
Compactness of Hashing Modes and Efficiency
beyond Merkle Tree

Elena Andreeva1, Rishiraj Bhattacharyya2, and Arnab Roy3

1 Technical University of Vienna, Austria
2 NISER, HBNI, India

3 University of Klagenfurt, Austria
elena.andreeva@tuwien.ac.at, rishirajbhattacharyya@protonmail.com,

arnab.roy@aau.at

Abstract. We revisit the classical problem of designing optimally ef-
ficient cryptographically secure hash functions. Hash functions are tra-
ditionally designed via applying modes of operation on primitives with
smaller domains. The results of Shrimpton and Stam (ICALP 2008),
Rogaway and Steinberger (CRYPTO 2008), and Mennink and Preneel
(CRYPTO 2012) show how to achieve optimally efficient designs of 2n-
to-n-bit compression functions from non-compressing primitives with
asymptotically optimal 2n/2−ε-query collision resistance. Designing opti-
mally efficient and secure hash functions for larger domains (> 2n bits)
is still an open problem.

To enable efficiency analysis and comparison across hash functions built
from primitives of different domain sizes, in this work we propose the
new compactness efficiency notion. It allows us to focus on asymptoti-
cally optimally collision resistant hash function and normalize their pa-
rameters based on Stam’s bound from CRYPTO 2008 to obtain maximal
efficiency.

We then present two tree-based modes of operation as a design principle
for compact, large domain, fixed-input-length hash functions.

1. Our first construction is an Augmented Binary Tree (ABR) mode.
The design is a (2` + 2`−1 − 1)n-to-n-bit hash function making a
total of (2` − 1) calls to 2n-to-n-bit compression functions for any
` ≥ 2. Our construction is optimally compact with asymptotically
(optimal) 2n/2−ε-query collision resistance in the ideal model. For
a tree of height `, in comparison with Merkle tree, the ABR mode
processes additional (2`−1−1) data blocks making the same number
of internal compression function calls.

2. With our second design we focus our attention on the indifferen-
tiability security notion. While the ABR mode achieves collision re-
sistance, it fails to achieve indifferentiability from a random oracle
within 2n/3 queries. ABR+ compresses only 1 less data block than
ABR with the same number of compression calls and achieves in
addition indifferentiability up to 2n/2−ε queries.

Both of our designs are closely related to the ubiquitous Merkle Trees
and have the potential for real-world applicability where the speed of
hashing is of primary interest.

1 Introduction

Hash functions are fundamental cryptographic building blocks. The art of de-
signing a secure and efficient hash function is a classical problem in cryptog-
raphy. Traditionally, one designs a hash function in two steps. In the first, one
constructs a compression function that maps fixed length inputs to fixed and
usually smaller length outputs. In the second step, a domain extending algorithm
is designed that allows longer messages to be mapped to a fixed-length output
via a sequence of calls to the underlying compression functions.

Most commonly compression functions are designed based on block ciphers
and permutations [9, 12–14,31,33]. For a long time block ciphers were the most
popular primitives to build a compression function and the classical construc-
tions of MD5 and SHA1, SHA2 hash functions are prominent examples of that
approach. In the light of the SHA3 competition, the focus has shifted to permu-
tation [11] or fixed-key blockcipher-based [2, 3] compression functions. Classical
examples of domain extending algorithms are the Merkle–Damg̊ard [20,27] (MD)
domain extender and the Merkle tree [26] which underpins numerous crypto-
graphic applications. Most recently, the Sponge construction [10] that is used in
SHA-3 has come forward as a domain extender [4,12,15,32] method for designs
which directly call a permutation.

Efficiency of Hash Design: Lower Bounds. Like in all cryptographic prim-
itives, the design of a hash function is a trade-off between efficiency and secu-
rity. Black, Cochran, and Shrimpton [13] were the first to formally analyze the
security-efficiency trade-off of compression functions, showing that a 2n-to-n-bit
compression function making a single call to a fixed-key n-bit block cipher can
not achieve collision resistance. Rogaway and Steinberger [34] generalized the
result to show that any mn-to-ln bit compression function making r calls to

n-bit permutations is susceptible to a collision attack in (2n)1−m−l/2
r queries,

provided the constructed compression function satisfies a “collision-uniformity”
condition. Stam [36] refined this result to general hash function constructions
and conjectured: if any m + s-to-s-bit hash function is designed using r many
n + c-to-n-bit compression functions, a collision on the hash function can be

found in 2
nr+cr−m

r+1 queries. This bound is known as the Stam’s bound and it
was later proven in two works by Steinberger [37] and by Steinberger, Sun and
Yang [38].

Efficiency of Hash Design: Upper Bounds. The upper bound results match-
ing Stam’s bound focused on 2n-to-n-bit constructions from n-bit non-compressing
primitives. In [35], Shrimpton and Stam showed a (Shrimpton-Stam) construc-
tion based on three n-to-n-bit functions achieving asymptotically birthday bound
collision resistance in the random oracle model. Rogaway and Steinberger [33]
showed hash constructions using three n-bit permutations matching the bound
of [34] and assuming the “uniformity condition” on the resulting hash construc-
tion. In [24], Mennink and Preneel generalized these results and identified four
equivalence classes of 2n-to-n-bit compression functions from n-bit permutations

2

and XOR operations, achieving collision security of the birthday bound asymp-
totically in the random permutation model.

In comparison, upper bound results for larger domain compressing functions
have been scarce. The only positive result we are aware of is by Mennink and
Preneel [25]. In [25], the authors considered generalizing the Shrimpton-Stam
construction to get m+n-to-n-bit hash function from n-bit primitives for m > n,
and showed n/3-bit collision security in the random oracle model. For all prac-
tical purposes the following question remains open.
If an m + n-to-n-bit hash function is designed using r many n + c-to-n-bit
compression functions, is there a construction with collision security matching
Stam’s bound when m > n?
Beyond Collision Resistance: Indifferentiability. Collision resistance
is undoubtedly the most commonly mandated security property for a crypto-
graphic hash function. Naturally, all the hash function design principles and re-
spective efficiencies are primarily targeting to achieve collision resistance. More
recently, for applications of hash functions as replacement of random oracles in
higher-level cryptographic schemes or protocols, the notion of indifferentiability
has also gained considerable traction. The strong notion of indifferentiability
from a random oracle (RO) by Maurer, Renner and Holenstein [23] has been
adopted to prove the security of hash functions when the internal primitives
(compression functions, permutations etc.) are assumed to be ideal (random
oracle, random permutation, etc.). An important advantage of the indifferentia-
bility from a random oracle notion is that it implies multiple security notions
(in fact, all the notions satisfied by a random oracle in a single stage game)
simultaneously up to the proven indifferentiability bound. The question of de-
signing an optimally efficient hash function naturally gets extended also to the
indifferentiability setting.
If an m+ n-to-n-bit hash function is designed using r many n+ c-to-n-bit com-
pression functions, is there a construction with indifferentiability security match-
ing Stam’s bound when m > n? Note that, a collision secure hash function
matching Stam’s bound may not imply the indifferentiability notion up to the
same bound.

1.1 Our Results

New measure of efficiency. Comparing efficiency of hash functions built
from primitives of different domain sizes is a tricky task. In addition to the mes-
sage size and the number of calls to underlying primitives, one needs to take into
account the domain and co-domain/range sizes of the underlying primitives. It
is not obvious how to scale the notion of rate up to capture these additional
parameters.
We approach the efficiency measure question from Stam’s bound perspective. We
say an m+s-to-s-bit hash function construction designed using r many n+c-to-
n-bit compression functions is optimally efficient if Stam’s bound is tight, that

is one can prove that asymptotically at least 2
nr+cr−m

r+1 queries are required to
find a collision. Notice that the value in itself can be low (say 2s/4), but given

3

f

m1 m2

f

m3 m4

f

(a) Merkle tree hashing 4 input
messages

f1

m1 m2

f2

m3 m4

f0

m5

(b) ABR mode hashing 5 input
messages

Fig. 1: Merkle Tree and ABR mode for height ` = 2

the proof, we can argue that the parameters are optimal for that security level.
Given that the collision-resistance requirement for a hash function is given by
the birthday bound (2s/2 queries), we can say that a hash function construc-
tion achieves optimal security-efficiency trade-off if nr+cr−m

r+1 = s
2 and Stam’s

bound is asymptotically tight. Then one can focus on schemes which achieve
the asymptotically optimal collision security, and normalize the efficiency of the
construction. We hence propose the notion of compactness as the ratio of the
parameter m and its optimal value (2nr+2cr−sr−s

2) as an efficiency measure of
a hash function construction C. In Section 3 we formally define the notion and
derive compactness of some popular modes.

Optimally Compact ABR Mode. We present a new tree-based mode ABR.
ABR of height ` implements a (2` + 2`−1 − 1)n-to-n-bit function making only
(2`−1) calls to the underlying 2n-to-n-bit compressing primitives. Assuming the
underlying primitives to be independent random oracles, we show that the ABR
mode is collision resistant up to the birthday bound asymptotically. The pa-
rameters of ABR mode achieve maximum compactness. In Section 4 we formally
present the ABR mode and prove its collision resistance.

A natural comparison with Merkle tree is in order. We show that Merkle
Tree can achieve only 2/3 of the optimal compactness and thus our mode is
significantly more efficient. For a tree of height `, in comparison to the Merkle
tree, the ABR mode can process an additional (2`−1 − 1) message blocks with
the same number of calls to the underlying compression functions.

