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Abstract. ForkAE is a NIST lightweight cryptography candidate that
uses the forkcipher primitive in two modes of operation – SAEF and
PAEF – optimized for authenticated encryption of the shortest messages.
SAEF is a sequential and online AEAD that minimizes the memory
footprint compared to its alternative parallel mode PAEF, catering to
the most constrained devices. SAEF was proven AE secure against nonce-
respecting adversaries.
Due to their more acute and direct exposure to device misuse and mis-
handling, in most use cases of lightweight cryptography, nonce reuse
presents a very realistic attack vector. Furthermore, many lightweight
applications mandate security for their online AEAD schemes against
block-wise adversaries. Surprisingly, a very few NIST lightweight AEAD
candidates come with provable guarantees against these security threats.
In this work we investigate the provable security guarantees of SAEF
when nonces are repeated under a refined version of the notion of on-
line authenticated encryption OAE given by Fleischmann et al. in 2012.
Using the coefficient H technique we show that, with no modifications,
SAEF is OAE secure up to the birthday security bound, i.e., up to 2n/2

processed blocks of data, where n is the block size of the forkcipher.
The implications of our work is that SAEF is safe to use in a block-wise
fashion, and that if nonces get repeated, this has no impact on cipher-
text integrity and confidentiality only degrades by a limited extent up
to repetitions of common message prefixes.

Keywords: Authenticated encryption, forkcipher, lightweight cryptography, short
messages, online, provable security, nonce misuse.

1 Introduction

An authenticated encryption (AE) algorithm aims to achieve message confiden-
tiality and integrity (authentication). The majority of AE schemes nowadays
process two additional inputs: associated data AD and a nonce. The associated
data is a piece of information, such as a network packet header, that does not



require the provision of confidentiality but it does require authentication. The
nonce input to an AE(AD) scheme is also practically motivated. A nonce is a
unique value that enables the simplification of randomized or stateful AE algo-
rithm to a deterministic one. This removes the need for random values generation
or storing a state across distinct encryptions. The formalisation of nonce-based
authenticated encryption was introduced in 2002 by Rogaway [24].

Two of the most prominent AEAD schemes research, development and stan-
dardization efforts in recent years have been the CAESAR competition (2014–
2018) [7] and the ongoing NIST lightweight cryptography standardization pro-
cess (2018–). The CAESAR competition produced a portfolio of algorithms for
recommended use in three categories: 1. Lightweight (resource constrained en-
vironments): Ascon [9] and ACORN [28]; 2. High-performance: AEGIS-128 [30]
and OCB [19]; 3. Defense in depth (stronger security guarantees): COLM [1],
Deoxys II [18], and MORUS [29]. The CAESAR winners come with various ad-
vantages over the present standards GCM (NIST SP 800-38D) and CCM (IEEE
802.11i, IPsec ESP and IKEv2) and are expected to be adopted by new appli-
cations and standards.

The main focus of the defense in depth CAESAR category is nonce misuse
resistance (NMR), a security target motivated by attacks which exploit imple-
mentation flaws leading to a repeated use of the same nonce by an applica-
tion. More precisely, authenticity preservation despite nonce misuse is stated as
critical and a limited privacy damage from nonce misuse as desirable. Nonce-
misuse resistant AE (MRAE) was introduced by Rogaway and Shrimpton [26].
Later works dealt with online nonce misuse-resistant AE (OAE) [11] and online
AE(OAE2) [15]. Nonce misuse purportedly presents a greater risk for small de-
vices, such as IoT, where nonces could repeat due to various memory or space
constraints, or remote usage. Maintaining the correct use of nonces is also espe-
cially challenging in distributed systems where nodes and connections can fail
at any time. Recent attacks have illustrated the severity of nonce misuse in
practice. In 2016 Böck et al. [8] investigated the nonce misuse security of the
AES-GCM [10] AE mode and managed to completely break the authenticity of
those connections where servers repeated the nonce. Their Internet-wide survey
identified 184 such HTTPS servers. They showed how this vulnerability can be
utilized to inject seemingly valid content into encrypted sessions. The next year
Vanhoef and Piesens [27] introduced the key reinstallation attack which forces
nonce repetitions and breaks the WPA2 wireless protocol.

The MRAE [25] and the RAE [14] security notions capture the “best pos-
sible” security of nonce based AEAD (the latter for an extended syntax) in
face of nonce repetitions but unfortunately can not be satisfied by any online
AEAD scheme. These are AE schemes which parse the plaintext as a sequence
of smaller, usually fixed-size blocks during encryption, and produce the cipher-
text as a sequence of such blocks, such that ith ciphertext block can be im-
mediately computed after having seen the first i plaintext blocks. Importantly,
online encryption is better fitted for lightweight applications, where it is often
critical to compute the ciphertext blocks on the fly with constant latency (e.g.
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streaming), or where a constant memory implementation is required. Such con-
straints can be found most recently in the consumer grade IoT applications,
which come with stringent cost constraints and often get inadequate security
as a consequence [20, 21], and which would greatly benefit from a lightweight
AEAD scheme with robust security.

In 2012 Fleischmann et al. [11] proposed a weaker NMR security notion
called OAE for online schemes that retains the same level of integrity and a
well-defined, albeit lower level of confidentiality in face of nonce misuse. Hoang
et al. [15] pointed out inconsistencies in this definition, reformulated it, demon-
strated that in certain situations the confidentiality afforded by OAE secure
schemes is not sufficient, and critiqued several aspects of the OAE definition.
Addressing the latter, Hoang et al. proposed an alternative to OAE dubbed
OAE2 which is a stronger security with more versatile syntax. However, the
change in syntax also means that the notion is inapplicable to designs adhering
to the most common nonce-based AEAD syntax, and as shown by Hoang et al.,
the possible exploits of the decay in confidentiality are unavoidable in any kind of
online schemes, OAE2-secure ones included. Despite this controversy, OAE can
afford pragmatic protection against nonce-reuse with a sufficiently large block
size and an appropriate use by the higher-level protocol/security primitive/etc.

In 2016 Endignoux and Vizár [13] showed that the notion of OAE is also
meaningful in the context of block-wise adaptive attacks. The authors proved
that OAE is equivalent with an adapted version of the blockwise-adaptive AE
notions from [12]. The equivalence result shows that OAE-secure schemes are safe
to use in settings where block-wise adaptive attackers exist. The main observa-
tion in [12] was that if an application, such as a smart card, outputs a ciphertext
block each time it is fed a plaintext block, then a potential attacker gets more
power by allowing him to adaptively construct the queries block-by-block. Such
attacks pose a genuine risk in the lightweight setting where small devices are for
example not equipped with sufficient memory and work block-wise. The OAE
notion has been adopted by several AEAD designs, amongst which the COLM
CAESAR winner in the defense in depth category (satisfying the authenticity
and limited privacy damage against nonce misuse).

Surprisingly, among the 32 second round candidates, only a handful come
with a provable form of nonce misuse security. The SP1 mode in the Spook [6]
submission achieves the nonce misuse resilience notion proposed by Ashur et
al. [3]. Tiny JAMBU [16] provides authentication security when nonce is misused
by adjusting the associated data to also play the role of nonce. When the nonce
is repeated but AD is different, the security of the cipher would not be affected
by the repeated nonce, yet when both nonce and AD repeat, the scheme does
not offer strong security guarantees in the sense of OAE. Romulus-M [17] is
an MRAE [25] mode which is secure against misuse (repetition) of nonces in
encryption queries but prevents the scheme from being implemented in an online
fashion.

Our Contributions. In this work we investigate the OAE security of the
ForkAE [2] second round NIST candidate which is optimized to be efficient for
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short messages. We focus on ForkAE and more precisely on its SAEF mode for
three reasons. First, SAEF comes with existing provable security guarantees in
the nonce-respecting setting, hence its (in)security in presence of nonce misuse
is an interesting open question. Secondly, SAEF is an online scheme and the
OAE security as refined by Hoang et al. [15] is a natural target for the anal-
ysis of its nonce-reuse security. Finally, an analysis of SAEF sheds more light
on the potential of its relatively novel and less researched underlying forkcipher
primitive [2] Our results show that the SAEF mode of the ForkAE NIST sec-
ond round submission is provably OAE secure without the need of applying any
design modifications.

