1))j−1)
Run SpdZK(k + 1) with A
b∗ ← ABDepo′rcca ; return b∗

CheckDS′rcca(skCK,UL,DCL, c, ):
t← E.GDec(dkinit, c̃

0
sn)

If t =“replay” and ctr > 0 then abort the entire procedure
Else if t =“replay” then ctr← ctr + 1
Else if t ∈ DCL then return ⊥
Else add sn to DCL, and return DCL

If the challenger of the RCCA security game encrypts sn0, the resulting
experiment will be Exptc-trA,0,iacr(λ); otherwise it will be Exptc-trA,0,rcca1(λ). We
thus deduce:

Proposition 32. Exptc-tr
A,0,iacr(λ) and Exptc-tr

A,0,rcca1(λ) are εrcca-statistically close.

Experiment Exptc-trA,0,rcca1(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr) ; parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)
(pkB, skB)← BKeyGen
DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′,Spy(par,pkB, skW , skD)
Run Rcv(i0) with A ; let c0 be the received coin
x0 ← CheckDSsimple(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1

i1 ← AURegist,BDepo′,Spy
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Run Rcv(i1) with A ; let c1 be the received coin
x1 ← CheckDSsimple(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1
If comp(c0, c1) 6= 1 abort the entire procedure

sn0, n
(0), ~̃csn,0, ~̃ctag,0 ← Extract(skCK, c0)

sn1, n
(1), ~̃csn,1, ~̃ctag,1 ← Extract(skCK, c1)

ν
$←− R

c̃sn ← E′.Enc(ek′, sn1 , ν)

c′0 ← Remelt(td, c̃sn, n
(0), ~̃csn,1, ~̃ctag,1)

DCL′ := {sn0, sn1}
(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1): return 0
CL[1].c← c′0
Run S&RZK(1, (~i(1))1)
Then repeat the following step for j = 3, . . . , (k + 1):

Run S&RZK(j, (~i(1))j−1)
Run SpdZK(k + 1) with A
b∗ ← ABDepo′simple ; return b∗

We define:

S&RZK,tag(j, i, n
(0), sk(0)):

c := CL[j].c
u := CL[j].owner

n′
$←− N ; ρ′sn, ρ

′
cert, ρ

′
pk, ρ

′
sn-pf , ν

′
sn

$←− R; Compute:

(sn′, sn-pf ′)← T.SGen(parT,UL[i].sk, n′)
c′cert, c

′
pk, c

′
sn, c

′
sn-pf ← C.ZCm(ck, ρ′cert, ρ

′
pk, ρ

′
sn, ρ

′
sn-pf )

c̃′sn ← E.Enc(ek, sn′, ν′sn)
π′cert ← C.SmPrv

(
td,S.Verify(vk′, ·, ·) = 1, ρ′vk, ρ

′
pk, ρ

′
cert

)
π′sn ← C.SmPrvsn(td,pk′tag, sn

′, sn-pf , ρ′pk, ρ
′
sn, ρ

′
sn-pf )

π̃′sn ← C.SmPrvenc(td, ek, ρ′sn, c̃
′
sn)

Decompose c as(
c0, (cj = (cjpk, c

j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag, c̃

j
sn, c̃

j
tag, π̃

j
sn, π̃

j
tag))

i
j=1,

n, sn, ρsn, ρpk
)

ρtag, νtag, ρt-pf
$←− R

(tag, t-pf)← T.TGen(parT,UL[u].sk, n, sn′)

(tag(0), P
(0)
tag )← T.TGen(parT, sk

(0), n(0), sn′)

ctag ← C.ZCm(ck, ρtag)

c̃tag ← E.Enc(ek, tag(0), νtag)

πtag ← C.SmPrvtag(td,pktag, sn, sn
′, tag, t-pf , ρpk, ρsn, ρ

′
sn, ρtag, ρt-pf )

π̃tag ← C.SmPrvenc(td, ek, ρtag, c̃tag)

56



Compute VERinit(c
0) ∧

i∧
j=1

VERstd(cj−1, cj)∧

T.TVfy(ck, cipk, c
′
sn, ctag, πtag) ∧ C.Verifyenc(ck, ek, ctag, c̃tag, π̃tag)

Pick uniformly at random a vector of randomness ~ρ′′

c′′ ←
Rand((c0, (cj)ij=1, c

′
pk, c

′
cert, π

′
cert, c

′
sn, π

′
sn, ctag, πtag, c̃

′
sn, π̃

′
sn, c̃

′
tag, π̃

′
tag), ~ρ

′′)

cnew := (c′′, n′, sn′, ρ′sn + ( ~ρ′′)sn′ , ρ
′
pk + ( ~ρ′′)pk′)

CL[|CL|+ 1] := (i, cnew, 0, j)

We substituted one ciphertext for another in the previous algorithm and get:

Proposition 33. Exptc-trA,0,rcca1 and Exptc-trA,0,final are εiacr statistically close.