ABR does not satisfy Indifferentiability. Our next target is to con-
sider the notion of indifferentiability. Specifically, how does the ABR compression
score in the indifferentiability setting? The primary objective of this question is
twofold. If we can prove the ABR construction with height ` = 2 to be indiffer-
entiable from a random oracle up to the birthday bound, then we could use the
indifferentiability composition theorem and replace the leaf level compression
function of ABR by 5n-to-n-bit ideal compression function. Then by recursively
applying the proof of collision resistency of ABR with height ` = 2, we could
extend the collision resistance proof to arbitrary large levels. Secondly, the proof

4

of indifferentiability implies simultaneously all the security notions satisfied by a
random oracle in single stage games. Unfortunately, we show that the ABR mode
with height ` = 2 does not preserve indifferentiability. We show an indifferen-
tiability attack of order 2

n
3 in section 5. The attack can easily be generalized to

ABR of arbitrary levels.

Salvaging Indifferentiability. Next, in Section 5.2 we propose an almost
optimally compact ABR+ mode design which salvages the indifferentiability se-
curity (up to birthday bound) of the original ABR mode. In principle, our second
construction ABR+ (see Fig. 4a) tree merges two left and right ABR mode (of
possibly different heights) calls by an independent post-precessor. Using the H-
coefficient technique, we prove the indifferentiability of the ABR+ construction
up to the birthday bound.

Compared to ABR mode, ABR+ compresses 1 less message block for the same
number of calls. For large size messages, this gap is extremely small. In compar-
ison to the Merkle Tree, the ABR+ mode, improves the efficiency significantly
and still maintains the indifferentiability property.

1.2 Impact of Our Result

Merkle trees were first published in 1980 by Ralph Merkle [26] as a way to au-
thenticate large public files. Nowadays, Merkle trees find ubiquitous applications
in cryptography, from parallel hashing, integrity checks of large files, long-term
storage, signature schemes [7,8,17,18], time-stamping [22], zero-knowledge proof
based protocols [6, 21], to anonymous cryptocurrencies [5], among many others.
Despite their indisputable practical relevance, for 40 years we have seen little
research go into the rigorous investigation of how to optimize their efficiency,
and hence we still rely on design principles that may in fact have some room for
efficiency optimizations.

In view of the wide spread use of Merkle trees, we consider one of the main
advantage of our construction as being in: increased number of message inputs
(compared to the classical Merkle tree) while maintaining the same tree height
and computational cost (for both root computation and node authentication). Our
trees then offer more efficient alternatives to Merkle trees in scenarios where the
performance criteria is the number of messages hashed for: 1. a fixed compu-
tational cost – compression function calls to compute the root, or/and 2. fixed
authentication cost – compression function calls to authenticate a node.

Regular hashing is naturally one of the first candidates for such an appli-
cations. Other potential use cases are hashing on parallel processors or multi-
core machines, such as authenticating software updates, image files or videos;
integrity checks of large files systems, long term archiving [16], memory authen-
tication, content distribution, torrent systems [1], etc. A recent application that
can benefit from our ABR or ABR+ mode designs are (anonymous) cryptocur-
rency applications. We elaborate more on these in Section 6.

5

2 Notation and Preliminaries

Let N = {0, 1, . . .} be the set of natural numbers and {0, 1}∗ be the set of all bit
strings. If k ∈ N, then {0, 1}k denotes the set of all k-bit strings. The empty string
is denoted by ε. [n] denotes the set {0, 1, · · · , n−1}. f : [r]×Dom→ Rng denotes
a family of r many functions from Dom to Rng. We often use the shorthand
f to denote the family {f0, · · · , fr−1} when the function family is given
as oracles.
If S is a set, then x

$← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.
An adversary A is an algorithm possibly with access to oracles O1, . . . ,O`

denoted by AO1,...,O` . The adversaries considered in this paper are computa-
tionally unbounded. The complexities of these algorithms are measured solely
on the number of queries they make. Adversarial queries and the corresponding
responses are stored in a transcript τ .
Hash Functions and Domain Extensions. In this paper, we consider Fixed-
Input-Length (FIL) hash functions. We denote these by the hash function H :
M→ Y where Y and M are finite sets of bit strings. For a FIL H the domain
M = {0, 1}N is a finite set of N -bit strings.

Note that, modelling the real-world functions such as SHA-2 and SHA-3, we
consider the hash function to be unkeyed. Typically, a hash function is designed
in two steps. First a compression function f : Mf → Y with small domain is
designed. Then one uses a domain extension algorithm C, which has a blackbox
access to f and implements the hash function H for larger domain.

Definition 1. A domain extender C with oracle access to a family of compres-
sion functions f : [r]×Mf → Y is an algorithm which implements the function
H = Cf :M→ Y.

Collision Resistance. Our definitions of collision (Coll) security is given for
any general FIL hash function H built upon the compression functions fi for
i ∈ [r] where fis are modeled as ideal random functions. Let Func(2n, n) denote
the set of all functions mapping 2n bits to n bits. Then, for a fixed adversary A

and for all i ∈ [r] where fi
$← Func(2n, n), we consider the following definition

of collision resistance.

Definition 2. Let A be an adversary against H = Cf . H is said to be (q, ε)
collision resistant if for all algorithm A making q queries it holds that

AdvColl
H (A) = Pr

[
M ′,M

$← Af (ε) : M 6= M ′ and H(M) = H(M ′)
]
≤ ε.

Indifferentiability.
In the game of indifferentiability, the distinguisher is aiming to distinguish

between two worlds, the real world and the ideal world. In the real world, the
distinguisher has oracle access to (CF ,F) where CF is a construction based on
an ideal primitive F . In the ideal world the distinguisher has oracle access to
(G, SG) where G is an ideal functionality and S is a simulator.

6

Definition 3 (Indifferentiability [23]). A Turing machine C with oracle ac-
cess to an ideal primitive F is said to be (tA, tS , qS , q, ε) indifferentiable (Fig. 2)
from an ideal primitive G if there exists a simulator S with an oracle access to
G having running time at most tS, making at most qS many calls to G per invo-
cation, such that for any adversary A, with running time tA making at most q
queries, it holds that

AdvIndiff
(CF ,F),(G,SG)(A)

def
=
∣∣∣Pr[A(CF ,F) = 1]− Pr[A(G,SG) = 1]

∣∣∣ ≤ ε
CF is computationally indifferentiable from G if tA is bounded above by some
polynomial in the security parameter k and ε is a negligible function of k.

In this paper, we consider an information-theoretic adversary implying tA is
unbounded. We derive the advantage in terms of the query complexity of the
distinguisher. The composition theorem of indifferentiability [23] states that if a
construction CF based on an ideal primitive F is indifferentiable from G, then
CF can be used to instantiate G in any protocol with single-stage game. We note,
however, the composition theorem does not extend to the multi-stage games, or
when the adversary is resource-restricted. We refer the reader to [30] for details.
We refer to the queries made to CF/G as construction queries and to the queries
made to F/S as the primitive queries.

F C S G

A

Fig. 2: The indifferentiability notion

Coefficient-H Technique. We shall prove indifferentiability using Patarin’s
coefficient-H technique [29]. Fix any distinguisher D making q queries. As the
distinguisher is computationally unbounded, without loss of generality we can
assume it to be deterministic [19, 28]. The interaction of D with its oracles is
described by a transcript τ . τ contains all the queries and the corresponding
responses D makes during its execution. Let Θ denote the set of all possible
transcripts. Let Xreal and Xideal denote the probability distribution of the
transcript in the real and the ideal worlds, respectively.

Lemma 1. [29] Consider a fixed deterministic distinguisher D. Let Θ can be
partitioned into sets Θgood and Θbad. Suppose ε ≥ 0 be such that for all τ ∈ Θgood,

Pr [Xreal = τ] ≥ (1− ε)Pr [Xideal = τ]

Then Adv
Indiff
(CF ,F),(G,SG)

≤ ε+ Pr [Xideal ∈ Θbad]

7

Markov Inequality We recall the well known Markov inequality.

Lemma 2. Let X be a non-negative random variable and a > 0 be a real num-
ber. Then it holds that

Pr[X ≥ a] ≤ E [X]

a

3 Compactness: Normalizing Efficiency for Optimally
Secure Constructions

In Crypto 2008, Stam made the following conjecture (Conjecture 9 in [36]): If
Cf : {0, 1}m+s → {0, 1}s is a compression function making r calls to primitive
f : {0, 1}n+c → {0, 1}n, a collision can be found in the output of C by making

q ≤ 2
nr+cr−m

r+1 queries. The conjecture was proved in two papers, the case r =
1 was proved by Steinberger in [37], whereas the general case was proved by
Steinberger, Sun and Yang in [38]. The result, in our notation, is stated below.

Theorem 1 ([38]). Let f1, f2, . . . , fr : {0, 1}n+c → {0, 1}n be potentially dis-
tinct r many compression functions. Let C : {0, 1}m+s → {0, 1}s be a domain
extension algorithm making queries to f1, f2, . . . , fr in the fixed order. Suppose
it holds that 1 ≤ m ≤ (n + c)r and s

2 ≥
nr+cr−m

r+1 . There exists an adversary

making at most q = O
(
r2

nr+cr−m
r+1

)
queries finds a collision with probability at

least 1
2 .

In other words, if one wants to construct a hash function that achieves birthday
bound collision security asymptotically, the query complexity of the attacker
must be at least 2s/2. Then the parameters must satisfy the following equation:

nr + cr −m
r + 1

≥ s

2

Next, we rearrange the equation and get

m ≤ 2nr + 2cr − sr − s
2

Thus we can analyze the security-efficiency trade-off across different construc-
tions by considering only the schemes secure (asymptotically) up to the birthday
bound and describe the efficiency by the ratio 2m

2nr+2cr−sr−s . Then we argue that
the optimal efficiency is reached when the parameters satisfy

m =
2nr + 2cr − sr − s

2

Now we are ready to define compactness of hash functions based on compressing
primitives.