The corrected variant of the OAE definition by Hoang et al. [15] (labeled
as OAE1 in the publication) was defined to handle plaintext whose length is a
multiple of the underlying blocksize n. Hence we extended the formalism to deal
with messages that are not n-bits aligned and target the resulting notion in our
analysis. Additionally, we opt to use two separate requirements for confidentiality
and authenticity of OAE schemes because this allows us to take slightly different
approach for analysis for each property in favor of brevity and simplicity of the
proofs. We use Coefficient H technique [22] as the main vehicle for the analysis
and prove that SAEF is OAE-secure up to 2n/2 blocks of processed data in total,
where n is the block size of the underling forkcipher.

2 Preliminaries

Strings. All strings are binary strings. The set of all strings of length n (for
a positive integer n) is denoted {0, 1}n and the set of all strings of all possible
lengths is denoted {0, 1}∗. We let {0, 1}≤n =

⋃n
i=0{0, 1}n. We denote by Perm(n)

the set of all permutations of {0, 1}n. We denote by Func(m,n) the set of all func-
tions with domain {0, 1}m and range {0, 1}n, and we let Inj(m,n) ⊂ Func(m,n)
denote the set of all injective functions with the same signature.

For a string X of ` bits, we let X[i] denote the ith bit of X for i = 0, . . . , `−1
(starting from the left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i <
j < `. We let left`(X) = X[0 . . . (` − 1)] denote the ` leftmost bits of X and
rightr(X) = X[(|X| − r) . . . (|X| − 1)] the r rightmost bits of X, such that
X = leftχ(X)‖right|X|−χ(X) for any 0 ≤ χ ≤ |X|. Given a (possibly implicit)

positive integer n and an X ∈ {0, 1}∗, we let X‖10∗ denote X‖10n−(|X| mod n)−1

for simplicity. Given an implicit block length n, we let pad10(X) = X‖10∗ return
X if |X| ≡ 0 (mod n) and X‖10∗ otherwise.

String partitioning. For the rest of the section, we fix an arbitrary integer
n and call it the block size. Given a string X, we let X1, . . . , Xx, X∗

n←− X
denote partitioning X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x,
0 ≤ |X∗| ≤ n and X = X1‖ . . . ‖Xx‖X∗, so x = max(0, dX/ne − 1). We let
|X|n = dX/ne. We let (M ′,M∗) = msplitn(M) (as in message split) denote
a splitting of a string M ∈ {0, 1}∗ into two parts M ′‖M∗ = M , such that
|M∗| ≡ |M | (mod n) and 0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0.
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We let (C ′, C∗, T ) = csplitn(C) (as in ciphertext split) denote splitting a string
C of at least n bits into three parts C ′‖C∗‖T = C, such that |C∗| = n, |T | ≡ |C|
(mod n), and 0 ≤ |T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we
let C ′1, . . . , C

′
m, C∗, T ← csplit-bn(C) (as in csplit to blocks) denote the result of

csplitn(C) followed by partitioning of C ′ into |C ′|n blocks of n bits, such that
C ′ = C ′1‖ . . . ‖C ′m.

Blocks. We let Bn = {0, 1}n denote the set of all n-bit strings (or else n-bit
blocks), and define B∗n = {ε} ∪

⋃∞
i=1 B

i
n with ε denoting the empty string of

length 0. We call a string X ∈ B∗n “n-aligned”. For an n-aligned string X, Xi

denotes its ith n-bit block. For two distinct n-aligned strings X,Y ∈ B∗n such that
|X|n ≤ |Y |n w.l.o.g, we let llcpn(X,Y ) = max{1 ≤ i ≤ |X|n|Xj = Yj for 1 ≤
j ≤ i} denote the length of the longest common prefix of X and Y in n-bit
blocks.

Miscellaneous. The symbol ⊥ denotes an error signal, or an undefined value.
We denote by X ←$ X sampling an element X from a finite set X following the
uniform distribution. We let (n)q denote the falling factorial n · (n− 1) · (n− 2) ·
. . . · (n− q+ 1) with (n)0 = 1. For a predicate P(x), we equate P(x) = true with
P(x) = 1 and P(x) = false with P(x) = 0. We use lexicographic comparison of
tuples of integers; i.e. (i′, j′) < (i, j) iff i′ < i or i′ = i and j′ < j.

2.1 Coefficient H Technique

The coefficient H technique is a simple but powerful proof technique provided by
Patarin in [22]. The coefficient H technique is used to prove indistinguishability
of a construction from an idealized object in face of an information-theoretic
adversary using the concept of “transcripts”. A transcript here is defined as
complete record of the interaction of an adversary A with its oracles in the in-
distinguishability experiment. To exemplify, if (Mi, Ci) denotes the input and
output of the i-th query of A to its oracle over q queries then the corresponding
transcript (denote it τ) is τ = 〈(M1, C1), . . . , (Mq, Cq)〉. The task given to A
is to distinguish the real world Oreal from the ideal world Oideal. Let us denote
the distribution of transcripts in the real and the ideal world by Θreal and Θideal,
respectively. We say a transcript τ is attainable if the probability of achieving τ
in the ideal world is non-zero. We also assume w.l.o.g. that A does not make du-
plicate or prohibited queries. The fundamental Lemma of coefficient H technique
can now be stated.

Lemma 1 (Fundamental Lemma of the coefficient H Technique [22]).
Consider that the set of attainable transcripts is partitioned into two disjoint sets
Tgood and Tbad. Also, assume there exist ε1, ε2 ≥ 0 such that for any transcript

τ ∈ Tgood, we have Pr[Θreal=τ ]
Pr[Θideal=τ ] ≥ 1− ε1, and Pr[Θideal ∈ Tbad] ≤ ε2. Then, for all

adversaries A, it holds that |Pr[AOreal ]− Pr[AOideal ]| ≤ ε1 + ε2.
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2.2 Syntax of AEAD

Our targeted mode SAEF follows the AEAD syntax by Rogaway [24]. A nonce-
based AEAD scheme is a triplet Π = (K, E ,D). The key space K is a finite set.
The deterministic encryption algorithm E : K×N ×A×M→ C maps a secret
key K, a nonce N , an associated data A and a message M to a ciphertext C =
E(K,N,A,M). The nonce, AD and message domains are all subsets of {0, 1}∗.
The deterministic decryption algorithm D : K × N × A × C → M∪ {⊥} takes
a tuple (K,N,A,C) and either returns a message M ∈ M, or a distinguished
symbol ⊥ to indicate an authentication error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any
integer m, either all or no strings of length m belong to M) and that for all
K,N,A,M ∈ K×N ×A×M we have |E(K,N,A,M)| = |M |+ θ for some non-
negative integer θ called the stretch of Π. For correctness of Π, we require that
for all K,N,A,M ∈ K×N ×A×M we have M = D(K,N,A, E(K,N,A,M)).
We let EK(N,A,M) = E(K,N,A,M) and DK(N,A,C) = D(K,N,A,C).

2.3 OAE Security

Our targeted notion of security is the definition of online AE (OAE) by Fleis-
chmann et al. [11]. We use the variant of the notion described by Hoang et al. [15],
extended as necessary to deal with messages that are not n-aligned. We opt for
the two-requirement flavor of the notion, separating confidentiality and authen-
ticity.

OAE Confidentiality. An online permutation [5] is a function π : B∗n → B∗n
such that (i) π is a length preserving permutation; i.e., for any integer m ≥ 0, the
function π restricted to mn-bit inputs π(K,T, ·) : Bmn → Bmn is a permutation
(with a slight notation abuse); (ii) π preserves the length of blockwise prefix;
i.e., for each M,M ′ ∈ B∗n, we have that llcpn(M,M ′) = llcpn(π(M), π(M ′)).