Experiment Exptc-trA,0,final(λ):
Gr ← GrGen(1λ)
parT ← T.Setup(Gr) ; parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)
(ck, td)← C.SmSetup(Gr)
par← (1λ,parS,parS′ ,parT, ck)
(pkB, skB)← BKeyGen
DCL′ := ∅; ctr← 0

i0 ← AURegist,BDepo′,Spy(par,pkB, skW , skD)
Run Rcv(i0) with A ; let c0 be the received coin

i1 ← AURegist,BDepo′,Spy

Run Rcv(i1) with A ; let c1 be the received coin
If comp(c0, c1) 6= 1 abort the entire procedure

sn0, n
(0), ~̃csn,0, ~̃ctag,0 ← Extract(skCK, c0)

sn1, n
(1), ~̃csn,1, ~̃ctag,1 ← Extract(skCK, c1)

ν
$←− R

c̃sn ← E′.Enc(ek′, sn1, ν)

c′0 ← Remelt(td, c̃sn, n
(0), ~̃csn,1, ~̃ctag,1)

DCL′ := {sn0, sn1}
(~i(0),~i(1))← AURegist,BDepo′simple,Spy

Let k be the size of ~i(0)

If k is different of the size of ~i(1): return 0
CL[1].c← c′0

Run S&RZK,tag(1, (~i
(1))1, n

(1), sk)

Then repeat the following step for j = 3, . . . , (k + 1):

Run S&RZK(j, (~i(1))j−1)
Run SpdZK(k + 1) with A
b∗ ← ABDepo′simple ; return b∗

We note that
Exptc-trA,0,final(λ) = Exptc-trA,1,ZK(λ).

It is εm-ind-close to Exptc-trA,1 (λ). By combining this last remark with Propositions
29, 30, 31, 32 and 33, this proves the theorem. ut

57



B Instantiation

B.1 Instantiation and proofs of the double spending tag scheme

We will reuse the scheme introduced in [BCFK15], which we recall here.

T.Setup (Gr):

– Parse Gr as (p,G, Ĝ,GT , e, g1, ĝ)

– g2, h1, h2
$←− G

– Return (g1 = g, g2, h1, h2)

We define M = {(gm1 , ĝm) ∈ G× Ĝ}m∈Zp
T.KeyGen (parT):

– sk
$←− Zp

– Return
(
skT := sk,pkT := ĝsk

)
T.SGeninit (parT, skT, n):

– M ← gn1 ; N ← gn+skT
2

– M
(1)
sn = (gn1 , ĝ

n) ; M
(2)
sn = (gskT1 , ĝskT)

– Return
(
sn = (M,N),Msn = (M

(1)
sn ,M

(2)
sn ))

T.SGen (parT, skT, n):
– M ← gn1 ; N ← gn+skT

2

– sn-pf = ĝn

– Return (sn = (M,N) , sn-pf)

T.TGen (parT, sk, n, sn = (M,N)):
– M0 ← gn1
– tag :=

(
M skhn1 , N

skhn2
)

– t-pf ← ĝn

– Return (tag := (A,B) , t-pf).

T.Detect (sn, sn′, tag, tag′,L):
– Parse sn as (M,N) ; parse sn′ as (M ′, N ′)
– Parse tag as (A,B) ; parse tag′ as (A′, B′)

– A′′ := A
A′ ; B′′ := B

B′

– M ′′ := M
M ′ ; N ′′ := N

N ′

– If A′′ = 0G1 then:
A′′ := B′′ ; M ′′ := N ′′

– Search pkT in L such that e (A′′, ĝ) = e (M ′′,pk)
– Return (pkT, (A

′′,M ′′))

T.VfyGuilt (pk, π):
– Parse π as (A,N);
– Return

(
e(A, ĝ) = e(N, pk) ∧ A 6= 0G1

)
.

T.SVfyinit(parT,pkT, sn,Msn):
– Parse sn as (M,N)
– Parse Msn as

(
(M1, M̂1), (M2, M̂2)

)
– Return

(
e(M, ĝ)e(g−1

1 , M̂1) = 1GT ∧ e(M, ĝ)e(g−1
2 , M̂2)e(g−1

2 ,pkT) =

1GT ∧ M̂2 = pkT ∧ e(M1, ĝ) = e(g1, M̂1) ∧ e(M2, ĝ) = e(g1, M̂2)
)
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T.SVfy(parT,pkT, sn, sn-pf):
– Parse sn as (M,N)
– Return

(
e(M, ĝ)e(g−1

1 , sn-pf) = 1GT ∧
e(N, ĝ)e(g−1

2 , sn-pf)e(g−1
2 ,pkT) = 1GT

)
T.TVfy(parT,pk, sn, sn

′, tag, t-pf):
– Parse sn as (M,N)
– Parse tag as (A,B)
– Parse sn′ as (M ′, N ′)
– Return

(
e(M, ĝ)e(g−1

1 , t-pf) = 1GT ∧
e(A, ĝ−1)e(M ′,pk)e(h1, t-pf) = 1GT ∧
e(B, ĝ−1)e(N ′,pk)e(h2, t-pf) = 1GT

)
Proofs

Theorem 34. This above scheme is extractable, bootable, SN-verifiable, tag-
verifiable and N injective.