8

Definition 4. Compactness Let f1, f2, . . . , fr : {0, 1}n+c → {0, 1}n be poten-
tially distinct r many compression functions. Let C : {0, 1}m+s → {0, 1}s be a
domain extension algorithm making queries to f1, f2, . . . , fr in the fixed order.
We say C is α-compact if

– for all adversary A making q queries, for some constant c1, c2, it satisfies
that

AdvColl
C (A) ≤ O

(
sc1rc2q2

2s

)
,

–

α =
2m

2nr + 2cr − sr − s
Clearly for any construction, α ≤ 1. For the rest of the paper, we consider
constructions where s = n. Thus, we derive the value of α as

α =
2m

2cr + nr − n
In section 3.1, in Examples 1 and 2 we estimate that both Merkle–Damg̊ard

and Merkle tree domain extenders with 2n-to-n-bit compression function prim-
itives have a compactness of ≈ 2/3.

3.1 Compactness of Existing Constructions

Example 1. We consider the textbook Merkle–Damg̊ard (MD) domain exten-
sion with length padding and fixed IV. Let the underlying function be a 2n-to
n-bit compression function f . Let the total number of calls to f be r. At every
call n-bits of message is processed. Assuming the length-block is of one block,
the total number of message bits hashed using r calls is (r − 1)c. Hence, we get
m = (r − 1)c− n. Putting c = n we compute

α =
2n(r − 1)− 2n

2nr + nr − n
=

2nr − 4n

3nr − n
<

2

3

Example 2. For binary Merkle tree with c = n, let the number of f calls at the
leaf level is z. Then the total number of message bit is 2nz. Let the total number
of calls to the compression function f is r = z+ z− 1 = 2z− 1. Comparing with
the number of message bits we get m+ n = (r + 1)n which implies m = rn. So
we calculate the compactness of Merkle tree as

α =
2rn

3nr − n
=

2r

3r − 1
<

2

3

Example 3. Next we consider Shrimpton-Stam 2n-to-n compression function
using three calls to n-to-n-bit function f . Here m = n and c = 0. Then α =

2n
3n−n = 1. The Mennink-Preneel generalization [24] of this construction gives
2n-to-n-bit compression function making three calls to n-bit permutations. Thus
in that case α = 2n

3n−n = 1 as well.

9

Example 4. Consider again MD domain extension with length padding and fixed
IV but let the underlying function be a 5n-to n-bit compression function f . At
every (out of r) f call 4n-bits are processed (the rest n-bits are the chaining
value). As we have one length-block, the total number of message bits hashed is
(r − 1)4n. Hence, we get m = (r − 1)4n− n and compute:

α =
2× 4n(r − 1)− 2n

2× 4r + nr − n
=

8nr − 6n

9nr − n
≈ 8

9

Example 5. The 5-ary Merkle tree with 5z leaf messages has 5nz bit input in

total. Thus r = 3(5z−1)
4 and m = n(5z − 1). The compactenss is given by

α =
2n(5z − 1)

2nr + nr − n
=

5z − 1

3r − 1
=

8(5z − 1)

9(5z − 1)− 4
≈ 8

9

4 ABR Mode with Compactness α = 1

In this section we present the ABR domain extender. We prove its collision
resistance in the random oracle model and show that it is optimally (α = 1)-
compact. Our ABR mode collision-resistance-proof is valid for FIL trees. That
means that our result is valid for trees of arbitrary height but once the height
is fixed, all the messages queried by the adversary must correspond to a tree of
that height. We remind the reader that the majority of Merkle tree applications
rely exactly on FIL Merkle trees. 4 The parameter of our construction is ` which
denotes the height of the tree. The construction makes r = 2` − 1 many inde-
pendent 2n-to-n-bit functions and takes input messages from the set {0, 1}µn,
where µ = 2` + 2`−1 − 1. f(j,b) denotes the bth node at jth level. The parents of
f(j,b) are denoted by f(j−1,2b−1) and f(j−1,2b). We use the following notations for
the messages. Let M be the input messages with µ many blocks of n-bits. The
corresponding input to a leaf node f(1,b) is denoted by m(1,2b−1) and m(1,2b). For
the internal function f(j,b), m(j,b) denotes the message that is xored with the
previous chaining values to produce the input. We refer the reader to Fig. 3b for
a pictorial view. Note, the leaves are at level 1 and the root of the tree is at level
`. The message is broken in n-bit blocks. 2` many message blocks are processed
at level 1. For level j(> 1), 2`−j many blocks are processed. The adversary A
has query access to all functions, and it makes q queries in total.

Theorem 2. Let ` ≥ 2 be a natural number and r = 2`. Let f : [r]×{0, 1}2n →
{0, 1}n be a family of functions. Let A be an adversary against the collision
resistance of ABR mode. If the elements of f are modeled as independent random
oracles, then

AdvColl
ABR(Af) = O

(
rn2q2

2n

)
.

4 Although VIL Merkle tree exists with collision preservation proof, that is done at the
cost of an extra block of Merkle-Damg̊ard-type strengthening and padding schemes.
As Stam’s bound is derived for FIL constructions, we restrict our focus on FIL
constructions only.

10

y ← ABR mode(m1, . . . ,m2`+2`−1−1)

i← 1, j ← 1

do

y1,j = f1,j(mi,mi+1)

i← i + 2, j ← j + 1

while i < 2`

count← 2`

for j in{2, . . . , `}
i← 1, s← count

do

yj,i = fj,i(ms+i ⊕ yj−1,2i−1,

ms+i ⊕ yj−1,2i)⊕ yj−1,2i

while i < 2`−j

count← count + 2`−j

endfor

return y`,1

(a) Algorithm for computing ABR
mode hash value with height `

f1,1

m1 m2

f1,2

m3 m4

f1,3

m5 m6

f1,4

m7 m8

f2,1

m9

f2,2

m10

f3,1

m11

(b) ABR mode of height ` = 3 with 23

leaf message inputs (valid for Merkle
tree), r = 7 compression function calls,
and total of 2` + 2`−1 − 1 = 11 input
blocks.

Fig. 3: ABR mode algorithm and instantiation

where q is the number of queries A makes to f satisfying q2 < 2n

2e(n+1) .

4.1 Warmup: ABR mode with height 2.

First, we prove the security of the case ` = 2. In this case ABR mode implements
a 5n-to-n-bit compression function with 3 calls to 2n-to-n-bit compression func-
tions. For convenience of explanation, we refer the three functions as f0, f1, f2

(see Fig. 1b).

Construction 3 Let f0, f1, f2 : {0, 1}2n → {0, 1}n be three compression func-
tions. We define ABR mode for ` = 2 as ABRf : {0, 1}5n → {0, 1}n where

ABR(m1,m2,m3,m4,m5) = f2 (x3, x4)⊕ f0 (m5 ⊕ f1 (x1, x2) ,m5 ⊕ f2 (x3, x4))

Theorem 2 can be restated for this case as the following proposition.

Proposition 4 Let f0, f1, f2 : ×{0, 1}2n → {0, 1}n. Let A be an adversary
against the collision resistance of ABR. If fis are modeled as independent random
oracles, then

AdvColl
ABR(Af) = O

(
n2q2

2n

)
where q is the maximum number of queries A makes to the oracles f0, f1, f2s.

11

Proof of Proposition 4 The proof strategy closely follows [35].
Moving to level-wise setting. In general, one needs to consider the adver-
sary making queries in some adaptive (and possibly probabilistic) manner. But
for the case of 5n-bit to n-bit ABR, as in [35], we can avoid the adaptivity as f1

and f2 are independent random oracles.

Lemma 3. For every adaptive adversary Â, there exists an adversary A who
makes level-wise queries and succeeds with same probability;

AdvColl
ABR(Â) = AdvColl

ABR(A).

Collision Probability in the level-wise query setting From this point
on, we assume that the adversary is provided with two lists L1 and L2 at the
start of the game. L1 and L2 have q uniformly sampled points and they should
be considered as the responses of the queries made by the adversary to f1 and
f2, respectively. The adversary only needs to query f0.

Let A be an adversary that can find a collision in ABR. Two cases may arise.
In the first case, A can find collision in the leaf nodes (f1 or f2). In that case,
there is a collision in either L1 and L2. In the other case, there is no collision
among the outputs of f1 or f2, and the collision is generated at the final output.
Let Colli denote the event that A finds a collision in Li. Let Coll denote the event
that A finds a collision in ABR.

AdvColl
ABR(Af) ≤ Pr [Coll] = Pr [Coll ∧ (Coll1 ∨ Coll2)] + Pr [Coll ∧ ¬(Coll1 ∨ Coll2)]

≤ Pr [Coll1 ∨ Coll2] + Pr [Coll | ¬(Coll1 ∨ Coll2)]

≤ Pr [Coll1] + Pr [Coll2] + Pr [Coll | ¬(Coll1 ∨ Coll2)].

As the functions are independent random oracles, Pr [Coll1] and Pr [Coll2]

are bounded above by q2

2n . In the remaining, we bound the probability of the
third term.
Defining the range. For every query (ui, vi) made by the adversary to f0, we
define the following quantity

Yi
def
= | {(h1, h2) | h1 ∈ L1, h2 ∈ L2, h1 ⊕ ui = h2 ⊕ vi} | .

where f0(ui, vi) is the ith query of the adversary. While Yi counts the number
of valid or more precisely consistent with the ABR structure pairs (h1, h2) that
were already queried to f1 and f2, Yi also denotes the number of possible ABR
hash outputs produced by the adversary by making f0(ui, vi) query. Notice,
that Yi inputs to f0 generate Yi outputs. Each of these outputs are XORed each
with only one corresponding consistent h2 value determined by the equation
h1 ⊕ ui = h2 ⊕ vi, hence producing Yi ABR outputs on Yi consistent number
inputs to f0. Let Y = maxiYi.
Bounding Collision by range. Now, we show how bounding the range will
help us bounding the collision probability. Let Ei denotes the probability that
after making the ith query f0(ui, vi) produces a collision in the output of ABR.