We denote the set of all such permutations OPerm(n). We can define the dis-
tribution of a “random” online permutation4 that is useful for experiments with
a finite number of queries. We observe that each π ∈ OPerm(n) can be equiva-
lently defined as a collection (πM )M∈B∗n , such that for any M1‖M2‖ . . . ‖Mr ∈ Brn
we define π(M1‖M2‖ . . . ‖Mr) as πε(M1)‖πM1

(M2)‖ . . . ‖πM1‖...‖Mr−1
(Mr), and

that there is in fact a bijection between OPerm(n) and the set of all such permu-
tation collections [5]. The expression π ←$ OPerm(n) should thus be understood
as lazy sampling of those permutations in the collection (πM )M∈B∗n that are nec-
essary to process adversarial queries.

We define OAE confidentiality of an AEAD scheme Π with two games,
oprpf-realΠ and oprpf-idealΠ . In both games A can make arbitrary cho-
sen plaintext queries to a black box encryption oracle, in particular A is al-
lowed to repeat the nonces. In the game oprpf-realΠ , the encryption oracle
faithfully implements the encryption algorithm of Π using a randomly sampled

4 OPerm(n) is a countably infinite set, so the notion of a uniform online permutation
is not defined.
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secret key. In the game oprpf-idealΠ , upon an encryption query N,A,M the
oracle returns πN,A(ML)‖fN,A,M where ML ← leftbM/nc(M) is the longest n-
aligned prefix of M , πN,A ←$ OPerm(n) is a random online permutation for each
N,A ∈ N × A, and fN,A,M ←$ {0, 1}n+(|M | mod n) is a random string for each
N,A,M ∈ N ×A×M (with a length corresponding to the n-bit authentication
tag and no more than n−1 bit suffix of M remaining after the maximal n-aligned
prefix ML). The oprpf advantage of an adversary A against Π = SAEF[F, ν]

can now be defined as Advoprpf
Π (A) = Pr[Aoprpf-realΠ ]− Pr[Aoprpf-idealΠ ] .

OAE Authenticity. The OAE authenticity notion coincides with the definition
of ciphertext integrity where the adversary is allowed to repeat nonces, as first
defined by Rogaway and Shrimpton [25]. A nonce-misusing chosen ciphertext
attack of an adversary A against the integrity of a nonce-based AE scheme Π
is modeled through the security game auth. The adversary is given access to a
pair of blackbox oracles. It can make arbitrary chosen plaintext queries to the
encryption oracle, including queries with repeated nonces. A can further make
arbitrary chosen ciphertext queries to the decryption oracle with the goal of
finding a forgery: a tuple that decrypts correctly but is not trivially known to be
correct from the encryption queries. We define the advantage of A in breaking
the authenticity of Π as Advauth

Π (A) = Pr[AauthΠ forges] where “A forges”
denotes a decryption query that returns a value 6= ⊥. We assume w.l.o.g. that
A does not make duplicate queries.

2.4 Forkcipher

We follow the formalism by Andreeva et al. [23]. Informally, a forkcipher F is a
tweakable symmetric-key primitive which maps a secret key K, a tweak T and
an input block M of n bits to two ciphertext blocks C0 and C1, such that C0

and C1 are each an (independent) permutation of M .

Syntax. Formally, a forkcipher is a pair of deterministic algorithms, the encryp-
tion algorithm: F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n
and the inversion algorithm: F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} →
{0, 1}n ∪ {0, 1}n × {0, 1}n. The encryption algorithm takes a key K, a tweak
T ∈ T , a plaintext block M and an output selector s, and outputs the (left)
n-bit ciphertext block C0 if s = 0, the (right) n-bit ciphertext block C1 if s = 1,
and both the blocks C0, C1 if s = b. We write F(K,T,M, s) = FK(T,M, s) =

FT
K(M, s) = FT,s

K (M) interchangeably. The inversion algorithm takes a key K,
a tweak T, a ciphertext block C (left/right half of output block), an indi-
cator b of whether this should be treated as the left or the right ciphertext
block and an output selector s, and outputs the plaintext block M if s = i,
the other ciphertext block C ′ if s = o, and both blocks M,C ′ if s = b. We

write F−1(K,T,M, b, s) = F−1
K(T,M, b, s) = F−1T

K(M, b, s) = F−1T,b,s
K (M) in-

terchangeably. We call k, n and T the keysize, blocksize and tweak space of F,
respectively.

A tweakable forkcipher F is correct if for each pair of key and tweak, the fork-
cipher applies two independent permutations to the input to produce the two
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output blocks. Formally, for each K ∈ {0, 1}k,T ∈ T ,M ∈ {0, 1}n and β ∈ {0, 1}
the following conditions must be met: (i) F−1(K,T,F(K,T,M, β), β, i) = M , and
(ii) F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β ⊕ 1), and (iii) (F(K,T,M, 0),
F(K,T,M, 1)) = F(K,T,M, b), and (iv)

(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
=

F−1(K,T, C, β, b). In the rest of the paper, we assume that T = {0, 1}t for some
positive t.

Security. The security of a correct forkcipher F is defined through indistin-
guishability of the games prtfp-realF (implementing F algorithms faithfully)
and prtfp-idealF which replaces F by two tweakable random permutations
πT,0, πT,1 ←$ Perm(n) for T ∈ T in a natural way, in a chosen ciphertext

attack. We define the advantage of A as Advprtfp
F (A) = Pr[Aprtfp-realF ⇒

1]− Pr[Aprtfp-idealF ⇒ 1] with the games defined in.

3 SAEF and its OAE Security

SAEF (short for Sequential AE from a Forkcipher) is a nonce-based AEAD
scheme. It takes as a parameter a tweakable forkcipher F (as defined in Sec-
tion 2.4) with T = {0, 1}t for a positive t ≤ n. SAEF[F] = (K, E ,D) has a key
space K = {0, 1}k, nonce space N = {0, 1}t−4, and the AD and message spaces
are both {0, 1}∗. The ciphertext expansion of SAEF[F] is n bits. The encryption
and decryption algorithms are given in Figure 2 and the encryption algorithm
is depicted in Figure 1.

Fig. 1: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The
picture illustrates the processing of AD when length of AD is a multiple of n (top left)
and when the length of AD is not a multiple of n (top right), and the processing of
the message when length of the message is a multiple of n (bottom left) and when the
length of message is not a multiple of n (bottom right). The white hatching denotes
that an output block is not computed.

An encryption query is processed in blocks of n bits, first AD and then the mes-
sage, using a single call to the forkcipher per block. The calls are tweaked by
composing: (1) the nonce followed by a 1-bit in the initial F call of the query,
and the string 0t−3 otherwise, (2) three-bit flag f . The flag f is used to en-
sure proper domain separation for different “types” of blocks in the encryption

8



algorithm. The values f ∈ {000, 010, 011, 110, 111, 001, 100, 101} are used, re-
spectively, when processing non-final AD block, the last n-bit long AD block,
the last AD block of < n bits, the last AD block of n bits to produce tag, the
last AD block of < n bits to produce tag, non-final message block, the last n-bit
message block and the last message block of < n bits.

One output block of every F call is used as a chaining value, masking either
the input (in AD processing) or both the input and the output (in message
processing) of the following F call. The very first F call in each query is unmasked
(but has the nonce in the tweak). The tag is the, possibly truncated, last “right”
output of F produced in the query (in case of truncation message padding is used
for partial integrity check). In a decryption query, the processing is similar to
the encryption, with the plaintext blocks and the chaining values in the message
processing part being computed with the inverse F algorithm.

3.1 Security of SAEF

Andreeva et al. proved that if nonce-uniqueness is guaranteed, SAEF achieves the
standard AEAD confidentiality and integrity up to the birthday bound. There
have been no investigations into the security of SAEF under nonce misuse (i.e.,
if nonces accidentally repeat). We state the formal claim about confidentiality
and integrity of SAEF under nonce-misuse in Theorem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t. Then for any
nonce-misuse adversary A who makes at most qe ≤ 2n−1 encryption queries, at
most qv decryption queries such that the total number of forkcipher calls induced
by all the queries is at most σ, we have

Advoprpf
SAEF[F](A) ≤Advprtfp

F (B) +
3 · σ2

2n+1

Advauth
SAEF[F](A) ≤Advprtfp

F (C) +
σ2 + 4 · qv

2n

for some adversaries B and C, each making at most 2σ queries, and running in
time given by the running time of A plus γ · σ for some “small” constant γ.

The proof of Theorem 1 follows in Sections 3.2 and 3.3.