These properties are all straightforward to show and we therefore omit the proof.

Proposition 35. The above scheme is SN-collision-resistant.

Let (pk, sn-pf) and (pk′, sn-pf ′) such that for some sn:

T.SVfy(parT,pk, sn, sn-pf) = T.SVfy(par,pk′, sn, sn-pf ′) = 1.

We parse sn as (M,N), and deduce the followings equations:

e(M, ĝ) = e(g1, sn-pf) = e(g1, sn-pf
′),

from which we get sn-pf = sn-pf ′. Then we can deduce

e(M, ĝ)e(g−1
2 , sn-pf)e(g−1

2 ,pk) = 0GT = e(M, ĝ)e(g−1
2 , sn-pf)e(g−1

2 ,pk′)

and thus e(g−1
2 ,pk) = e(g−1

2 ,pk′), which finally yields pk = pk′. The reasoning
is analogous for T.SVfyinit. ut

To prove the two other results, we will use the following lemma.

ExptTupleA,b (λ):

((G, g1, q), (Ĝ, ĝ, q), e)← GrGen(1λ)

g2, h1, h2
$←− G

b′ ← AO
′
b

Return b = b′

O′0:

n
$←− Zq

Return (gn1 , g
n
2 , h

n
1 , h

n
2 )

O′1:

n1, n2, n3, n4
$←− Zq

Return (gn1
1 , gn2

2 , hn3
1 , hn4

2 )

Lemma 36. For any adversary A against the game Tuple defined above with
advantage ε, there exists an adversary B against DDH in G with advantage εDDH

such that ε
3K ≤ εDDH, with K the number of oracles calls to O′b.
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We define the following oracles:

O′0.3:

n, n2
$←− Zq

Return (gn1 , g
n2
2 , hn1 , h

n
2 )

O′0.7:

n, n2, n3
$←− Zq

Return (gn1 , g
n2
2 , hn3

1 , hn2 )

Viewing the tuples (g2, g
n
1 , g

n
2 ), (h1, g

n
1 , h

n
1 ) and (h2, g

n
1 , h

n
2 ) as DDH challenge

tuples, we get taht the adversary cannot distinguish O′0 from O′0.3 nor O′0.3 from
O′0.7, or O′0.7 from O′1, with probability more than εDDH each respectively. (Note
that we can compute all other elements, since we know the discrete logarithms
of the elements which are not part of the respective DDH-tuple; and we can
answer all other oracle calls honestly). This proves the lemma. ut

Corollary 37. No adversary can break tag-anonymity with an advantage bet-
ter than 6KεDDH, where K is the number of calls to O1.

Expt
Perfect-tag-anonymity
A,b ((G, g1, q), (Ĝ, ĝ, q), e):

parT ← ((G, g1, q), (Ĝ, ĝ, q), e)
(sk0, sk1)← A (parT)
k := 0

b∗ ← AO
perfect
1 (skb),O

perfect
2 (skb,·,·) (parT, sk0, sk1)

Return (b = b∗)

Operfect
1 (sk):

(g3, g4, g5, g6)← O′0
T [k] := (g5, g6)
Return

(
g3, g

sk
1 · g4

)
Operfect

2 (sk, sn′, t):
If t > k abort entire game
(g5, g6)← T [t]
(N,M)← sn′

Return (Ng5,Mg6)

Lemma 36 implies that the adversary cannot, except with probability 3KεDDH,
distinguish Perfect-tag-anonymity from tag-anonymity: if we replace O′0 by
O′1, the game becomes exactly tag-anonymity. In the latter game, we can replace
b by (1− b) without changing the distribution of the adversary’s input. ut

Theorem 38. Let A be an adversary that wins the exculpability game with prob-
ability ε after K oracle calls to O1, then there exist B1 against DDH in G with
advantage εDDH and B2 against DDH in Ĝ with advantage ε̂DDH, such that:

ε ≤ 3KεDDH + ε̂DDH.

Using the same argument as in Corollary 37, we deduce, incurring a loss of
3KεDDH, that we can consider that oracle calls do not yield any information to
the adversary. After receiving a triple (ĝ1, ĝ2, ĝ3) in Ĝ, we send ĝ1 as the public
key. When we receive (N,A) such that

e (N, pk) = e (A, ĝ)

with A 6= 0G1
, this means that A = N logg1 (pk) and we can check if e (N, ĝ3) =

e (A, ĝ2) to decide whether we received a DDH triple or not. ut
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Efficiency We summarize all the efficiency results as follows (where “m.s.w.u”
means multiscalar with unkown):

|parT| 3|G|
|skT| |Zp|
|pkT| |Ĝ|

|sn| = |tag| 2|G|
|sn-pf | = |t-pf | |Ĝ|

π 2|G|
Number of pairing equations in T.SVfy 2 generic eq.