12

Suppose after making i− 1 queries, adversary is not able to produce a collision
for ABR. Hence, the adversary has produced

∑i−1
j=1 Yj many hash outputs. We

bound the probability that ith query response produces a collision.

Pr
[
Ei | ∧i−1

j=1¬Ej
]
≤
Yi
∑i−1
j=1 Yj

2n

Now we can bound the collision probability as

Pr [Coll | ¬(Coll1 ∨ Coll2)] ≤
q∑
i=1

Yi
∑i−1
j=1 Yj

2n
≤

q∑
i=1

i−1∑
j=1

Y 2

2n
≤ q2Y 2

2n+1

We shall use the following lemma, which we prove later.

Lemma 4.

Pr [Y > k | ¬(Coll1 ∨ Coll2)] ≤ q2k(2n − k)!

k! (2n − 1)!

Using Lemma 4, we get

Pr [Coll | ¬(Coll1 ∨ Coll2)] ≤ Pr [Coll ∧ Y ≤ k | ¬(Coll1 ∨ Coll2)]

+ Pr [Y > k | ¬(Coll1 ∨ Coll2)]

≤ k2q2

2n+1
+
q2k(2n − k)!

k! (2n − 1)!

Putting k = n we get the probability as

Pr [Coll | ¬(Coll1 ∨ Coll2)] ≤ n2q2

2n+1
+

q2n

n! (2n − 1) · · · (2n − n+ 1)
≈ n2q2

2n+1
+
q2n

2n2

= O
(
n2q2

2n

)
Hence, we get the theorem. ut

Proof of Lemma 4. Let (hi1 , h
′
j1

), (hi2 , h
′
j2

), · · · , (hik , h′jk) be the set of k pairs
such that each hil ∈ L1 and h′jl ∈ L2, and

hi1 ⊕ h′j1 = hi2 ⊕ h′j2 = · · · = hik ⊕ h′jk = a (say)

The condition ¬(Coll1∨Coll2) implies that there is no collision in L1 and L2.
The total number of ways to choose each of L1 and L2 such that there is no
collision is q!

(
2n

q

)
.

Next we count the number of ways of choosing L1 and L2 such that the k
equalities get satisfied. The number of ways we can choose i1, i2, · · · , ik is

(
q
k

)
.

Fixing the order of i1, i2, · · · , ik, the number of ways to pair j1, j2, · · · , jk is k!
(
q
k

)
.

13

Observe that there can be 2n many possible values of a. Fix a value of a. Thus
for each value of hil , there is a single value of h′jl . Hence the total number of ways

we can select L1, L2 such that the equalities get satisfied is q!
(

2n

q

)
× q!

(
2n−k
q

)
.

Hence the probability that for independently sampled L1 and L2,

Pr [Y > k | ¬(Coll1 ∨ Coll2)] =
k!
((
q
k

))2
2nq!

(
2n

q

)
× q!

(
2n−k
q

)(
q!
(

2n

q

))2

After simplification, we get the probability as

Pr [Y > k | ¬(Coll1 ∨ Coll2)] =
(q!)22n(2n − k)!

((q − k)!)
2
k! (2n)!

≤ q2k2n(2n − k)!

k! (2n)!

At the last step, we upper bound (q!)2

((q−k)!)2
by q2k. The lemma follows. ut

4.2 Proof of Theorem 2

Proof Overview. Now we prove the general case. We start with an overview
of the proof. Unlike the case for ` = 2, we have to consider adaptive adversaries.
Specifically, we can no longer assume that the adversary makes the queries level
wise. Indeed, a query at a non-leaf level is derived from the previous chain-
ing values (part of which is fed-forward to be xored with the output) and the
messages. We can no longer “replace” the query without changing the chaining
values. To the best of our knowledge, no proof technique achieving 2n/2 security
bound asymptotically, exists in the literature for this case.

The intuition of our proof follows. Like in the previous case, our analysis
focuses on the yield of a function. Informally, the yield of a query (u, v) to a
function f is the number of chaining values created by the query. For example,
consider a query (u, v) made to function fj,z, z

th function of level j, and let y
be the output of the query. How many chaining values does this query create?
A cursory inspection reveals that the number of created chaining values are the
number of “legal” feedforward (chaining value from the previous level function
fj−1,2z) values h. Indeed a feedforward value h can extend the chain, if there
exists a chaining value h′ from the set of chaining values created from fj−1,2z−1

(the other parent of (j, z)) such that h′ ⊕ u = h⊕ v.
Naturally, if we can bound the total yield of a function (denoted as load),

we can bound the probability of collision among the chaining values generated
by the function. The load of a function fj,z gets increased in two ways. The first
one is by a query made to fj,z, as encountered in the previous section. The other
one is by a query made to fj′,z′ where j′ < j and (j′, z′) is in the subtree of
(j, z). To see why the second case holds, observe that the query to fj′,z′ increases
the yield of the function, and thus creating new chaining values. Some of those
newly created chaining values can be “legal” feedforward values for some queries
already made to the next level, and thus increasing the yield of that query as
well. Moreover, this in turn again creates new chaining value at the level j′ + 1.

14

The effect continues to all the next levels and eventually affects the load of all
the functions in the path to the root, including (j, z).

We bound the load of functions at each level starting from the leaves. At
each level, we bound the probability of having a transcript which creates the
load on a function (of that level) over a threshold amount, conditioned on the
event that in none of the previous level the load exceeded the threshold.

Formal Analysis. Our formal analysis involves the transcript of the queries
and the corresponding responses. Each entry of the transcript contains a query
response pair, denoted by (u, v, y)(j,b) which indicates that y is the response of
the query fj,b(u, v). τ denotes the (partial) transcript generated after the q many
queries. Q(j,b) denotes the set of queries made to the function f(j,b). L(j,b) holds
the responses.
Yield Set For each function f(j,b), we define a set Γ(j,b) holding the possible
chaining values. Note, a chaining value h ∈ Γ(j−1,2b) can be a valid feedforward
value for entry (u, v, y)(j,b) if there exists a matching h′ ∈ Γ(j−1,2b−1) such that
for some m′, it holds that m′⊕ h′ = u and m′⊕ h = v. Such a m′ can exist only
if h′ ⊕ u = h⊕ v.

Γ(1,b)
def
= {y | (u, v, y)(1,b) ∈ τ}

Γ(j>1,b)
def
= {y ⊕ h | (u, v, y)(j,b) ∈ τ, h ∈ Γ(j−1,2b),∃h′ ∈ Γ(j−1,2b−1), h

′ ⊕ u = h⊕ v}.

Feedforward set. For each function f(j,b), we define a set F(j,b) containing the
possible elements that can be used as feedforward and xored with the output of
f(j,b) to generate valid chaining values. It is easy to verify that F(j,b) = Γ(j−1,2b),
where Γ(0,b) = ∅.

Let Coll denotes the event that the adversary finds collision in ABR mode. Let
M = (m1,1,m1,2 · · · ,m1,2` , · · · ,m`,1) andM ′ = (m′1,1,m

′
1,2 · · · ,m′1,2` , · · · ,m′`,1)

be the two distinct messages that produce the collision. We use (u, v, y)(j,b) and
(u′, v′, y′)(j,b) to be the corresponding queries made to function f(j,b) in the eval-
uation respectively. 5

Proper Internal Collision. The transcript is said to contain a proper internal
collision at (j, b), if the transcript contains two distinct queries (u, v, y)(j,b) and
(u′, v′, y′)(j,b) and there exists h, h′ ∈ Γ(j−1,2b) such that y ⊕ h = y′ ⊕ h′.

Lemma 5. Collision in tree implies a proper internal collision.

Proof. The proof follows the Merkle tree collision resistance proof. Without loss
of generality, we assume that there is no collision at the leaf. Now, consider a
collision in the tree. This implies that there exist (u, v, y)(`,1), (u

′, v′, y′)(`,1) ∈ τ
and h, h′ ∈ Γ(`−1,2) such that

y ⊕ h = y′ ⊕ h′

5 We assume the adversary makes all the internal queries before producing a collision.
Indeed we can always add the missing queries in the transcript without significantly
changing the query complexity.

15

If (u, v)(`,1) 6= (u′, v′)(`,1), then we get our proper internal collision at (`, 1),
and we are done. Otherwise (u, v)(`,1) = (u′, v′)(`,1), which in turn implies y = y′.
This implies h = h′. Moreover, we get h⊕ u⊕ v = h′ ⊕ u′ ⊕ v′ . The above two
equalities give us collision in the both left and the right subtree. As M 6= M ′,
the messages differ in one of the subtrees. Repeating the above argument in
the appropriate tree, we indeed find a (j, b) with distinct inputs (u, v)(j,b) 6=
(u′, v′)(j,b). ut

Bounding Probabilities of a Proper Internal Collision

Yield of a query. Consider an element (u, v, y)(j,b) ∈ τ . We define the follow-
ing quantity as the yield of the query f(j,b)(u, v).

Yu,v,j,b
def
=

{
| {(h1, h2) | h1 ∈ Γ(j−1,2b−1), h2 ∈ Γj−1,2b, h1 ⊕ u = h2 ⊕ v} | if j > 1
1 if j = 1

Load on a function. The load on a function f(j,b) is defined by the total yield
of the queries made to that function.

L(j,b)
def
=

∑
(ui,vi)∈Qj,b

Yui,vi,j,b.