Main ingredients. The crux of the proof lies in adapting the analysis approach
to the properties of SAEF arising from its sequential structure. These properties
are best illustrated by an example. In two queries using the same nonce N ,
the same associated data A1‖A2 of two blocks and two messages M1

1 ‖M1
2 ‖M1

3

and M2
1 ‖M2

2 ‖M2
3 of three blocks each and differing in the first message block,

following the encryption algorithm in Figure 2, the values of the F tweak string
and of ∆ mask used to process each block of A would be identical between the
two queries, as would be the tweak (equal to 0n−11) and the ∆ mask used to
process the first message block M1

1 and M2
1 respectively. However, this equality

of tweaks and ∆ masks together with the non-equality M1
1 6= M2

1 imply that the
F input blocks ∆⊕M1

1 and ∆⊕M2
1 will necessarily differ, which will randomize

the ∆ masks used to process the next of each message.
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1: function E(K,N,A,M)

2: A1, . . . , Aa, A∗
n←− A

3: M1, . . . ,Mm,M∗
n←−M

4: noM← 0
5: if |M | = 0 then noM← 1

6: ∆← 0n; T← N‖0t−4‖1
7: for i← 1 to a do
8: T← T‖000

9: ∆← FT,0
K (Ai ⊕∆)

10: T← 0t−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10

14: ∆← FT,0
K (A∗ ⊕∆)

15: T← 0t−3

16: else if |A∗| > 0 or |M | = 0 then
17: T← T‖noM‖11

18: ∆← FT,0
K ((A∗‖10∗)⊕∆)

19: T← 0t−3

20: end if . Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T‖001

23: Ci, ∆← FT,b
K (Mi ⊕∆)⊕ (∆, 0n)

24: T← 0t−3

25: end for
26: if |M∗| = n then
27: T← T‖100
28: else if |M∗| > 0 then
29: T← T‖101
30: else
31: return ∆
32: end if
33: C∗, T ← FT,b

K (pad10(M∗) ⊕ ∆) ⊕
(∆‖0n)

34: return C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )
35: end function

1: function D(K,N,A,C)

2: A1, . . . , Aa, A∗
n←− A

3: C1, . . . , Cm, C∗, T ← csplit-bnC
4: noM← 0
5: if |C| = n then noM← 1

6: ∆← 0n; T← N‖0t−4‖1
7: for i← 1 to a do
8: T← T‖000

9: ∆← FT,0
K (Ai ⊕∆)

10: T← 0t−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10

14: ∆← FT,0
K (A∗ ⊕∆)

15: T← 0t−3

16: else if |A∗| > 0 or |T | = 0 then
17: T← T‖noM‖11

18: ∆← FT,0
K ((A∗‖10∗)⊕∆)

19: T← 0t−3

20: end if . Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T‖001

23: Mi, ∆ ← F−1T,0,b
K (Ci ⊕ ∆) ⊕

(∆, 0n)

24: T← 0t−3

25: end for
26: if |T | = n then
27: T← T‖100
28: else if |T | > 0 then
29: T← T‖101
30: else
31: if C∗ 6= ∆ then return ⊥
32: return ε
33: end if
34: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕∆)⊕ (∆, 0n)

35: T ′ ← left|T |(T
′); P ← rightn−|T |(M∗)

36: if T ′ 6= T return ⊥
37: if P 6= leftn−|T |(10n−1) return ⊥
38: return M1‖ . . . ‖Mm‖left|T |(M∗)
39: end function

Fig. 2: The SAEF[F] AEAD scheme.

Similarly, in another case with executing two same queries but with extending
the AD used in the first query to A1‖A2‖110n−2 and for the second query to
A1‖A2‖1, the processing will again be identical for A1 and A2 and for the third
block, the ∆ masks and the F inputs ∆⊕110n−2 = ∆⊕pad10(1) will be identical
but the tweaks will differ. What emerges is that the internal variables of SAEF’s
encryption algorithm preserve a certain “common prefix length” between the
queries, and get randomized just past it. This observation is at the center of
our proofs. Giving a formal definition of a common prefix between AE queries
is also concise but is not straightforward, and requires a different representation
of queries, which is the second main ingredient of our proofs.
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3.2 Integrity

We switch to an alternative definition of AEAD integrity through indistinguisha-
bility, which is equivalent with the notion introduced in Section 3. We define two
games, auth-realΠ and auth-idealΠ . In both games A is given access to an
encryption and a decryption oracle. In the game auth-realΠ , both oracles faith-
fully implement the respective algorithms of SAEF using the same randomly
sampled secret key, except that the decryption oracle returns > in case of a
successful forgery, and ⊥ otherwise. In the game auth-idealΠ , the encryption
oracle is the same as in auth-realΠ but the decryption oracle always returns ⊥.
We claim that Advauth

Π (A) = Pr[Aauth-realΠ ]− Pr[Aauth-idealΠ ] .
It is easy to see that the equality holds, by establishing inequalities in both

directions. An adversary A playing the game authΠ can be used to construct
a distinguishing adversary B which forwards A’s queries and outputs 1 iff A
forges, achieving the same advantage as A. In the other direction, we can con-
struct an adversary A for game authΠ from an indistinguishability adversary B,
which forwards B’s queries and automatically wins if B produces a valid forgery.
A achieves the same advantage as B, because if no forgery occurs, the games
auth-realΠ and auth-idealΠ are indistinguishable.

Replacing F. We first replace F with a pair of independent random tweakable
permutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t
and let SAEF[(π0, π1)] denote the SAEF mode that uses π0, π1 instead of F,

which yields Advauth
SAEF[F](A) ≤ Advprtfp

F (B) + Advauth
SAEF[(π0,π1)](A) .

The adversary is thus left with the goal of distinguishing between the games
auth-realSAEF[(π0,π1)] (called the “real-int world”) and auth-idealSAEF[(π0,π1)]

(called the “ideal-int world”). Hence, we want to bound Advauth
SAEF[(π0,π1)](A) =

Pr[Aauth-realSAEF[(π0,π1)] ]− Pr[Aauth-idealSAEF[(π0,π1)] ] .

Transcripts. Following the coefficients H technique [22], we characterize the
interactions of A with its oracles in a transcript :

τ = 〈(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, C̄i, bi)qvi=1〉

In the ith query to the encryption oracle (N i, Ai,M i), returning the cipher-
text Ci, SAEF internally processes Ai,M i and Ci in blocks Ai1, . . . , A

i
ai , A

i
∗, and

M i
1, . . . ,M

i
mi ,M

i
∗, and Ci1, . . . , C

i
mi , C

i
∗, T

i respectively (defined according to the
encryption algorithm in Figure 2). We have ai and mi equal to, respectively, the
length of Ai and M i in n-bit. SAEF additionally uses whitening masks, denoted
here ∆i

1, . . . ,∆
i
ai+1 for the whitening masks used to process Ai1, . . . , A

i
ai , A

i
∗ re-

spectively, and ∆i
ai+2, . . . ,∆

i
ai+mi+2 for the whitening masks used to process

the blocks M i
1, . . . ,M

i
mi ,M

i
∗ respectively.

Similarly, in the ith decryption query (N̄ i, Āi, C̄i), returning bi ∈ {>,⊥}
SAEF internally processes Āi and C̄i in blocks, denoted as Āi1, . . . , Ā

i
āi , Ā

i
∗ and

C̄i1, . . . , C̄
i
m̄i , C̄

i
∗, T̄

i, where āi and m̄i are respectively equal to the length of
Āi and the length of C̄i in n-bit blocks (excluding the tag from the count).
Additionally, SAEF internally computes the plaintext blocks M̄ i

1, . . . , M̄
i
m̄i , M̄

i
∗

as well as ∆̄i
1, . . . , ∆̄

i
āi+1, the whitening masks used to process Āi1, . . . , Ā

i
āi , Ā

i
∗

11



respectively, and ∆̄i
āi+2, . . . , ∆̄

i
āi+m̄i+2 ,the whitening masks used to process the

blocks C̄i1, . . . , C̄
i
m̄i , C̄

i
∗ respectively.