Number of pairing equations in T.SVfyinit 4 generic, 1 m.s.w.u eq. in Ĝ
Number of pairing equations in T.TVfy 3 generic eq.

|πsn| 8|G|+ 8|Ĝ|
|πsn,init| 16|G|+ 16|Ĝ|+ 2|Zp|
|πtag| 12|G|+ 12|Ĝ|
|π̃sn| 8|G|+ 10|Ĝ|
|π̃tag| 12|G|+ 14|Ĝ|

B.2 Instantiation of the encryption scheme E′

Construction overview. We roughly follow the framework proposed by Chase et
al. [CKLM12]. The first part of the ciphertext is an encryption

~C = (c0, c1, . . . , cn+1) = (fθ, gθ, {hθi ·mi}ni=1)

of the message vector ~m = (m1, . . . ,mn) ∈ Gn. As in [LPQ17], we use the same
one-time linearly homomorphic structure-preserving signature scheme [LPJY13]
LHSPS = (KeyGen,Sign.Verify), for which let

~v1 = (f, g, 1, . . . , 1), ~v2 = (1, 1, 1, g, h1, . . . , hn),

the signing key of the LHSPS is composed of two linearly homomorphic signa-
tures of ~v1 and ~v2, that is, sk = (σ~v1 , σ~v2). Using this signing key, anyone can
generate the signature σ~m of any message ~m ∈ Span(~v1, ~v2).

The second part of the ciphertext is a zero-knowledge proof for the language

L∨ =
{

(~C, (b, θ, {mi}ni=1, σ~v))
∣∣ b ∈ {0, 1} ∨ LHSPS.Verify(vkLHSPS, σ~v, ~v) = 1

}
.

where ~v = (cb0, c
b
1, g

1−b, c
(1−b)
1 , c

(1−b)
2 , . . . , c1−bn+1). Note that when b = 1, ~v ∈

Span(~v1, ~v2) means that logf (c0) = logg(c1), then the ciphertext is a valid ci-
phertext. Also note that signatures on ~v with b = 1 will only be generated in
the security proof.

To enable re-randomization, we generate a signature σ~w on the vector ~w =

(f b, gb, 1, g(1−b)·θ, h
(1−b)·θ
1 , . . . , h

(1−b)·θ
n ) and add a zero-knowledge proof of knowl-

edge of the valid signature σ~w. It is easy to see that with σ~w, we can generate
signatures for all re-randomization of the vector ~v.
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One-time linearly homomorphic structure-preserving signature. To
construct the re-randomizable CCA encryption scheme, we need the one-time
linearly homomorphic structure-preserving signature.

Definition 39 ((One-time) linearly homomorphic structure-preserving
signature [LPJY13]). A one-time linearly homomorphic structure-preserving
signature is tuple of 4 algorithms LHSPS = (Setup,Sign,SignDerive,Verify) with
the following specifications:

Setup (Gr, n) is a probabilistic algorithm taking the group parameter Gr and an
integer n denoting the dimension of the message to be signed. It outputs the
public verification key vk and the signature key sk.

Sign (sk, ~m) is a deterministic algorithm that takes the signing key sk and the
message ~m ∈ Gn, and outputs a signature σ.

SignDerive
(
vk, {(wi, σ(i))}`i=1

)
is a deterministic algorithm taking the verifica-

tion key vk and ` pairs (wiσ
(i)) where wi ∈ Zp and σ(i) is an LHSPS signa-

ture. It outputs a signature σ on the message ~m =
∏`
i=1 ~m

wi
i .

Verify (vk, ~m, σ) is a deterministic algorithm taking the verification key vk, the
message vector ~m and a signature σ. It outputs 1 if the signature is valid, 0
otherwise.

Definition 40 (One-time unforgeability). A one-time linearly homomor-
phic SPS scheme Σ = (KeyGen,Sign,Verify) is secure if no adversary has non-
negligible advantage in the following game:

1. The adversary A outputs an integer n, sends it to the challenger C. The
challenger generates (vk, sk)← Setup(1λ, n) and sends the public verification
key back to A.

2. The adversary A has access to the signing oracle
– Sign(sk, ·): A can request the challenger C to sign the message vectors

{~mi}Qsi=1 where Qs denotes the number of signing queries.
3. A outputs (~m?, σ?). The adversary wins if and only if Verify(vk, ~m?, σ?) = 1

and ~m? 6∈ Span({~mi}Qsi=1).

We recall the following construction of the one-time linearly homomorphic
structure-preserving signature scheme.

– LHSPS.Setup (Gr, n):

1. Parse Gr as (G, Ĝ,GT , e).
2. Chose ĝz, ĝr

$← Ĝ. For i ∈ {1, . . . , n}, randomly chose χi, γi and compute
ĝi = ĝχiz ĝ

γi
r .

