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Abstract. Bitcoin (BTC) pseudonyms (layer 1) can effectively be de-
anonymized using heuristic clustering techniques. However, while per-
forming transactions off-chain (layer 2) in the Lightning Network (LN)
seems to enhance privacy, a systematic analysis of the anonymity and pri-
vacy leakages due to the interaction between the two layers is missing. We
present clustering heuristics that group BTC addresses, based on their in-
teraction with the LN, as well as LN nodes, based on shared naming and
hosting information. We also present linking heuristics that link 45.97%
of all LN nodes to 29.61% BTC addresses interacting with the LN. These
links allow us to attribute information (e.g., aliases, IP addresses) to
21.19% of the BTC addresses contributing to their deanonymization.
Further, these deanonymization results suggest that the security and
privacy of LN payments are weaker than commonly believed, with LN
users being at the mercy of as few as five actors that control 36 nodes
and over 33% of the total capacity. Overall, this is the first paper to
present a method for linking LN nodes with BTC addresses across layers
and to discuss privacy and security implications.

1 Introduction

Payment channel-networks (PCNs) have emerged as a promising alternative to
mitigate the scalability issues with current cryptocurrencies. These layer-2 pro-
tocols, built on-top of layer-1 blockchains, allow users to perform transactions
without storing them on the Bitcoin (BTC) blockchain. The idea is that two
users create a funding transaction that locks coins, thereby creating a payment
channel between them [9]. Further payments no longer require on-chain transac-
tions but rather peer-to-peer mutual agreements on how to distribute the coins
locked in the channel. At any point, both users can decide to close the channel
by creating a settlement transaction that unlocks the coins and distributes them
according to the last agreed balance.

While there are different payment channel designs, the BTC Lightning Net-
work (LN) [22] is the most widespread PCN implementation to date. At the time
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of writing (September 2020), according to 1ml.com, the LN features a network
of 13, 902 public active nodes, 37, 003 channels and a total capacity of more than
1, 108.70 BTC, worth 11, 569, 618 USD.

Apart from scalability, PCNs are considered beneficial to improve the well-
known lack of privacy of cryptocurrencies [4], where the anonymity claim stem-
ming from the usage of pseudonyms in on-chain transactions has been largely re-
futed from both academia and industry [15]. The key to an effective deanonymiza-
tion of BTC pseudonyms lies in heuristic methods, which cluster addresses that
are likely controlled by the same entity [19]. In practice, entities correspond
to user wallets or software services (e.g., hosted wallet, exchange) that control
private keys on behalf of their users.

In this work, we challenge the widespread belief that the LN greatly improves
privacy by showing for the first time how LN nodes can be linked to BTC
addresses, which results in a bi-directional privacy leakage affecting LN and BTC
itself. Related research [25, 26, 18, 11, 21] already focused on security and privacy
aspects on the PCN layer, but, so far, none of them focused on linking off-chain
LN nodes to on-chain BTC addresses. This is a challenging task because such
links are not provided explicitly in the LN protocol as they would severely affect
the privacy of node operators (e.g., revealing their business to competitors).

Our Contributions. Our methodology is structured in two main strategies:
(i) heuristics on layer 1, to create clusters of BTC addresses controlled by the
same actor, and on layer 2, clusters of LN nodes; and (ii) heuristics to link these
clusters across layers. In Section 4, we present four novel on-chain clustering
heuristics (star, snake, collector, proxy), which group BTC addresses based on
their interaction patterns with the LN. With these heuristics, we can cluster
19.39% of all BTC entities funding an LN channel, and 13.40% of all entities
closing a channel. We also present an LN node clustering heuristic leveraging
public announcements of aliases and IP addresses, which allows us to group
1, 251 nodes into 301 clusters. In Section 5, we present two novel cross-layer
linking algorithms. One exploits that the same BTC address can be used to
close one channel and then re-use the coins to open a new channel, which allows
us to link 26.48% of the LN nodes to 20.96% BTC addresses in our dataset,
when combined with the previous on- and off-chain clustering heuristics. The
other algorithm exploits the reuse of a single BTC entity for opening several
channels to different LN nodes and it allows us to link 29.61% of the addresses
to 45.97% of nodes.