Additional information. To simplify the proofs, we additionally provide the
adversary with all the encryption masks ∆i

j , all the decryption masks ∆̄i
j and

internally computed plaintexts M̄ i
j when it has made all its queries and only the

final response is pending.
In the real-int world, all these variables are internally computed by the oracles

faithfully evaluating SAEF. In the ideal-int world, the encryption also evaluates
SAEF, so ∆i

j masks are defined, but the decryption oracle does not make any

computations, hence ∆̄i
j and M̄ i

j are not defined. We therefore have to define
their sampling, to be done at the end of the experiment (thus having no influence
of adversarial queries).

For j = 1, we have ∆̄i
1 = 0n for 1 ≤ i ≤ qv. We sample each of the remaining

∆̄i
j mask uniformly, except when its value is trivially determined due to a “com-

mon prefix” with an encryption, or decryption query (defined shortly). Once the
masks are sampled, we run the SAEF decryption algorithm using π0 and these
masks to compute M̄ i

j . Clearly, this give away of additional information can only
increase the adversary’s advantage and thus can be considered here for upper
bounding the above mentioned adversarial advantage.

Block-tuple representation. The ith encryption query can be equivalently
represented as (Tij , ∆

i
j , X

i
j , Y

i
j )`

i

j=1, T
i, such that `i = ai + mi + 2 and each of

the `i quadruples represents the processing done in jth call to the forkcipher
in the query, consisting of the string Tij used as forkcipher tweak, the current

whitening mask ∆i
j , the (possibly padded) associated data/plaintext block Xi

j

and the empty/ciphertex block Y ij . In more detail:

– In the first block, we always have Ti1 = N‖1‖F for a flag F ∈ {0, 1}3 and
∆i

1 = 0n. For blocks with j > 1 we have Tij = 0t−3‖F for an F ∈ {0, 1}3.

– If |A| > 0, for 1 ≤ j ≤ ai we have Xi
j = Aij , Y

i
j = ε and F = 000. For

j = ai + 1 we have Xi
j = pad10(Ai∗), Y

i
j = ε and F ∈ {0, 1}3 as defined in

Figure 2.
– If |M | > 0, for ai + 2 ≤ j < `i we have Xi

j = M i
j , Y

i
j = Cij and F = 001.

For j = `i we have Xi
j = pad10(M i

∗), Y
i
j = Ci∗ and F ∈ {0, 1}3 as defined in

Figure 2.
– If A = M = ε, we have j = `i = 1, Xi

j = pad10(ε), Y ij = ε and F = 111.

We call this the block-tuple representation.

We similarly define the block-tuple representation (T̄
i
j , ∆̄

i
j , X̄

i
j , Ȳ

i
j )

¯̀i

j=1, T̄
i, bi

for decryption queries with ¯̀i = m̄i + āi + 2. We further streamline the nota-
tion by re-indexing the decryption queries from qe + 1 to qe + qv, and dispens-
ing of the bar above the variables. The decryption queries are thus denoted as
(Tij , ∆

i
j , X

i
j , Y

i
j )`

i

j=1, T
i, bi for qe + 1 ≤ i ≤ qe + qv.

Proposition 1. The transformation of an extended transcript from the default
to the block-tuple representation is injective.
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The proof of Proposition 1 is given in Appendix A.

Blockwise common prefix of queries This notation allows for the following
natural definition of longest common blockwise prefix between two queries. We

define the longest common prefix of the ith and i′
th

query (in the block-tuple

notation) with `i ≤ `i′ w.l.o.g. as

llcpn(i, i′) = max{1 ≤ u ≤ `i|(Tij ,∆i
j , X

i
j , Y

i
j ) = (Ti

′
j ,∆

i′
j , X

i′
j , Y

i′
j ) for 1 ≤ j ≤ u}.

Note that this definition covers common blockwise prefix between two encryp-
tion queries (with i, i′ ≤ qe), two decryption queries (with i, i′ > qe)) and between
an encryption and a decryption query (with 1 ≤ i′ ≤ qe < i ≤ qe + qv w.l.o.g.).
Informally, llcpn(i, i′) counts how many internal chaining values (the ∆ masks)

are trivially equal between the ith and i′
th

encryption query. For example, if the
nonces N i and N i′ are distinct we have llcpn(i, i′) = 0. If we have two queries
with N i = N i′ and one having AD Ai

′
= Ai‖M i

1 equal to the AD of the other ap-
pended with its first message block, we will still have llcpn(i, i′) = ai + 1, thanks
to including the tweak string in the block tuples. We finally define the length
of the longest common blockwise prefix of a query with all previous queries as
llcpn(i) = max1<i′<i llcpn(i, i′). Note that for a decryption query, all the encryp-
tion queries are always taken into account (due to our convention about query
indexing).

Sampling of ∆ masks. Using this notation, we now precisely define the sam-
pling of ∆i

j masks in decryption queries (i.e., for qe < i ≤ qe + qv) of the

ideal-int world. In the ith decryption query, for 1 ≤ j ≤ llcpn(i) + 1, we let

∆i
j = ∆i′

j for the smallest i′ < i such that i′
th

query has llcpn(i) = llcpn(i, i′).

For llcpn(i) + 1 < j ≤ `i, ∆i
j is sampled uniformly at random. In other words,

∆ masks that are trivially known to be equal to some previous mask due to the
iterative nature of SAEF are simply set to that value, and the rest is sampled
uniformly.

Extended transcripts. With the new notation in mind, the extended tran-
scripts can be re-defined as

τ =

〈((
Tij ,∆

i
j , X

i
j , Y

i
j

)`i
j=1

, T i
)qe
i=1

,

((
Tij ,∆

i
j , X

i
j , Y

i
j

)`i
j=1

, T i, bi
)qe+qv
i=qe+1

〉
.

Note that qe, qv, a and m here are themselves random variables and thus can
vary for distinct attainable transcripts. However, due to the assumption that the
adversary can make at most σ block queries, we always have

∑qe+qv
i=1 (ai +mi +

2) = σ.
The following corollary shows that switching to block-tuple representation

does not have an impact of the result of the analysis and in particular on the
bounds derived using the block-tuple representation.

Corollary 1. Due to Proposition 1, it is impossible for two distinct transcripts

τ = 〈(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, C̄i, bi)qvi=1〉 and τ ′ = 〈(N ′i, A′i,M ′i, C ′i)q

′
e
i=1,

(N̄ ′
i
, Ā′

i
, C̄ ′

i
, b′

i
)
q′v
i=1〉 to have the same block-tuple representation.
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Coefficient-H. Let Θrein and Θidin represent the distribution of the transcript
in the real-int world and the ideal-int world, respectively.

The proof relies on the fundamental lemma of the coefficient H technique defined
as Lemma 1 above. We say an attainable transcript τ is bad if one of the following
conditions occurs:

BadT1 a.k.a. “Input Collision”: There exists (i′, j′) < (i, j) (the block indexed
by (i′, j′) precedes (i, j)) such that 1 ≤ i ≤ qe + qv, llcpn(i) < j ≤ `i is
not in the longest common prefix of the ith query, , and the (i, j) block

call has tweak-input collision with the (i′, j′) block call, i.e., Tij = Ti
′

j′ and

Xi
j ⊕∆i

j = Xi′

j′ ⊕∆i′

j′ .
BadT2 a.k.a. “Mask Collision”: There exists (i′, j′) < (i, j) such that 1 ≤ i ≤

qe + qv, llcpn(i) < j < `i (not in the longest common prefix), and both

the block calls have the same tweaks Tij = Ti
′

j′ and different inputs Xi
j ⊕

∆i
j 6= Xi′

j′ ⊕∆i′

j′ , however, the following masks ∆i
j+1 = ∆i′

j′+1 collide. (Note
that such a collision cannot occur in the real-int world where the masks are
generated with permutation).

BadT3 a.k.a. “Forgery”: There exists qe + 1 ≤ i ≤ qe + qv such that for j = `i

we have any of the following:
Case 1. The last bit of Tij is 0 and πTij ,1(Xi

j ⊕∆i
j) = T i.

Case 2. The last bit of Tij is 1, rightn−|T i|(X
i
j) = 10n−|T

i|−1

and left|T i|(πTij ,1(Xi
j ⊕∆i

j)) = T i .