3. Output the verification key pk = (ĝz, ĝr, {ĝi}n) ∈ Ĝn+2 and the signing
key sk = ({χi, γi}ni=1).

– LHSPS.Sign
(
vk, sk, ~M

)
:

1. Parse the verification key vk = (ĝz, ĝr, {ĝi}n) ∈ Ĝn+2, the signing key

sk = ({χi, γi}ni=1) and the message ~M = (M1, . . . ,Mn) ∈ Gn.
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2. Output the signature ~σ = (z, r) ∈ G2 such that z =
∏n
i=1M

χi
i and

r =
∏n
i=1M

γi
i .

– LHSPS.SignDerive
(
vk, (~σ, {wi, ~σ(i)}`i=1)

)
:

1. For all i ∈ {1, . . . , `}, parse σ(i) as (zi, ri).

2. Output the signature σ = (
∏`
i=1 z

wi
i ,
∏`
i=1 r

wi
i ).

– LHSPS.Verify(vkLHSPS, σ):

1. Parse the signature as σ = (z, r) and the message ~M = (M1, . . . ,Mn).

2. Return 1 iff (M1, . . . ,Mn) 6= (1G, . . . , 1G) and the following equation is
verified.

e(z, ĝz) · e(r, ĝr) =

n∏
i=1

e(Mi, ĝi).

Theorem 41 ([LPJY13, Theorem 1]). The above construction of a one-time
linearly homomorphic structure-preserving signature scheme is unforgeable if the
SXDH assumption holds in the underlying group.

The above scheme was proven to be unforgeable under the DP assumption,
which is implied by the SXDH assumption. As in the remaining part of the
construction of RCCA requires SXDH to hold, we state this theorem with SXDH
assumption.

Replayable-CCA encryption scheme. An RCCA encryption scheme E con-
sists of six PPT algorithms E = (KeyGen,Enc,ReRand,Dec,Verify,AdptPrf). It
should verify the following specifications:

– E.KeyGen (Gr): a randomized algorithm which takes as input the group de-
scription and outputs an encryption public key pk and a corresponding de-
cryption key dk.

– E.Enc (pk,m, ν): a randomized encryption algorithm which takes as input a
public encryption key pk, a plaintext (from a plaintext space), some ran-
domness and outputs a ciphertext.

– E.ReRand (pk, c, ν): a randomized algorithm which takes as input a public
key, a ciphertext and some randomness,. and outputs another ciphertext.

– E.Dec (dk, c): a deterministic decryption algorithm which takes a decryption
key and a ciphertext, and outputs either a plaintext or an error indicator ⊥.

– E.Verify (pk,m, ρ, c): a deterministic algorithm which takes as input a public
key, a message, some randomness, and a ciphertext and outputs a bit.

– E.AdptPrf (ck,pk, cM , c, (π, cν) , ν′) a randomized algorithm which takes as
input a commitment key, an encryption public key, a commitment, an equal-
ity proof (i.e a Groth-Sahai proof and a commitment), a ciphertext, a proof,
some randomness, and outputs an equality proof.

We give the following explicit construction of the RCCA scheme supporting
encryption of vectors of group elements.

63



E.KeyGen (Gr):

1. Parse Gr as (G, Ĝ,GT , e).
2. Choose two random group elements f, g

$← G2.
3. Choose random exponents {αi}ni=1

$← Zp and compute {hi}ni=1 = gαi .

4. Generate the Groth-Sahai crs ~crsGS by choosing random ~u1, ~u2
$← G2

and ~̂u1, ~̂u2
$← Ĝ2.

5. Define two vectors ~v1, ~v2 such that

~v1 = (f, g, 1, 1, . . . , 1) ∈ Gn+2 ~v2 = (1, 1, 1, h1, . . . , hn) ∈ Gn+2,

then generate two LHSPS signatures σ~v1 and σ~v2 which will be used to
proof that a vector is in the Span(~v1, ~v2). together with the signing key
~tk.

6. Output the decryption key dk = α and the public key

pk = (f, g, {hαi}ni=1, ~crsGS , σLHSPS = (σ~v1 , σ~v2)).

Notice that the LHSPS signing key ~tk will never be published by the key
generation algorithm, it will only be used in the security proofs.

E.Enc (pk,m, ν):

1. Randomly pick a number θ ∈ Zp. Compute ~C = (c0, c1, . . . , cn+1) =
(fθ, gθ,M1 · hθ1, . . . ,Mn · hθn).

2. Define the bit b = 1 and denote G = gb ∈ G and Ĝ = ĝb ∈ Ĝ.
3. Generate the Groth-Sahai proof πb of

e(G, ĝ) = e(g, Ĝ)

4. For all i ∈ {1, . . . n+1}, compute Θi = cbi . Compute also the Groth-Sahai
πΘ proof of the equations:

e(Θi, ĝ) = e(ci, Ĝ)

5. Define the vector ~v = (cb0, c
b
1, g

1−b, c1−b1 , . . . , c1−bn+1). Generate a LHSPS
signature σ~v such that ~v ∈ Span(~v1, ~v2).