Observe that if no internal collision happens at a function , the size of the
yield set is the load on that function; L(j,b) =| Γj,b |

For the rest of the analysis we use the variable k which is equal to (n+ 1)
1
` .

Bad Events. In this section we define the notion of bad event. We observe that
with every query, the load on the functions in the tree change. Two types of
contributions to load happen with each query.

1. Type I A new (u, v)(j,b) query contributes to L(j,b). The contribution amount
is Y(u,v,j,b).

2. Type II A new (u, v)j′,b′ query increases the load of (j, b) where j > j′ and
(j′, b′) is in the sub-tree rooted at (j, b).

δ1
(j,b) and δ2

(j,b) denotes the total type-I and type-II contributions to L(j,b) re-
spectively. We consider the following two helping Bad events.

1. Bad1 happens at function (j, b) such that for some (u, v, y)(j,b) ∈ τ , such that

Y(u,v,j,b) > k`. This event corresponds to the Type I queries.

2. Bad2 happens at function (j, b), if δ2
(j,b) > k`q.

Bad1j and Bad2j denotes the event that Bad1 or Bad2 respectively happens at
some node at level j. We define Badj as Bad1j ∪Bad2j . Let Bad denote the event
that for the generated transcript Badj holds for some level j.

Bad
def
=
⋃
j

Badj

The following proposition holds from the definitions.

16

Lemma 6.

¬Badj =⇒ ∀b ∈ [2`−j] it holds that L(j,b) ≤ 2k`q

Deriving Collision Probability. Let Collj denote the event of a proper
internal collision at (j, b) for some b ∈ [2`−j].

Pr [Coll] ≤ Pr [Coll ∪ Bad]

≤ Pr [Coll1 ∪ Bad1] +
∑
j>1

Pr [(Collj ∪ Badj) ∩ ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′]

≤ Pr [Coll1 ∪ Bad1] +
∑
j>1

Pr [Badj ∩ ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′]+∑
j>1

Pr [Collj ∩ ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′]

Using the fact that Pr[A ∩B] = Pr[A | B] Pr[B] ≤ Pr[A | B],

Pr [Coll] ≤Pr [Coll1 ∪ Bad1] +
∑
j>1

Pr [Badj | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′]+∑
j>1

Pr [Collj | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′] (1)

Proof Sketch of Bounding Pr [Coll1 ∪ Bad1]. As all the functions are modeled

as a random function, for all b ∈ [2`−1], we have Pr [Coll1,b] ≤ q2

2n . Hence,

Pr [Coll1] ≤ 2`−1q2

2n

In order to find Pr[Bad1], we recall that F1,b = ∅. In other words the nothing is
xored with the output of the functions at the leaf level. Hence, Y(u,v,1,b) = 1 for

all b ∈ [2`−1] and (u, v, y)1,b ∈ τ . Hence Pr [Bad1] = 0. Hence we get,

Pr [Coll1 ∪ Bad1] ≤ 2`−1q2

2n
(2)

Proof Sketch of Bounding
∑
j>1 Pr [Collj | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′]. Fix

b ∈ [2`−j] and thus fix a function at the jth level. As analyzed in the previous
section, given ∩j′≤j¬Badj′ , the proper internal collision probability for (j, b) is
L2

(j,b)

2n . From Lemma 6, it holds that for each b ∈ [2`−j], L(j,b) ≤ 2k`q. Hence for

each j > 1, b ∈ [2`−j],

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

]
≤ 4k2`q2

2n
.

17

Taking sum over all j > 1, b ∈ [2`−j],

∑
j>1,b

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

]
≤
∑̀
j=2

2`−j∑
b=1

4k2`q2

2n

=
∑̀
j=2

2`−j × 4k2`q2

2n

=
2`+2k2`q2

2n
×

∑̀
j=2

1

2j

In the next step we shall use the fact that
∑`
j=2

1
2j <

1
2 . Finally we get,∑

j>1,b

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

]
≤ 2`+2k2`q2

2n+1
(3)

Bounding Pr[Bad] Now we bound the probabilities of the two bad events.
We bound the probabilities level-wise. Let Bad1j,b denote that Bad1 happens at
node b of level j. Similarly, let Bad2j,b denote that Bad2 happens at node b of
level j. Clearly, Bad1j = ∪b∈[2`−j]Bad1j,b and Bad2j = ∪b∈[2`−j]Bad2j,b

Bounding Bad1j.

Lemma 7. For any (u, v, y)(j,b) for b ∈ [2`−j]

Pr[Bad1j,b | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′] ≤ 2n
(
ek`q2

2n

)k`
Proof. We bound the probability for any possible input (u, v)(j,b) that Y(u,v,j,b) >

k`. Fix u⊕ v = a. Consider any entry (u1, v1, y1)(j−1,2b) from τ . This entry con-
tributes to Y(u,v,j,b) if there exists a h ∈ F(j−1,2b) and x ∈ Γ(j−1,2b−1) such
that y1 ⊕ h ⊕ v = x ⊕ u. Rearranging, we get that y1 = h ⊕ x ⊕ a. Probabil-

ity of that event is
Y(u1,v1,j−1,2b)|Γ(j−1,2b−1)|

2n . As ¬Badj′ holds for all j′ < j, we
have | Γ(j−1,2b−1) |≤ k`q, and Yu1,v1,j−1,2b ≤ kj−1. Hence, the probability that

(u1, v1, y1)(j−1,2b) contributes to Yu,v,j,b is at most k`+j−1q
2n . As there are at most

q choices for (u1, v1, y1)(j−1,2b) and each choice contributes one to Yu,v,j,b,

Pr
[
Yu,v,j,b > k`

]
≤
(
q

k`

)(
k`+j−1q

2n

)k`
Next, we use the inequality

(
a
b

)
≤
(
ea
b

)b
, where e is the base of natural logarithm.

Pr
[
Yu,v,j,b > k`

]
≤
(
ekj−1q2

2n

)k`
≤
(
ek`q2

2n

)k`

18

Now, taking union bound over all possible choice of a, we get that for any possible
input (u, v) to f(j,b),

Pr
[
Yu,v,j,b > k`

]
≤ 2n

(
ek`q2

2n

)k`
ut

Bounding Bad2j.

Lemma 8. Fix b ∈ [2`−j] and thus fix a function at the jth level.

Pr[Bad2j,b | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′ ∩ ¬Bad1j,b] ≤ 2`k`q2

2n

Proof. Consider a query (u, v, y)j′,b′ where (j′, b′) is in the sub-tree of (j, b).
As ∩j′<j¬Badj′ holds, we argue ¬Bad1j′ holds. Thus the number of chaining
value created by (u, v, y)j′,b′ query at the output of j′, b′ is at most k`, we have
Yu,v,j′,b′ ≤ k`.

Next we calculate the increase in the load of the next node f(j′+1,d b′2 e)
due

to query (u, v, y)j′,b′ . Consider any chaining value h created due to the query

(u, v, y)j′,b′ . h increases the load of (j′ + 1, d b
′

2 e) if there exists h1 ∈ Γj′,b′−1 and
(u1, v1, y1)j′+1,d b′2 e

∈ τ such that h = h1 ⊕ u1 ⊕ v1. For a fixed h1 and query

(u1, v1, y1)j′+1,d b′2 e
, probability the equation gets satisfied is 1

2n . There can be at

most |Qj′+1,d b′2 e
| many queries made to the function j′+1, d b

′

2 e in the transcript,

implying at most q many choices for candidate (u1, v1, y1)j′+1,d b′2 e
.

E
[
δ2
(j′+1,d b′2 e)

]
≤
Yu,v,j′,b′

∣∣Γ(j′,b′−1)

∣∣ ∣∣∣Qj′+1,d b′2 e

∣∣∣
2n

As ¬Badj′ holds in the given condition,
∣∣Γ(j′,b′−1)

∣∣ = L(j′,b′−1) < 2k`q. More-

over, Yu,v,j′,b′ ≤ k`; thus the expected increase in the load of f(j′+1,d b′2 e)
is at

most 2k2`q2

2n .
We extend this argument to the next levels. For a random element from

Qj′+1,d b′2 e
× Γ(j′,b′−1) the expected number of matched elements in Qj′+2,d b′4 e

×

Γ(j′+1,d b′2 e−1) is

∣∣∣∣Γ(j′+1,d b′
2
e−1)

∣∣∣∣∣∣∣∣Qj′+2,d b′
4
e

∣∣∣∣
|Γ(j′,b′−1)|

∣∣∣∣Qj′+1,d b′
2
e

∣∣∣∣ . Using ¬Badj′ for all j′ < j, we bound

the expected increase of load for f(j′+2,d b′4 e)
as

E
[
δ2
(j′+2,d b′4 e)

]
≤
Yu,v,j′,b′ | Γ(j′,b′−1) || Qj′+1,d b′2 e

|
2n

×
| Γ(j′+2,d b′2 e−1) || Qj′+1,d b′4 e

|
| Γ(j′,b′−1) || Qj′+1,d b′2 e

|

≤
Yu,v,j′,b′ | Γ(j′+1,d b′2 e−1) || Qj′+1,d b′4 e

|
2n

≤ 2k2`q2

2n

19

Inductively extending the argument

E
[
δ2
(j,b)

]
≤ 2k2`q2

2n
.