We let Tbad be the set of “bad” transcripts defined as the subset of attainable
transcripts for which the transcript predicate BadT(τ) = (BadT1(τ)∨BadT2(τ)∨
BadT3(τ)) evaluates true. We define Tgood as the set of attainable transcripts
which are not in the set Tbad (and therefore from now on called as good tran-
scripts).

Lemma 2. For Tbad above and qe ≤ 2n−1, we have Pr[Θidin ∈ Tbad] ≤ σ2

2n + 4·qv
2n .

Proof. BadT1. For any transcript in Tbad with BadT1 set to 1, we know that there
exists at least one pair of block indices (i′, j′) < (i, j) such that llcpn(i) < j ≤ `i
and ∆i

j ⊕∆i′

j′ = Xi
j ⊕Xi′

j′ .

Note that for all i′ < i and j = j′ = llcpn(i) + 1, we have ∆i
j = ∆i′

j′ but

Xi
j 6= Xi′

j′ and thus for such cases the probability that the above equality occurs
is 0. On the other hand, for all i′ < i and j′ 6= j or j 6= llcpn(i) + 1, the two
masks are sampled uniformly and independently in Θidin. Since there are total
σ possible values of (i, j) in a transcript, each having no more than σ possible

values of (i′, j′), we get Pr[BadT1(Θidin) = 1] ≤ σ2

2 ·max
{

0, 1
2n

}
= σ2

2n+1 .

BadT2. Similarly, for any transcript in Tbad with BadT2 set to 1, we know that
there exists at least one pair (i′, j′) < (i, j) such that llcpn(i) < j < `i and
∆i
j+1 ⊕∆i′

j′+1 = 0 .
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Note that from the definition of the predicate BadT2 we have j+1 6= llcpn(i)+
1. This means that ∆i

j+1 is distributed uniformly and independently of ∆i′

j′+1.
Since there are total σ possible values of (i, j) in a transcript, each with no more

than σ possible values of (i′, j′), we get Pr[BadT2(Θidin) = 1] ≤ σ2

2n+1 .

BadT3. Now, for any transcript in Tbad with BadT3 set to 1 and BadT1 set to
0, we know for Θidin one of the following can happen:

For some i′ ≤ qe, j = `i and j′ = `i
′
, we have j = j′ = llcpn(i). Clearly, in

such a case ∆i
j = ∆i′

j′ , X
i
j = Xi′

j′ but T i 6= T i
′
. T i

′
being the correct tag for the

given ciphertext, T i 6= T i
′

cannot trigger BadT3, yielding 0 probability.
For some i′ ≤ qe, j = `i and j′ = `i

′
, we have j = j′ = llcpn(i) + 1. We have

∆i
j = ∆i′

j′ but Xi
j 6= Xi′

j′ and thus the probability of any of the two conditions

of BadT3 occurring for a given query is at most 4/2n assuming qe ≤ 2n−1. For
the first condition, this holds as every tag there is produced with a tweak used
at most once per query, corresponding to a probability 1/(2n − qe) ≤ 2/2n. For
the second condition, we upper bound the product of the probabilities of having
the correct padding in the block Xi

j (at most 2|T
i|/(2n− qe)), and of having the

correct truncated tag (at most 2n−|T
i|/(2n − qe)).

For all i′ ≤ qe, we have j > llcpn(i, i′) + 1. We know that the ∆i
j is not

inherited from an encryption query and is therefore sampled uniformly in Θidin.
The first condition of BadT3 thus occurs with a probability 1/2n. For the sec-

ond condition, the correct padding is found with probability 1/2n−|T
i| (using

the randomness of ∆i
j), and the correct tag is found with probability at most

2n−|T
i|/(2n − qe), thanks to freshness of Xi

j ⊕∆i
j , relying on BadT1(Θidin) = 0

w.l.o.g., yielding a probability of at most 2/2n.
Since there are total qv possible decryption queries, we get Pr[BadT3(Θidin) =

1|BadT1(Θidin) = 0] ≤ qv ·max
{

0, 4
2n ,

2
2n

}
= 4·qv

2n . Hence, we obtain by the union

bound that Pr[Θidin ∈ Tbad] ≤ σ2

2n + 4·qv
2n .

Lemma 3. Let τ ∈ Tgood i.e. τ is a good transcript. Then Pr[Θrein=τ ]
Pr[Θidin=τ ] ≥ 1 .

Proof. Note that a good transcript has the following two properties 1. (i) For
each (i′, j′) < (i, j) if (i, j) is not in the longest common prefix of the two queries

i.e. llcpn(i, i′) < j < `i and both π0 calls have same tweaks (i.e. Tij = Ti
′

j′) then
both calls will always have different inputs and different outputs. 2. (ii) For each
query to the decryption oracle i.e. 1 ≤ i ≤ qv, the transcript contains bi =⊥ in
the decryption result i.e. the conditions for a successful verification are not met.

The probability to obtain a good transcript τ in the real-int and the ideal-int
worlds can now be computed. Let τe and τd denote the two parts of a transcript
τ consisting respectively encryption and decryption queries, so that τ = 〈τe, τd〉.
With a slight abuse of notation, we have Pr[Θrein = τ ] = Pr[Θrein,e = τe] ·
Pr[Θrein,d = τd|Θrein,e = τe] and Pr[Θidin = τ ] = Pr[Θidin,e = τe] · Pr[Θidin,d =
τd|Θidin,e = τe] and consequently

Pr[Θrein,e = τe] · Pr[Θrein,d = τd|Θrein,e = τe]

Pr[Θidin,e = τe] · Pr[Θidin,d = τd|Θidin,e = τe]
=

Pr[Θrein,d = τd|Θrein,e = τe]

Pr[Θidin,d = τd|Θidin,e = τe]
.
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This is because the encryption oracles in the real-int world and in the ideal-
int world are identical, and so Pr[Θrein,e = τe] = Pr[Θidin,e = τe]. Further
abusing notation, we let τd,∆ denote the marginal event of all ∆ masks in the
decryption queries (as variables) being equal to the values in the transcript. We
have Pr[Θrein,d = τd|Θrein,e = τe, Θrein,d,∆ = τd,∆] = Pr[Θidin,d = τd|Θidin,e =
τe, Θidin,d,∆ = τd,∆] because both sides of this equality correspond to mappings
defined with random permutations with the input-output pairs fixed from the
encryption part in both worlds. Further, using this equality, we get

Pr[Θrein,d = τd|Θrein,e = τe]

Pr[Θidin,d = τd|Θidin,e = τe]
=

Pr[Θrein,d,∆ = τd,∆|Θrein,e = τe]

Pr[Θidin,d,∆ = τd,∆|Θidin,e = τe]
.

Let us now consider that τ has in total δ many ∆s that are fixed/predefined due

to all internal common prefixes. Clearly, one can write that δ =
∑qe+qv
i=1 (llcpn(i)+

1) (the extra 1 here stands for the ∆i
1 which is always fixed to 0). In the ideal-

int world, since the ∆s corresponding to these (σ − δ) unique block calls are
sampled uniformly and independently and all decryption oracle results are ⊥,
one has Pr[Θidin,d,∆ = τd,∆|Θidin,e = τe] = 1

(2n)σ−δ
. In the real-int world, these

(σ− δ) ∆s are no longer uniformly distributed but are defined using the random

tweakable permutation (π0, π1) with at least g1 =
∑qe+qv
i=1 (ai−1) block calls with

the tweak 0n and at least g2 =
∑qe+qv
i=1 (mi−1) block calls with the tweak 0n−1‖1.

Thus, one has Pr[Θrein,d,∆ = τd,∆|Θrein,e = τe] ≥ 1
(2n)g1 (2n)g2 (2n)σ−δ−g1−g2

.

Note that the above expression is not an equality and only gives an upper bound
on the targeted probability as there are more permutation calls which can have
tweak collisions (To exemplify, the first block calls of any set of queries will have
same tweaks if they all have same nonce). Now, from the above expressions, we
get

Pr[Θrein = τ ]

Pr[Θidin = τ ]
≥ (2n)σ−δ

(2n)g1(2n)g2(2n)σ−δ−g1−g2
=

(2n)g1(2n)g2

(2n)g1(2n)g2
≥ 1 .