6. Compute a Groth-Sahai proof π~v of the validity of the LHSPS signature
σ~v.

7. To enable the re-randomization, compute

(F,G, {Hi}ni=1) = (f b, gb, {hbi}ni=1)

and Groth-Sahai proof πFGH of them.
8. Define the vector ~w = (f b, gb, 1, h1−b

1 , . . . , h1−b
n ). Compute a LHSPS sig-

nature σ~w of the fact that ~w ∈ Span(~v1, ~v2).
9. Generate a Groth-Sahai proof π~w of the validity of LHSPS signature σ~w.

10. Output the ciphertext c = ({ci}ni=1, πb, πθ, π~v, πFGH , π~w).

E.ReRand (pk, c, ν):
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1. Parse c = ({ci}n+1
i=1 , πb, πθ, π~v, πFGH , π~w).

2. Compute c′0 = c0 · fν , c′1 = c1 · gν and for i ∈ {2, . . . , n + 1}, compute
c′i = ci · hνi−1.

3. We update the proof πb, πθ using the commitment CF , CG, CH in πFGH
to get π′b, π

′
θ.

4. We update the commitment of the LHSPS signature C ′σ~v = Cσ~v · Cνσ~w
and the update the proof π~v accordingly to get π′~v.

5. We re-randomize all the updated Groth-Sahai proofs

π′b, π
′
θ, π
′
~v, πFGH , π~w

to get the new proofs π′′b , π
′′
θ , π

′′
~v , π

′′
FGH , π

′′
~w.

6. Output the new ciphertext c′ = ({c′i}ni=1, π
′′
b , π

′′
θ , π

′′
~v , π

′′
FGH , π

′′
~w).

E.Dec (dk, c):
1. Parse c as σ = ({ci}ni=1, πb, πθ, π~v, πFGH , π~w).
2. Check all proofs (πb, πθ, π~v, πFGH , π~w) are valid.
3. For i ∈ {1, . . . n}, compute Mi = ci+1/(c

αi
1 ).

4. Output {Mi}ni=1.

E.Verify (pk, ~m, ν, c):
1. Parse c as σ = ({ci}ni=1, πb, πθ, π~v, πFGH , π~w).
2. Verify that πb, πθ, π~v, πFGH , π~w are all correct.
3. Verify the following pairing equations:

c0 = gν c1 = fν ci+1 = hν ·mi.

where i ∈ {1, . . . , n}.
E.AdptPrf (ck,pk, cM , c, (π, cν) , ν′):

1. We just update the Groth-Sahai proof the new randomness ν′ by multi-
plying c′ν = cν · ĝν .

2. As the equality proofs consists of the following pairing equations:

c0 = gν c1 = fν ci+1 = hν ·mi.

where i ∈ {1, . . . , n}.

Encryption key (10 + n)G + 4Ĝ
Decryption key nZp

Ciphertext (6n+ 19)G + (16 + 4n)Ĝ
Verification equations 2 linear + n quadratic

Size of the equality proof (2 + 2n)G + (2 + 4n)Ĝ

Proof (of Theorem 16). The completeness and the correctness of the above
RCCA encryption scheme are straightforward to verify. We will focusing on
the Replayable-CCA property.

We proceed by the series of hybrid games Game0, . . . ,Game5 , we denote by
Advi the advantage of the adversary A to win the game Gamei.

65



Game0: We have Game0 is identical to the original RCCA security game and
thus by definition:

Adv0 = AdvRCCAA (1λ)

Game1: In this game, we will modify the challenge ciphertext provided to the
adversary in the RCCA security game. The new challenge ciphertext is:

c? = ({c?i }ni=1, π
?
b , π

?
θ , π

?
~v , π

?
FGH , π

?
~w)

We only modify π?~v and π?~w. Instead of generating these two proofs using the
signing key (σ~v1 , σ~v2) of the LHSPS, we will use the signing key td to directly
compute the signatures of ~v? and ~w, where ~v? = (1, 1, g, c2, . . . , cn+1). (Notice
that the secret signing key is never used in the real game.)
As this change is only conceptional, the distribution of the challenge cipher-
text is identical in Game1 as in Game0. We have Adv1 = Adv0

Game2: In this game, we modify the ~crs of the Groth-Sahai proof system. We
generate two random values ξ, ζ

$← Zp, then compute ~u1, ~u2, ~̂u1, ~̂u2 such that

~u1 = ~uξ2 and ~̂u1 = ~̂uζ2.
Notice that this is the perfect sound setting of the Groth-Sahai proof system.
ξ and ζ can be used to extract the witness. Since the only difference between
Game1 and Game2 is the change of ~u1, ~u2, ~̂u1, ~̂u2, the indistinguishability can
be proven using the SXDH assumption. Thus, we have Adv2 ≤ Adv1 + 2 ·
AdvSXDH .