As there q many queries in the transcript, the expected total type II contribution

for a function (j, b) is 2`k2`q3

2n . By using Markov inequality we get that

Pr
[
δ2
(j,b) > k`q

]
≤

E
[
δ2
(j,b)

]
k`q

≤ 2k`q2

2n
ut

Finishing the proof. From Lemma 6, Lemma 7, and Lemma 8, we bound the
probability of bad as

∑
j>1

Pr [Badj | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′] =
∑

j>1,b∈[2`−j]

2n
(
ek`q2

2n

)k`
+

2k`q2

2n

(4)

=
2`+1k`q2

2n
+ 2`+n

(
ek`q2

2n

)k`
(5)

From Equation 1, Equation 2, Equation 3, and Equation 5, we get,

Pr [Coll] ≤ 2`−1q2

2n
+

2`+1k2`q2

2n
+

2`+1k`q2

2n
+ 2`+n

(
ek`q2

2n

)k`
(6)

≤ 2`+1q2(1 + k` + k2`)

2n
+ 2`+n

(
ek`q2

2n

)k`
(7)

Finally, putting k = (n+ 1)
1
` , and assuming q2 < 2n

2e(n+1) , we get

2`+n
(
ek`q2

2n

)k`
<

2`e(n+ 1)q2

2n

Putting k` = (n+ 1) in Equation 7,

Pr [Coll] = O
(

2`(1 + n+ n2)q2

2n

)
= O

(
rn2q2

2n

)
.

This finishes the proof of Theorem 2. ut

Corollary 1. The compactness of ABR is 1.

20

5 Achieving Indifferentiability Efficiently

Below we first consider the basic ABR compression function and analyze its se-
curity with respect to the indifferentiability notion. We show that while ABR
fails to achieve indifferentiability, a simple modification can restore the indiffer-
entiability. We call that modified tree ABR+ mode construction. ABR+ mode is
the merge of two ABR modes (trees), not necessarily of the same height ` ≥ 2
each, and feeding their inputs to a final compression function (omitting the final
message injection and feedforward).

5.1 Indifferentiability attack against ABR mode

Our main result of this section is the following.

Theorem 5. Consider the ABR mode with ` = 2. There exists an indifferen-
tiability adversary A making O(2

n
3) many calls such that for any simulator S it

holds that

AdvIndiff
(ABR,f),(G,SG)(A) ≥ 1− ε

where ε is a negligible function of n.

Theorem 5 can be extended for ` > 2 as well.

Principle behind the attack Recall the ABR with ` = 2 from Fig. 1b. The
idea is to find collision on the input of f0 for two distinct messages m,m′. If the
adversary finds such a collision, then the output of the simulator on this input
needs to be consistent with the random oracle (F) responses on two distinct
messages. That is impossible unless there is a certain relation at the output of
F , making that probability negligible.

The attack The adversary A maintains three (initially empty) query-response
lists L0, L1, L2 for the three functions f0, f1, f2, respectively. A chooses 2n/3

messages (x
(1)
1 , x

(1)
2) ∈ {0, 1}2n, queries to f1, and adds the query-response tu-

ple to L1. Similarly, A chooses 2n/3 messages (x
(2)
1 , x

(2)
2) ∈ {0, 1}2n, queries

to f2, and adds the query-response tuple to L2. A checks whether there exists

(x
(1)
1 , x

(1)
2 , h

(1)
1) ∈ L1, and (x

(2)
1 , x

(2)
2 , h

(2)
1) ∈ L1, and (x

(1)
3 , x

(1)
4 , h

(1)
2) ∈ L2, and

(x
(2)
3 , x

(2)
4 , h

(2)
2) ∈ L2 such that

h
(1)
1 ⊕ h

(2)
1 ⊕ h

(1)
2 ⊕ h

(2)
2 = 0 (8)

If such tuples do not exist, A outputs 1 and aborts. If there is collision in the
lists, A outputs 1 and aborts. Otherwise, it chooses a random m̂ ∈ {0, 1}n. The

adversary sets m = h
(1)
1 ⊕ h

(2)
1 ⊕ m̂ = h

(1)
2 ⊕ h

(2)
2 ⊕ m̂, adversary computes

u = m ⊕ h
(1)
1 = m̂ ⊕ h

(2)
1 and v = m ⊕ h

(1)
2 = m̂ ⊕ h

(2)
2 . Finally, adversary

queries z = f0(u, v) and outputs 1 if z 6= F(x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ,m) ⊕ h

(1)
2 or

z 6= F(x
(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 , m̂)⊕ h(2)

2 . Else adversary outputs 0.
The full probability analysis is straightforward and skipped in this version.

21

f

ABRrightABRleft

`2`1

(a) General ABR+ mode

f1,1

m1 m2

f1,2

m3 m4

f1,3

m5 m6

f1,4

m7 m8

f2,1

m9

f2,2

m10

f3,1

(b) ABR+ mode with 10 input messages

Fig. 4: ABR+ mode examples

5.2 Almost Fully Compact and Indifferentiable ABR+ Mode

In this section, we show that the generalized ABR+ mode without the additional
message block at the last level is indifferentiable (up to the birthday bound)
from a random oracle. For ease of explanation, we prove the result for three-
level (see Fig. 4b) balanced tree. The proof for the general case follows exactly
the same idea. The generalized ABR+ mode can be viewed as the merge of two
ABR mode instances, one being the left ABR+ branch and the other being the
right branch. Both their root values are input to a final 2n-to-n-bit compression
function to compute the final value of the ABR+ tree. The ABR+ tree can be
either balanced or unbalanced depending on whether it uses two ABR modes of
identical or distinct heights (see Fig. 4a), respectively.

Our main result here is the following theorem. The result can be generalized
to ABR+ with arbitrary height. However, the simulator description will be more
detailed. For ease of explanation we consider the mode with ` = 3.

Theorem 6. Let f : [7] × {0, 1}2n → {0, 1}n be a family of random func-
tions. Let Cf : {0, 1}10n → {0, 1}n be the ABR+ mode as in Fig. 4b. (Cf , f)
is (tS , qS , q, ε) indifferentiable from a random oracle F : {0, 1}10n → {0, 1}n
where

ε ≤ O
(
n2q2

2n

)
.

where q is the total number of queries made by the adversary. Moreover tS =
O(q2) and qS = 1

5.3 Proof of Theorem 6

We assume that the distinguisher D makes all the primitive queries correspond-
ing the construction queries. This is without loss of generality as we can construct

22

a distinguisher D′ for every distinguisher D such that D′ satisfies the condition.
D′ emulates D completely, and in particular, makes the same queries. However,
at the end, for each construction queries made by D, D′ makes all the (non-
repeating) primitive queries required to compute the construction queries.. At
the end, D′ outputs the same decision as D. As a result, in the transcript of
D′, all the construction query-responses, can be reconstructed from the primi-
tive queries. Hence, it is sufficient to focus our attention on only the primitive
queries and compare the distribution of outputs. If D makes q1 many construc-
tion queries and q2 many primitive queries, then D makes q1 many construction
queries and q2 + q1l many primitive queries in total where l is the maximum
number of primitive queries to compute C.

The simulator We start with the high-level overview of how the simulator S
works. For each j ∈ [3], b ∈ [23−j] the simulator maintains a list L(j,b). The list
L(j,b) contains the query-response tuples for the function f(j,b).
Message Reconstruction. The main component of the simulator is the mes-
sage reconstruction algorithm FindM. In the case of traditional Merkle tree, the
messages are only injected in the leaf level. We have, in addition, the message
injection at each (non-root) internal node. The message reconstruction in our
case is slightly more involved.

The algorithm for message reconstruction is the subroutine FindM. It takes
(u0, v0), the input to f(3,1), as input. Let M = m1||m2|| · · · ||m10 be the message
for which f(3,1)(u0, v0) is the hash value. Also, suppose all the intermediate
queries to f(j,b)(j < 3) has been made. In the following, we describe how the
(partial) messages corresponding to chaining value u0 is recovered. The other
half of the message, corresponding to v0, is recovered in analogous way.

Recall that there is no message injection at the final node. Hence, if all the
intermediate queries related to M is made by the adversary, then m9 must satisfy
all the following relations, ∃(u, v, y)(2,1) ∈ L(2,1), such that

y = u0 ⊕ v ⊕m9 (m1,m2, u⊕m9) ∈ L(1,1) (m3,m4, v ⊕m9) ∈ L(1,2)

We find a candidate m9 by xoring u0 with y ⊕ v for all the (so far) recorded
entries (u, v, y)(2,1) ∈ L(2,1). To check the validity of the candidate, we check
the other two relations. If indeed such query tuples exist, we can recover the
message.
Simulation of the functions. For every non-root function f(j,b), j < 3, the
simulator simulates the function perfectly. Every query response is recorded in
the corresponding list L(j,b). The simulation of f(3,1) is a little more involved,
albeit standard in indifferentiability proof. Upon receiving a query (u0, v0) for
f(3,1), the simulator needs to find out whether it is the final query correspond-
ing to the evaluation for a message M . Suppose, all other queries corresponding
to M has been made. The simulator finds M using the message reconstruction
algorithm. If only one candidate message M is found, the simulator programs
the output to be F(M). If the list returned by FindM is empty, then the sim-
ulator chooses a uniform random string and returns that as output. The first

23

problem, however, arises when there are multiple candidate messages, returned
by FindM. This implies, there are two distinct messages M,M ′ for both of which
f(3,1)(u0, v0) is the final query. The simulator can not program its output to
both F(M) and F(M ′). Hence, it aborts. In that case, there is a collision at
either u or v, implying that the adversary is successful in finding a collision in
ABR mode. The probability of that event can indeed be bounded by the results
from the previous section. The second problem occurs in the output of non-root
functions. Suppose for a f(3,1)(u0, v0) query the FindM algorithms returns an
empty set. Intuitively, the simulator assumes here the adversary can not find a
message M , for which the final query will be f(3,1)(u0, v0). Hence, the simulator
does not need to maintain consistency with the Random Oracle. Now the second
problem occurs, if later in the interaction, the output of some f(j,b) query forces
a completion in the chaining value and a message M can now be recovered for
which the final query will be f(3,1)(u0, v0). This will create an inconsistency of
the simulator’s output and the response of the Random Oracle. In the following,
we bound the probability of these two events.