Combining the results of Lemma 2 and 3 (taking ε1 = 0) into Lemma 1, we

obtain the upper bound Advauth
SAEF[(π0,π1)](A) ≤ σ2

2n + 4·qv
2n and thus the integrity

result of the Theorem 1.

3.3 Confidentiality

Replacing F. We replace F with a pair of independent random tweakable per-
mutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t
and let SAEF[(π0, π1)] denote the SAEF mode that uses π0, π1 instead of F,

which yields Advoprpf
SAEF[F](A) ≤ Advprtfp

F (B) + Advoprpf
SAEF[(π0,π1)](A) .

With this replaced “F” scenario, the adversary is left with the goal of dis-
tinguishing between oprpf-realSAEF[(π0,π1)] (called the “real-conf world”) and
oprpf-idealSAEF[(π0,π1)] (called the “ideal-conf world”). We now need to bound

Advoprpf
SAEF[(π0,π1)](A) = Pr[Aoprpf-realSAEF[(π0,π1)] ]− Pr[Aoprpf-idealSAEF[(π0,π1)] ] .

Transcripts and additional information. As before, we record the inter-
action of A with its oracle in a transcript containing the encryption queries
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and their responses as τ = 〈(N i, Ai,M i, Ci)qei=1〉 such that the AD A, mes-
sage M and ciphertext C are further partitioned in blocks as described in the
integrity proof. Note that as before, qe, a and m here are themselves random
variables and thus can vary for distinct attainable transcripts. We also assume
that the adversary can make at most σ′ ≤ σ block queries. Thus, we always have∑qe
i=1(ai +mi + 2) ≤ σ.

To simplify the proofs, we again provide the adversary with additional informa-
tion: (i) ∆i

j masks for 1 ≤ i ≤ qe and for 1 ≤ j ≤ `i = ai + mi + 2 that are
internally computed by the encryption algorithm of SAEF. 1. (ii) Tag bits that
would normally be discarded by truncation (if any), i.e., we now have |T i| = n
for 1 ≤ i ≤ qe.

This information is given to the adversary after it has made all its queries.
These masks, as well the bits extending the tags to n bits, are well-defined in real-
conf world, which faithfully implements SAEF encryption algorithm. In the ideal-
conf world, however, they are not defined (as ciphertexts are directly computed
by an online permutation and a random function, and the tags are directly
sampled with the desired length) and thus the masks are sampled uniformly
at random while maintaining the consistency with SAEF’s prefix preservation
(defined in detail below), and each authentication tag is simply extended by 0
to n− 1 uniform bits as necessary.

Block-tuple representation. As before, we use the block-tuple representa-
tion. We represent the ith encryption query as (Tij , ∆

i
j , X

i
j , Y

i
j )`

i

j=1, T
i, with

`i = ai+mi+2 and each of the `i quadruples consisting of the string Tij used as

forkcipher tweak, the jth whitening mask ∆i
j , the (possibly padded) associated

data/plaintext block Xi
j and the empty/ciphertex block Y ij .

We reuse the same definition of the length of longest common blockwise prefix
between the ith and the i′

th
query llcpn(i, i′) and between the ith query and all

preceding queries llcpn(i).

Sampling of ∆ masks. Using the block-tuple representation, we now detail the
sampling of ∆ masks in the ideal world. For each 1 ≤ i ≤ qe, we let ∆i

j = ∆i′

j

for 1 ≤ j ≤ llcpn(i) + 1 with the smallest i′ < i such that i′
th

query has
llcpn(i) = llcpn(i, i′). For llcpn(i) + 1 < j ≤ `i we sample the mask ∆i

j uniformly
at random.

Extended transcripts. The extended transcripts available to the adversary at
the decision-making time are denoted as τ = 〈((Tij , ∆i

j , X
i
j , Y

i
j )`

i

j=1, T
i)qei=1〉 .

Coefficient H. Let Θreco and Θidco represent the distribution of the transcripts
in the real-conf world and the ideal-conf world, respectively.

The proof relies on the fundamental lemma of the coefficient H technique
defined as Lemma 1 above. We represent the jth block call of the ith query in a
transcript by the index tuple (i, j). We say an attainable transcript τ is bad if
one of the following conditions occur:

BadT′1 a.k.a. “Input Collision”: There exists (i′, j′) < (i, j) (the block indexed
by (i′, j′) precedes (i, j)) such that 1 ≤ i ≤ qe, llcpn(i) < j ≤ `i is not
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in the longest common prefix of the ith query, and the (i, j) block call has

tweak-input collision with the (i′, j′) block call, i.e., Tij = Ti
′

j′ and Xi
j⊕∆i

j =

Xi′

j′ ⊕∆i′

j′ .
BadT′2 a.k.a. “Output Collision”: There exists (i′, j′) < (i, j) such that 1 ≤ i ≤

qe, llcpn(i) < j < `i (not in the longest common prefix), and both the block

calls have the same tweaks Tij = Ti
′

j′ and different inputs Xi
j⊕∆i

j 6= Xi′

j′⊕∆i′

j′ ,
however, one of the outputs collide i.e. one of the followings are true

I. j = llcpn(i) + 1 and (i) ∆i
j+1 = ∆i′

j′+1 if j < `i and j′ < `i
′
, or (ii) T i =

T i
′

if j = `i and j′ = `i
′
.

II. j > llcpn(i) + 1 and (i) Y ij ⊕∆i
j = Y i

′

j′ ⊕∆i′

j′ if j > ai+ 1, or (ii) ∆i
j+1 =

∆i′

j′+1 if j < `i and j′ < `i
′
, or (iii) T i = T i

′
if j = `i and j′ = `i

′
.

(Note that such a collision cannot occur in the real-conf world where the
masks and the tags are generated with a permutation).

We let T ′bad be the set of “bad” transcripts defined as the subset of attainable
transcripts for which the transcript predicate BadT′(τ) = (BadT′1(τ)∨BadT′2(τ))
evaluates true. We define T ′good as the set of attainable transcripts which are not
in the set T ′bad (and therefore from now on called as good transcripts).

Lemma 4. For T ′bad as defined above, we have Pr[Θidco ∈ T ′bad] ≤ 3·σ2

2n+1 .

Proof. BadT′1. For any transcript in T ′bad with BadT′1 set to 1, we know that
there exists at least one pair of (i, j) and (i′, j′) such that llcpn(i) < j ≤ `i,
(i′, j′) < (i, j) and ∆i

j ⊕∆i′

j′ = Xi
j ⊕Xi′

j′ .

Note that for all i′ < i and j = j′ = llcpn(i) + 1, we have ∆i
j = ∆i′

j′ but

Xi
j 6= Xi′

j′ and thus for such cases the probability that the above equality occurs
is 0 (one should notice that the case when we have only the nonce collision is
also covered in here. This is because for all i′ < i if N i = N i′ then we have
j = j′ = 1 and llcpn(i) = 0 which implies that ∆i

1 = ∆i′

1 = 0 and Xi
1 6= Xi′

1 ).
On the other hand, for all i′ < i and j′ 6= j or j 6= llcpn(i) + 1, the two masks
are sampled uniformly and independently in Θidco. Since there are total σ′ ≤ σ
possible values of (i, j) in a transcript, each having no more than σ′ ≤ σ possible

values of (i′, j′), we get Pr[BadT′1(Θidco) = 1] ≤ σ2

2 ·max
{

0, 1
2n

}
= σ2

2n+1 .

BadT′2. Similarly, for any transcript in T ′bad with BadT′2 set to 1, we know that
there exists at least one pair of blocks (i′, j′) < (i, j) such that llcpn(i) < j < `i

and one of the followings is true (with appropriate values of j)

I. j = llcpn(i) + 1 and (∆i
j+1 = ∆i′

j′+1 or T i = T i
′
) (in this case, we can’t have

Y ij +∆i
j = Y i

′

j′ +∆i′

j′ as by the definition of llcpn(i), Xi
j 6= Xi′

j′ implies that

Y ij 6= Y i
′

j′ )

II. j > llcpn(i) + 1 and (Y ij +∆i
j = Y i

′

j′ +∆i′

j′ or ∆i
j+1 = ∆i′

j′+1 or T i = T i
′
).