Game3: In this game, we modify the decryption oracle. We will add a manual
verification of the underlying LHSPS for the decryption queries. To do this,
since the Groth-Sahai proof is settled in the soundness mode (~u1 = ~uξ and

~̂u1 = ~̂uζ2). We can use the trapdoors ξ, ζ to extract the witness in the com-
mitments of the Groth-Sahai proof. We extract ~v and σ~v = (z, r) from the
proof π~v. We use the signing key td of the linearly homomorphic structure-
preserving signature σ†~v = (z†, r†) to generate a signature σ†~v of the vector ~v.

The challenger will reject the decryption query if σ†~v 6= σ~v.
We can see that, if an adversary can distinguish Game3 from Game2 then he
can forge a valid signature of the underlying LHSPS. Since the unforgeability
of the LHSPS is based on the SXDH problem, we have Adv3 ≤ Adv2 +
AdvDP (1λ).

Game4: We will modify all the decryption oracles (both pre-challenge and post-
challenge ones) to avoid the use of logg(hi) = αi. After making these changes,
we can modify the generation of hi to hi = fxigyi .

Pre-challenge decryption queries: We use the trapdoor of the Groth-Sahai
proof to extract the witness of the proof, if we have b = 0 then we directly
reject the proof.

Post-challenge decryption queries: We also use the trapdoor of the Groth-
Sahai proof to extract the witness of the proof, if b = 0 and the cipher-
text is not rejected by the rule of Game3, the challenger outputs Replay.
Additionally, both in pre-challenge and post-challenge decryption queries.
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Since we don’t have αi anymore, we decrypt the ciphertext by computing

Mi = ci+1/(c
xi
0 · c

yi

1 ).
We now analyse the change of the decryption oracles:
Pre-challenge: It is easy to see that in case of b = 0, the challenger only

issued two LHSPS signatures of ~v1 and ~v2. And the vector ~v is clearly not
in the span of Span(~v1, ~v2). So the adversary is statistically impossible
to forge a correct signature.

Post-challenge: Note that the Groth-Sahai proof is in the perfect soundness
setting of the Groth-Sahai proof, thus the challenger C can use the trap-
door to extract all the witness used in the proof. We will now separate
two case:
– If gb = 1, we have ~v = (c0, c1, 1, 1, . . . , 1). But ~c is not rejected in the

Game3, with a overwhelming probability, we will have ~v ∈ Span(~v1).
Thus we have Mi = ci+1/(c

x
0 · c

y
1).

– If gb = 0, we have ~v = (1, 1, g, c2, . . . , cn+1). As the third element is
g, ~v = ~v · ~vθ2 · ~wρ. This means that ~v is a randomization of ~v?, thus
we can answer Replay to the adversary.

Game5: We modify the distribution of the challenge ciphertext. Instead of choos-
ing them as an encryption of ~M0 or ~M1. We Choose them all random ele-
ments. By the self-rerandomizability of the DDH assumption in G, the game
5 is indistinguishable from the game 4.

During the Game5, as the challenge ciphertext is only random group elements,
the adversary cannot have more advantage than a random guess.

B.3 Instantiation of the encryption scheme E

Let Gr = (p,G, g).

E.KeyGen():

– (dk1,dk2)
$←− Z2

p

– Return ((gdk1 , gdk2), (dk1,dk2))
E.Enc((D1, D2), (M1,M2), ν):

– Return (gν ,M1 ·Dν
1 ,M2 ·Dν

2 )
E.ReRand((D1, D2), (C0, C1, C2), ν):

– Return (C0 · gν , C1 ·Dν
1 , C2 ·Dν

2 )
E.Dec((dk1,dk2), (C0, C1, C2)):

– Return (C0 · Cdk1
1 , C2 · Cdk2

0 )
E.Verify((D1, D2), (M1,M2), ν, (C0, C1, C2)):

– Return (gν ,M1 ·Dν
1 ,M2 ·Dν

2 ) = (C0, C1, C2)
E.AdptPrf(ck, ek, (comM1 , comM2), c, π̃ = (π, comν), ν′):

– Analog to B.2

Proposition 42. If there exists an adversary A that breaks the IACR property
of the scheme with advantage εIACR, then there exists an adversary B that breaks
SXDH with advantage εSXDH, with

εIACR ≤ 4 εSXDH.
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We define the following experiments:

ExptIACRA,b ((G, g, p)):
((P1, P2), (dk1,dk2))← KeyGen(Gr)

((C
(0)
0 , C

(0)
1 , C

(0)
2 ), (C

(1)
0 , C

(1)
1 , C

(1)
2 ))← A((P1, P2))

ν
$←− Zp

(C0, C1, C2)← (C
(b)
0 · gν , C(b)

1 · P ν1 , C
(b)
2 · P ν2 )

b′ ← A(C0, C1, C2)
Return b′

ExptIACRV 2
A,b ((G, g, p)):

((P1, P2), (dk1,dk2))← KeyGen(Gr)