The description of the simulator is given in Fig. 5. The message reconstruc-
tion algorithm finds a candidate m9 (and resp. m10) for each entry in L(2,1)

(and resp. L(2,2)), and checks the validity against every entry of L(1,1) along
with L(1,2) (resp. L(1,3) along with L(1,4)). Thus the time complexity of message
reconstruction algorithm is O(q2). As the simulator invokes the message recon-
struction algorithm at most once for each query, we bound ts = O(q2). Similarly,
we find qs = 1 as the simulator has to query F only once per invocation.

The bad events We shall prove the theorem using the H-coefficient technique.
We consider the following Bad events.

Bad0: The set M, returned by the message reconstruction algorithm has car-
dinality more that one. This implies, one can extract two message M1,M2 from
the transcript such that the computation of ABR+(M1) and ABR+(M2) makes
the same query to f(3,1).

Bad1: There exists an i, such that for the ith entry in the transcript hi =
f(j,b)(xi, yi) with j < 3, there exists a message M such that Cf (M) can be
computed from the first i entries of the transcript, but can not be computed
from the first i− 1 entries. This in particular implies that there exists a i′ with
i′ < i, such that:

– i′th query is a query to f(3,1). h = f(3,1)(ui′ , vi′)

– By setting hi = f(j,b)(xi, yi) with ` > 0, we create a message M such that

all the other chaining values of Cf (M) are present in the first i− 1 queries
with f(3,1)(ui′ , vi′) as the final query.

Lemma 9. For adversary A making q many queries,

Pr [Bad] ≤ O
(
n2q2

2n

)
.

24

Procedure S(3, 1, u, v)

1 : if (u, v, z) ∈ L(3,1) return z

2 : M = FindM(u, v)

3 : if |M| > 1return ⊥
4 : if |M| = 0

5 : z
$←− {0, 1}n

6 : L(3,1) = L(3,1) ∪ (u, v, z)

7 : return z

8 : endif

9 : M ←M
10 : z = F(M)

11 : L(3,1) = L(3,1) ∪ (u, v, z)

12 : return z

Procedure S(j, b, u, v) where j < 3

1 : if ∃(u, v, z) ∈ L(j,b)

2 : return z

3 : else

4 : z
$←− {0, 1}n

5 : L(j,b) = L(j,b) ∪ (u, v, z)

6 : return z

7 : endif

Procedure FindM(u, v)

// Recovering message from u part

1 : M1 = ∅
2 : for each (u′, v′, h′) ∈ L(2,1)

3 : m9 = h′ ⊕ u⊕ v′

4 : endfor

5 : if ∃(m1,m2) such that (m1,m2, u
′ ⊕m9) ∈ L(1,1)

∧ ∃(m3,m4) such that (m3,m4, v
′ ⊕m9) ∈ L(1,2)

6 : M1 =M1 ∪ (m1,m2,m3,m4,m9)

7 : endif

// Recovering message from v part

8 : M2 = ∅
9 : for each (u′, v′, h′) ∈ L2,2

10 : m10 = h′ ⊕ v ⊕ v′

11 : endfor

12 : if ∃(m5,m6) such that (m5,m6, u
′ ⊕m10) ∈ L(1,3)

∧ ∃(m7,m8) such that (m7,m8, v
′ ⊕m10) ∈ L(1,4)

13 : M2 =M2 ∪ (m5,m6,m7,m8,m10)

14 : endif

// Combining the messages

15 : for each(m1,m2,m3,m4,m9)←M1

∧ each(m5,m6,m7,m8,m10)←M2

16 : M =M∪ (m1,m2, · · · ,m10)

17 : endif

18 : returnM

Fig. 5: Description of the simulator

Bounding Pr [Bad] We bound the probabilities of the Bad events.

– Case Bad0: If there is a collision in the final query of the computations for
two different messages, then there is a collision in the u part or v part of
the chain. This implies a collision in one of the ABR mode output. Hence,
by Proposition 4

Pr[Bad0] ≤ O
(
n2q2

2n

)
– Case Bad1: We first consider a query f(j,b)(u, v) with j = 2. Let Y(u,v,j,b)

denote the yield of this query (recall that yield of a query denotes the number
of new chaining values a query creates, see page 17). As there can be at most
q many queries to f(3,1) done before this, probability that such a query raises

the Bad1 is bounded by
Y(u,v,j,b)q

2n . Taking union bound over all the queries

at f(j,b), the probability gets upper bounded by
q
∑
Y(u,v,j,b)

2n . As we showed in

25

the previous section this probability can be bounded by O
(
n2q2

2n

)
. Finally,

we consider the case of Bad1 raised by some queries at the leaf level. As in
the proof of collision resistance, the expected number of new chaining values

created at the output by the leaf level queries is nq3

2n . Hence, by Markov
inequality, the probability that the total number of new chaining values

created is more that q is at most nq2

2n . Finally, conditioned on the number of
new chaining values be at most q, the probability that it matches with one

of the f(3,1) queries is at most q2

2n . Hence, we get

Pr[Bad1] ≤ O
(
nq2

2n

)

Good transcripts are identically distributed We show that the good views
are identically distributed in the real and ideal worlds. Note that the simulator
perfectly simulates f for the internal node. The only difference is the simulation
of the final query. In case of good views, the queries to f0 are of two types:

1. The query corresponds to the final query of a distinct message M , such that
all the internal queries of Cf (M) have occurred before. In this case, the
simulator response is F(M). Conditioned on the rest of the transcript the
output distribution remains same in both the worlds.

2. There is no messageM in the transcript so far for which this is the final query.
In this case, the response of the simulator is a uniformly chosen sample. As
Bad1 does not occur, the property remains true. In that case as well, the
output remains same, conditioned on the rest of the transcript.

Hence, for all τ ∈ Θgood

Pr [Xreal = τ] = Pr [Xideal = τ]

This finishes the proof of Theorem 6.

Corollary 2. The compactness of ABR+ making r calls to underlying 2n-to-n-
bit function is 1− 2

3r−1 .

6 Efficiency and Applications

In this section, we discuss the compactness of our proposed designs, possible
applications and use cases.

6.1 Efficiency and Proof Size

Below we discuss and compare our designs with the Merkle tree regarding effi-
ciency of compression and authentication and proof size: the number of openings
to prove a membership of a node in a tree.

26

Efficiency of compression and authentication. To measure efficiency of
compression we consider the amount of message (in bits) processed for a fixed
tree height or a fixed number of compression function calls. As mentioned earlier,
compared to a Merkle tree of height ` which absorbs n2` message bits, the ABR
or ABR+ modes process an additional n(2`−1−1) message bits. Thus, asymptot-
ically the number of messages inserted in our ABR (or ABR+) mode increases by
50% compared to Merkle tree. Additionally, the cost of authentication (number
of compression function calls to authenticate a node) in a Merkle tree is logN
where N = 2`. Here as well the ABR or ABR+ modes compress 50% more mes-
sage bits compared to Merkle tree keeping the same cost of authentication as in
Merkle tree as shown in lemma 10.
Proof Size. We refer to the tree chaining and internal message nodes as the
tree openings. The proof size in a tree is determined by the number of openings.
In a Merkle tree, the proof of membership of all (leaf) inputs requires logN
compression function evaluations and openings each. More precisely, to prove
the membership of an arbitrary leaf input, logN −1 chaining values and one leaf
input are required. Note that while counting the number of openings, we exclude
the input for which the membership is being proved.

Lemma 10. In ABR mode, to prove the membership of any node (message
block): leaf or internal, we require 2 logN − 1 (n-bit) openings and logN com-
pression function computations.

Proof. To prove the membership of a leaf input in the ABR mode 2(logN − 1)
openings are required together with one leaf input. This makes a total of 2 logN−
1 openings. To obtain the root hash logN computation must be computed. To
prove the membership of an internal node, we need 2(logN−1) openings, exclud-
ing any openings from the level at which the internal node resides. Additionally,
one more opening is required from the level of the node. Thus, in total we need
again 2 logN − 1 openings. The number of compression calls remains logN .

Compared to Merkle tree, in ABR+ the proof size increases by logN − 1. Ad-
mittedly, for Merkle tree applications where the proof size is the imperative
performance factor, the ABR+ modes do not provide an advantage.

6.2 Applications and Variants

ZK-SNARKs. We briefly point out here the potential advantages of using the
ABR mode in zk-SNARKS based applications, such as Zcash. In a zk-SNARK
[21] based application, increasing the number of inputs or transactions in a block
means that we need to increase the size of the corresponding Merkle tree. The
complexity of the proof generation process in zk-SNARK is C logC where C is
the circuit size of the underlying function. In ABR+ modes the additional mes-
sages are inserted without increasing the tree height or introducing additional
compression function calls. Since the messages are only injected with xor/addi-
tion operation, this does not deteriorate the complexity of the proof generation.
Zcash uses a Merkle tree with height ≈ 29 and 234 byte inputs. By using either

27

one, ABR or ABR+ modes, an additional of ≈ 233 byte inputs can be compressed
without making any extra calls to the underlying compression function. Asymp-
totically, ABR or ABR+ provides 50% improvement in the number of maintained
(in the tree structure) messages compared to a Merkle tree.
Further Applications. Our modes can be useful in applications, such as
hashing on parallel processors or multicore machines: authenticating software
updates, image files or videos; integrity checks of large files systems, long term
archiving [16], content distribution, torrent systems [1], etc.
Variants. We continue with possible variants of utilizing the ABR compression
function in existing constructions, such as the Merkle–Damg̊ard domain extender
and a 5-ary Merkle tree, and discuss their compactness and efficiency.
Merkle–Damg̊ard (MD) domain extender with ABR. When the compres-
sion function in MD is substituted by ABR (` = 2) compression function, the
collision resistance preservation of the original domain extender is maintained.
We obtain compactness of ≈ 8/9 of such an MD variant (see Section 3.1).