Given these results, we finally discuss the impact of our deanonymization
techniques on the privacy of BTC entities as well as the security and privacy of
the LN. In a nutshell, we are able to (i) attribute 21.19% of the BTC addresses
with information from the LN (e.g., IP addresses); (ii) measure the centralized
control of the capacity in the LN and observe that as few as five actors consisting
of 36 nodes control over 33% of the total capacity; (iii) show that as few as five
users can threaten the security of the LN by means of (possibly targeted) DoS
attacks and violate the privacy of over 60% of the cheapest payment paths
because they are routed through them.
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For the reproducibility of the results, we make our dataset and our implemen-
tation openly available at https://github.com/MatteoRomiti/lightning_study6.

2 Background and Problem Statement

We now define the simplified model and terminology used throughout this paper,
elaborating then on the cross-layer linkage problem, as well as on related work
in this area. For further details on PCNs, we refer to recent surveys [9, 12].

2.1 BTC Blockchain (Layer 1)

A BTC address a is a tuple containing (i) a number of coins (in Satoshis) associ-
ated to this address; and (ii) an excerpt of the BTC script language that denotes
the (cryptographic) conditions under which a can be used in a transaction. Al-
though in principle it is possible that a can be spent under any condition that
can be expressed in the BTC script language, in practice most of the addresses
share a few conditions: (i) requiring a signature σ on the transaction verifiable
under a given public key pk; and (ii) requiring two signatures {σ1, σ2} verifiable
with two given public keys pk1 and pk2 (i.e., multisig address). We say that an
address a is owned by a user if she can produce the required signature/s.

A BTC transaction tx is identified by txid computed as the hash of the body
of tx, i.e., H(Input,Output). Input denotes the set of addresses set as input and
being spent in tx; and Output is the set of addresses set as output. A transaction
can have also a change output, where coins and address are owned by the same
user controlling the inputs.

We define a BTC entity e as a set e := {ai} of addresses controlled by
the same user as clustered with the well-known and effective [10] co-spending
heuristic [19]. This heuristic assumes that if two addresses (i.e. a1 and a2) are
used as inputs in the same transaction while one of these addresses along with
another address (i.e. a2 and a3) are used as inputs in another transaction, then
the three addresses (a1, a2, a3) are likely controlled by the same actor.

A BTC wallet is the software used by a BTC user to handle BTC addresses
owned by her. A wallet may correspond to a BTC entity, if addresses are reused.

2.2 Nodes and Payment Channels in the LN (Layer 2)

A node n in the Lightning Network (LN) is a tuple n := (nid, IP,Alias), where
nid is the identifier of the node; IP denotes the IP address associated with the
node, and Alias the associated lexical label.

A payment channel c is then created between two nodes and denoted by
the tuple c := (chpoint, n1, n2), where chpoint denotes the channel’s endpoint

6 The proprietary attribution data from Chainalysis is not included in the published
dataset. The reader can contact the company for further inquiry.
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Fig. 1. Life cycle of an LN channel. At layer 1, a source entity e1 tops up entity
e2 that is then used in txF1 as funding entity of the channel c1 represented by multisig
address aLN

C1 . The channel c1 is established at layer 2 between the nodes n1 and n2.
The channel c1 is then closed with the settlement transaction txS sending the funds
back to two settlement entities, e2 and e3. The former, e2, reuses these coins in txF2

to fund another channel (c2) between n2 and n3 represented at layer 1 by the multisig
address aLN

C2 . The coins in the other settlement entity, e3, are instead collected into a
destination entity e4, not directly involved in the LN.

that is set to the identifier tx.txid of the funding transaction tx that created the
channel. As the transaction may have several outputs, chpoint also contains the
output index of the multisig address that locks the funds in the channel (e.g.,
chpoint:choutindex); while n1 and n2 are the nodes of the channel.

An LN wallet is the software used by an LN user to manage her node, as well
as the channels of this node. In practice, an LN wallet comes with an integrated
BTC wallet to open and close channels in the LN. Recent releases of two LN
wallet implementations (lnd and c-lightning) [27, 5] enable opening/closing a
channel using an external BTC wallet.