((C
(0)
0 , C

(0)
1 , C

(0)
2 ), (C

(1)
0 , C

(1)
1 , C

(1)
2 ))← A((P1, P2))

ν, ν2
$←− Zp

(C0, C1, C2)← (C
(b)
0 · gν , C(b)

1 · P ν21 , C
(b)
2 · P ν2 )

b′ ← A(C0, C1, C2)
Return b′

ExptIACRV 3
A,b ((G, g, p)):

((P1, P2), (dk1,dk2))← KeyGen(Gr)

((C
(0)
0 , C

(0)
1 , C

(0)
2 ), (C

(1)
0 , C

(1)
1 , C

(1)
2 ))← A((P1, P2))

ν, ν2, ν3
$←− Zp

(C0, C1, C2)← (C
(b)
0 · gν , C(b)

1 · P ν21 , C
(b)
2 · P ν32 )

b′ ← A(C0, C1, C2)
Return b′

By noticing that |Pr(ExptIACRA,b ((G, g, p)) = 1) − Pr(ExptIACRV 2
A,b ((G, g, p)) = 1)|

and |Pr(ExptIACRV 2
A,b ((G, g, p)) = 1) − Pr(ExptIACRV 3

A,b ((G, g, p)) = 1| are less or

equal to εSXDH, and because ExptIACRV 3
A,0 ((G, g, p)) and ExptIACRV 3

A,1 ((G, g, p)) are
distributed equally, we deduce εIACR ≤ 4 εSXDH.

C Efficiency analysis

We summarize the efficiency of the the building blocks C, S, S′ and E in Tables 1,
2 and 3, where “m-s” stands for “multi-scalar”.

D Computational assumptions

Definition 43 (SXDH). The Symmetric External Diffie-Hellman Assumption
states that given (gr, gs, gt) for random r, s ∈ Zp, it is hard to decide whether

t = rs or t is random; moreover, given (ĝr
′
, ĝs
′
, ĝt
′
) for random r′, s′ ∈ Zp, it is

hard to decide whether t′ = r′s′ or t′ is random.

The Asymetric Double Hidden Strong Diffie Hellman (ADHSDH) assumption
and the Asymetric Weak Flexible Computational Diffie Hellman (AWFCDH)
assumption have been introduced in [AFG+10].
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Table 1. Sizes of components of the commit-and-prove scheme C

|ck| 3|G|+ 3|Ĝ|
|Cm(g1)| 2|G|
|Cm(ĝ)| 2|Ĝ|
|Cm(1Zp)| 2|Ĝ|

Homogeneous pairing product equation with variables in G 2|Ĝ|
Homogeneous pairing product equation with variables in Ĝ 2|G|

General homogeneous pairing product equation 4|G|+ 4|Ĝ|
M-s equation in G with variables in Zp |G|

Homogeneous m-s equation in Ĝ with variables in Ĝ 2|Zp|
General m-s equation in G 2|G|+ 4|Ĝ|

Table 2. Characteristics of the signature schemes S and S′ for message spacesM′ = Ĝ
and M = {(gm, ĝm) |m ∈ Zp}2, resp.

Signature scheme S [Fuc11] S′ [AGHO11]

|parS | 3|G| 0

|sk| |Zp| 3|Zp|
|vk| |G|+ |Ĝ| 3|Ĝ|
|σ| 13|G|+ 9|Ĝ| 2|G|+ |Ĝ|

Nb of pairing eqs in S.Verify 12 general equations 1 linear in Ĝ, 1 general

|πσ| 48|G|+ 48|Ĝ| 6|G|+ 4|Ĝ|

Table 3. Characteristics of the ElGamal encryption E′ with message space G2

|sk| 2|Zp|
|pk| 2|G|
|c| 3|G|
|ν| |Zp|

Nb ms eqs in E.Verify 2 general equations 1 linear with unkown in Zp
|π̃eq| 5|G|+ 10|Ĝ|

Definition 44 (q-ADHSDH). Given (g, f, k, x = gξ, ĝ)
$←− G4× Ĝ and ŷ = ĝξ

and
(
ai = (kgωi)

1
ξ+γi , ci = fγi , vi = gωi , d̂i = ĝγi , ŵi = ĝωi

)q
i=1

, for γi, ωi
$←− Zp,

it is hard to output a new tuple (a, c, v, d̂, ŵ) ∈ G3× Ĝ2 of this form, i.e., a tuple
that satisfies

e(a, ŷd̂) = e(kv, ĝ) ∧ e(c, ĝ) = e(f, d̂) ∧ e(v, ĝ) = e(g, ŵ).

Definition 45 (AWFCDH). Given random generators (g, a = gα, ĝ)
$←− (G∗)2

× Ĝ, it is hard to output (gν , gνα, ĝν , ĝνα), i.e., a tuple (r,m, ŝ, n̂) that satisfies:

e(a, ŝ) = e(m, ĝ) ∧ e(m, ĝ) = e(g, n̂) ∧ e(r, ĝ) = e(g, ŝ).
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