For all our modes, the high compactness allows us to absorb more messages
at a fixed cost or viewed otherwise, to compress the same amount of data (e.g. as
MD or Merkle tree) much cheaper. We elaborate on the latter trade-off here. To
compress 1MB message with classical MD that produces a 256-bit hash value and
uses a 512-to-256-bit compression function, around 31250 calls to the underlying
(512-to-256-bit) compression function are made. In contrast, ABR in MD requires
just ≈ 7812 calls to the (512-to-256) compression function, that is an impressive
4-fold cost reduction.
5-ary Merkle tree with ABR. One can naturally further construct a 5-ary

Merkle tree using ABR with compactness < 8/9 (see Section 3.1). That means
to compress 1MB data with a 5-ary ABR mode with 5n-to-n-bit (n = 256) com-
pression functions will require ≈ 23437 calls to the 512-to-256-bit compression
functions. Using the Merkle tree the number is 31250 compression function calls.
On the other hand, the ABR and ABR+ modes require only ≈ 20832 calls.

7 Discussion and Conclusions

The ABR mode is the first collision secure, large domain, hash function that
matches Stam’s bound for its parameters. The ABR+ is also close to optimally
efficient and achieves the stronger indifferentiablity notion, both completed in
the ideal model. Based on our security results we can conclude that the ABR+

mode is indeed the stronger proposal that achieves all the ‘good’ function prop-
erties up to the birthday bound. Driven by practical considerations for suitable
replacements of Merkle tree, the ABR mode appears to be the more natural
choice. This is motivated by the fact that the majority of Merkle tree uses are
indeed FIL, namely they work for messages of fixed length.

Indeed, for such FIL Merkle trees collision preservation in the standard model
holds but it fails once message length variability is allowed (for that one needs
to add MD strengthening and extra compression function call). The ABR mode

28

is proven collision secure in the ideal model. Our result confirms the structural
soundness of our domain extenders in the same fashion as the Sponge domain
extender does it for the SHA-3 hash function.

We clarify that simple modification of ABR lead to the same security results.
These variant is when one uses for feed-forward the left chaining value (instead of
the right as in the ABR mode). The collision security proofs for these this variant
follows exactly the same arguments and are identical up to replacement for the
mentioned values. Similarly, an extended tree version of this constructions can
be shown collision or indifferentiability secure when it is generalized in the same
fashion as the ABR+ mode.

An interesting practical problem is to find and benchmark concrete mode
instantiations. From a theory perspective, finding compact double length con-
structions is an interesting research direction.
Acknowledgements We thank Martijn Stam for reading an earlier version of
the draft and providing valuable comments. We would also like to thank Markulf
Kohlweiss for discussion (during Arnab’s visit to the University of Edinburgh in
2019) on the zksnarks and other applications of this work. We sincerely thank
the reviewers of Eurocrypt 2021, Asiacrypt 2020 for their insightful comments.
We are grateful to the reviewers of Crypto 2020 for their suggestions to extend
our previous work for generalized tree-like hash.

References

1. http://bittorrent.org/beps/bep_0030.html.
2. Elena Andreeva, Bart Mennink, and Bart Preneel. On the indifferentiability of the

Grøstl hash function. In SCN 10, volume 6280 of LNCS, pages 88–105. Springer,
Heidelberg, September 2010.

3. Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second
round SHA-3 candidates. In Mike Burmester, Gene Tsudik, Spyros S. Magliveras,
and Ivana Ilic, editors, Information Security - 13th International Conference, ISC
2010, Boca Raton, FL, USA, October 25-28, 2010, Revised Selected Papers, volume
6531 of Lecture Notes in Computer Science, pages 39–53. Springer, 2010.

4. Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family: generalizing
the sponge hash functions. Int. J. Inf. Sec., 11(3):149–165, 2012.

5. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. IACR Cryptology ePrint Archive, 2014:349, 2014.

6. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security
2014, pages 781–796. USENIX Association, August 2014.

7. D Benjamin. Batch signing for tls. https://tools.ietf.org/html/

draft-davidben-tls-batch-signing-02, 2019.
8. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost

Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework. In ACM
CCS 2019, pages 2129–2146. ACM Press, November 2019.

9. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: single-pass authenticated encryption and other applications. Cryptol-
ogy ePrint Archive, Report 2011/499, 2011. http://eprint.iacr.org/2011/499.

29

http://bittorrent.org/beps/bep_0030.html
https://tools.ietf.org/html/draft-davidben-tls-batch-signing-02
https://tools.ietf.org/html/draft-davidben-tls-batch-signing-02
http://eprint.iacr.org/2011/499

10. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314. Springer, Heidelberg,
May 2013.

11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In EUROCRYPT 2008, volume 4965
of LNCS, pages 181–197. Springer, Heidelberg, April 2008.

12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In SAC
2011, volume 7118 of LNCS, pages 320–337. Springer, Heidelberg, August 2012.

13. John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of
highly-efficient blockcipher-based hash functions. In EUROCRYPT 2005, volume
3494 of LNCS, pages 526–541. Springer, Heidelberg, May 2005.

14. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In CRYPTO 2002,
volume 2442 of LNCS, pages 320–335. Springer, Heidelberg, August 2002.

15. Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. Spongent: A lightweight hash function. In CHES 2011,
volume 6917 of LNCS, pages 312–325. Springer, Heidelberg, September / October
2011.

16. BSI. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/

TechGuidelines/TR03125/TR-03125_M3_v1_2_2.pdf.
17. Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and

Camille Vuillaume. Merkle signatures with virtually unlimited signature capac-
ity. In ACNS 07, volume 4521 of LNCS, pages 31–45. Springer, Heidelberg, June
2007.

18. Johannes Buchmann, Luis Carlos Coronado Garćıa, Erik Dahmen, Martin Döring,
and Elena Klintsevich. CMSS - an improved Merkle signature scheme. In IN-
DOCRYPT 2006, volume 4329 of LNCS, pages 349–363. Springer, Heidelberg,
December 2006.

19. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer,
Heidelberg, May 2014.

20. Ivan Damg̊ard. A design principle for hash functions. In CRYPTO’89, volume 435
of LNCS, pages 416–427. Springer, Heidelberg, August 1990.

21. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

22. Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document.
Journal of Cryptology, 3:99–111, 1991.

23. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, im-
possibility results on reductions, and applications to the random oracle method-
ology. In TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidelberg,
February 2004.

24. Bart Mennink and Bart Preneel. Hash functions based on three permutations: A
generic security analysis. In CRYPTO 2012, volume 7417 of LNCS, pages 330–347.
Springer, Heidelberg, August 2012.

25. Bart Mennink and Bart Preneel. Efficient parallelizable hashing using small non-
compressing primitives. Int. J. Inf. Secur., 15(3):285–300, 2016.

26. Ralph C. Merkle. Protocols for public key cryptosystems. In Proceedings of the
1980 IEEE Symposium on Security and Privacy, Oakland, California, USA, April
14-16, 1980, pages 122–134. IEEE Computer Society, 1980.

30

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03125/TR-03125_M3_v1_2_2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03125/TR-03125_M3_v1_2_2.pdf

27. Ralph C. Merkle. A certified digital signature. In CRYPTO’89, volume 435 of
LNCS, pages 218–238. Springer, Heidelberg, August 1990.

28. Mridul Nandi. A simple and unified method of proving indistinguishability. In
INDOCRYPT 2006, volume 4329 of LNCS, pages 317–334. Springer, Heidelberg,
December 2006.

29. Jacques Patarin. The “coefficients H” technique (invited talk). In SAC 2008,
volume 5381 of LNCS, pages 328–345. Springer, Heidelberg, August 2009.

30. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with com-
position: Limitations of the indifferentiability framework. In EUROCRYPT 2011,
volume 6632 of LNCS, pages 487–506. Springer, Heidelberg, May 2011.

31. Thomas Ristenpart and Thomas Shrimpton. How to build a hash function from
any collision-resistant function. In ASIACRYPT 2007, volume 4833 of LNCS,
pages 147–163. Springer, Heidelberg, December 2007.

32. Ronald L. Rivest and Jacob C. N. Schuldt. Spritz - a spongy rc4-like stream cipher
and hash function. IACR Cryptol. ePrint Arch., 2016:856, 2016.

33. Phillip Rogaway and John P. Steinberger. Constructing cryptographic hash func-
tions from fixed-key blockciphers. In CRYPTO 2008, volume 5157 of LNCS, pages
433–450. Springer, Heidelberg, August 2008.

34. Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for
permutation-based hashing. In EUROCRYPT 2008, volume 4965 of LNCS, pages
220–236. Springer, Heidelberg, April 2008.

35. Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression
function from non-compressing primitives. In ICALP 2008, Part II, volume 5126
of LNCS, pages 643–654. Springer, Heidelberg, July 2008.

36. Martijn Stam. Beyond uniformity: Better security/efficiency tradeoffs for compres-
sion functions. In CRYPTO 2008, volume 5157 of LNCS, pages 397–412. Springer,
Heidelberg, August 2008.

37. John P. Steinberger. Stam’s collision resistance conjecture. In Henri Gilbert,
editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco
/ French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture
Notes in Computer Science, pages 597–615. Springer, 2010.

38. John P. Steinberger, Xiaoming Sun, and Zhe Yang. Stam’s conjecture and threshold
phenomena in collision resistance. In CRYPTO 2012, volume 7417 of LNCS, pages
384–405. Springer, Heidelberg, August 2012.

31

	Compactness of Hashing Modes and Efficiency beyond Merkle Tree