Note that from the definition of the predicate BadT′2 we have for any j, j+ 1 6=
llcpn(i)+1. This means that ∆i

j+1 is distributed uniformly and independently of
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∆i′

j′+1, with a collision probability 1/2n. Each tag is generated as n uniform bits,
independent of all other tags, making them collide with probability 1/2n. On the
other hand, for each j > llcpn(i), ∆i

j is distributed uniformly and independently

of ∆i′

j′ , so the masked ciphertexts also collide with probability 1/2n.
There are no more than σ possible values of (i, j) in a transcript to cause

a collision of masked ciphertext, each with no more than σ possible values of
(i′, j′), making for no more than σ2/2 pairs. In addition, there are no more than
σ − qe valid values of (i, j) for a ∆ collision, each with no more that σ − qe
possible values of (i′, j′), yielding no more than (σ − qe)2/2 pairs. Finally, there
are qe tags that can cause a collision with one another, yielding no more than

q2
e/2 pairs. Thus we get Pr[BadT′2(Θidco) = 1] ≤ 2·σ2

2n+1 .

Hence, we obtain by the union bound that Pr[Θidco ∈ T ′bad] ≤ 3·σ2

2n+1 .

Lemma 5. Let τ ∈ T ′good i.e. τ is a good transcript. Then Pr[Θreco=τ ]
Pr[Θidco=τ ] ≥ 1 .

Proof. Note that a good transcript has the following property. For each (i′, j′) <
(i, j) if (i, j) is not in the longest common prefix of the two queries i.e. llcpn(i, i′) <

j < `i and both π0 (resp. π1) calls have same tweaks (i.e. Tij = Ti
′

j′) then both

blocks will always have different inputs (i.e, Xi
j ⊕∆i

j 6= Xi′

j′ ⊕∆i′

j′) and different

outputs (i.e., Y ij ⊕∆i
j 6= Y i

′

j′ ⊕∆i′

j′ and ∆i
j+1 6= ∆i′

j′+1 respectively T i 6= T i
′
).

The probability to obtain a good transcript τ in the real-conf and the ideal-
conf worlds can now be computed. With a slight abuse of notation, we let τ∆
denote the marginal event of all ∆ masks in the queries (as variables) being
equal to the values in the transcript. With these notations, we have Pr[Θreco =
τ |Θreco,∆ = τ∆] ≥ Pr[Θidco = τ |Θidco,∆ = τ∆] . This is true because for fixed
and unique (upto common prefix) input-output pairs (excluding the tags), the
left side of this inequality corresponds to mappings of a random permutation
with input size of n bits whereas the right side of this inequality corresponds to
mappings of a random online permutation with input size of ≥ n-bits. Similarly
for the tags (fixed and unique), the left side of this inequality corresponds to a
random permutation whereas the right side of this inequality corresponds to a
random function both with same input size (n-bits).

Let us now consider that τ has in total δ′ ∆s that are fixed/predefined due to
all internal common prefixes. Clearly, one can write that δ′ =

∑qe
i=1(llcpn(i) + 1)

(the extra 1 here stands for the ∆i
1 which is always fixed to 0). In the ideal-conf

world, since the ∆s corresponding to these σ′−δ′ unique block calls are sampled
uniformly and independently, one has Pr[Θidco,∆ = τ∆] = 1

(2n)σ′−δ′
(Note that

the sampling of the tags is already covered with the inequality defined above
and is independent of the sampling of ∆s here).

In the real-conf world, these σ′ − δ′ ∆s are no longer uniformly distributed
but are defined using the random tweakable permutation (π0, π1) with at least
g′1 =

∑qe
i=1(ai− 1) block calls with the tweak 0n and at least g′2 =

∑qe
i=1(mi− 1)

block calls with the tweak 0n−1‖1. Thus, one has

Pr[Θreco,∆ = τ∆] ≥ 1

(2n)g′1(2n)g′2(2n)σ
′−δ′−g′1−g

′
2
.
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Now, from the above three expressions, we get

Pr[Θreco = τ ]

Pr[Θidco = τ ]
≥ (2n)σ

′−δ′

(2n)g′1(2n)g′2(2n)σ
′−δ′−g′1−g

′
2

=
(2n)g

′
1(2n)g

′
2

(2n)g′1(2n)g′2
≥ 1 .

Combining the results of Lemma 4 and 5 (taking ε1 = 0) into Lemma 1, we obtain

the upper bound Advoprpf
SAEF[(π0,π1)](A) ≤ 3·σ2

2n+1 and thus the confidentiality result

of the Theorem 1.

4 Conclusion

We prove that SAEF is OAE-secure w.r.t. both confidentiality and integrity as
long as the total amount of data processed with a single key is � 2n/2 blocks,
with n the blocksize of the underling forkcipher. This means that SAEF offers
qualitatively stronger guarantees than what has been advertised in the origi-
nal submission at the same quantitative security levels. Moreover, the newly
discovered security properties of SAEF are highly relevant to many resource-
constrained applications of lightweight cryptography, as discussed in Section 1.
At the same time, SAEF can be implemented very efficiently with an efficient
forkcipher instance such as ForkSKINNY [23], likely outperforming COLM (the
de facto state of the art OAE-secure scheme) instantiated with SKINNY [4]
tweakable blockcipher (which gives the most accurate comparison due to simi-
larities with ForkSKINNY). 5 This makes SAEF a much more attractive imple-
mentation target than indicated by the previous results, especially for the most
constrained devices.

An interesting avenue for future work is investigating the security of SAEF
under the release of unverified plaintext (RUP). RUP security is also a natural
target in the uses cases for lightweight cryptography, where the same constraints
as discussed in Section 1 imply that constrained devices may be forced to leak
portions of yet-unverified plaintext when decrypting long messages, complement-
ing the blockcwise security of encryption implied by OAE. Our conjecture is that
SAEF is INT-RUP secure without any modification.
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i
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query ((Tj , ∆j , Xj , Yj)
`
j=1, T ), we can reconstruct N,A,M,C as follows (where

unpad10(X) removes 10∗ from the end of string X) by iterating over the block
tuples with current tuple denoted as (T, ∆,X, Y ):

1. Parse T as N‖1‖F . If F ∈ {110, 111, 100, 101} then necessarily ` = 1, and if
F = 110: Set A = X,M = ε and C = T and stop.
F = 111: Set A = unpad10(X),M = ε and C = T and stop.
F = 100: Set A = ε,M = X and C = Y ‖T and stop.
F = 101: Set A = ε,M = unpad10(X) and C = Y ‖T and stop.
If F ∈ {010, 011} then set A = X1 respectively A = unpad10(X1) and
M = C = ε (no more AD blocks are expected). If F = 001 set A = ε,
M = X1 and C = Y1 (no more AD blocks are expected). Finally, if F = 000
set A = X1 and M = C = ε (more AD blocks are expected). Set Flast ← F
and go to next tuple.

2. Parse T as S‖F . If S 6= 0n−3 abort. If F 6= 000 go to next step. If Flast 6= 000
abort. Set A = A‖X and Flast = 000. Go to next tuple and repeat this step.

3. Parse T as S‖F . If S 6= 0n−3 abort. If F /∈ {010, 011, 110, 111} go to next
step. If Flast 6= 000 abort. If
F = 110: Set A = A‖X,M = ε and C = T and stop.
F = 111: Set A = A‖unpad10(X),M = ε and C = T and stop.
F = 010: Set A = A‖X.
F = 011: Set A‖unpad10(X) and stop.
Set Flast = F . Go to next tuple.

4. Parse T as S‖F . If S 6= 0n−3 abort. If F 6= 001 go to next step. If Flast /∈
{010, 011, 110, 111} abort. Set M = M‖X, C = C‖Y and Flast = 001. Go
to next tuple and repeat this step.

5. Parse T as S‖F . If S 6= 0n−3 abort. If F /∈ {100, 101} or if Flast /∈ {010, 011, 001}
abort. If
F = 100: Set M = M‖X.
F = 101: Set M = M‖unpad10(X).
Set C = C‖Y ‖T and stop.
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