2.3 Cross-Layer Interaction

In this section, we describe the interaction between BTC and the LN by means
of the example illustrated in Figure 1. Assume Alice wants to open a payment
channel with Bob. Further, assume that Alice has a BTC wallet with coins in
address aBTC

1 and she wants to open a payment channel with Bob. Additionally
assume that Alice has never interacted with the LN before and only has an LN
wallet, whose integrated BTC wallet handles aLN

4 . In this setting, the lifetime of
the payment channel between Alice and Bob is divided into the following phases:
Replenishment. Alice first transfers coins from her BTC wallet (represented
by entity e1 := {aBTC

1 , aBTC
2 , aBTC

3 }) to her LN wallet (entity e2 := {aLN
4 }), to
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top up the LN wallet from the BTC wallet. We call e1 the source entity as it is
used as the source of funds to be later used in the LN.
Funding. Alice can now open a channel with Bob by first computing a deposit
address aLN

C1 shared between Alice and Bob. In the next step, Alice creates a
funding transaction txF1 where txF1.Input := aBTC

4 , txF1.Output := aLN
C1 ,

and txF1.txid := H(txF1.Input, txF1.Output).
7 After txF1 appears on the BTC

blockchain, the payment channel c1 between Alice and Bob is effectively open.
The channel c1 is then represented in the payment channel network as the tuple
(c1.chpoint, n1, n2), where n1 and n2 are nodes belonging to Alice and Bob.
Payment. After the channel c1 is open, during the payment phase, both Al-
ice and Bob can pay each other by exchanging authenticated transactions in a
peer-to-peer manner authorizing the updates of the balance in the channel. Fol-
lowing our example, Alice and Bob create a settlement transaction txS where
txS .Input := aLN

C1 , txS .Output := {aLN
4 , aLN

5 } so that aLN
4 belongs to Alice, and

aLN
5 belongs to Bob. The cornerstone of payment channels is that Alice and Bob

do not publish txS in the BTC blockchain. Instead, they keep it in their memory
(i.e., off-chain) and locally update the balances in their channel c1. Both Alice
and Bob can repeat this process several times to pay each other.
Settlement. When the channel is no longer needed, Alice and Bob can close
the channel by submitting the last agreed settlement transaction into the BTC
blockchain, thereby unlocking the coins from aLN

C1 into two BTC addresses, each
belonging to one of them with a number of coins equal to the last balance they
agreed off-chain. In practice, the settlement transaction may have more than two
outputs: Alice can pay Bob to a third address where Bob needs to provide data
other than a signature to redeem the coins (e.g., the valid preimage of a hash
value before a certain timeout as defined in the Hash Time Lock Contract [1]).
Collection. After the settlement transaction appears in the BTC blockchain,
Bob gets the coins in his LN wallet. As a final step, Bob might want to get his
coins into a different BTC wallet of his own. For that, Bob transfers funds from
aLN
5 to aBTC

6 , which we call destination address.
We note several points here. First, the addresses involved in the lifetime of

payment channels could have been clustered into entities. In such a case, we
refer to the source/funding/settlement/destination entity involved in the steps
instead of the particular address itself. In our example, Alice owns entity e1 that
controls (among others) aBTC

1 and we thus say that entity e1 is the source entity
in the replenishment step. Second, the same entity can be used at the same time
for settlement and funding. Finally, Alice gets the coins from the channel with
Bob in entity e2 that is then reused later to open a new payment channel.

2.4 The Cross-Layer Linking Problem

A starting point, as shown in Figure 1, is to identify the funding transaction
txF1 corresponding to the payment channel c1 := (chpoint, n1, n2), by finding

7 Although theoretically a payment channel can be dual-funded (i.e., Bob also con-
tributes x1 to the funding transaction), this feature is under discussion in the com-
munity [3] and currently only single-funded channels are implemented in practice.
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the transaction (and the output index) that fulfills the condition txF1.txid =
c1.chpoint. While this is trivial, we cannot assert that the entity e2 in txF1.Input
also controls n1, as it could also be that e2 controls n2. Similarly, while we can
deterministically get the settlement transaction txS used to close the channel c1,
we cannot unambiguously link each settlement entity to the corresponding node.

The goal of this work is to cluster BTC entities based on their interactions
with the LN and then unambiguously link these clusters to LN nodes that are
under their control. Technically, this corresponds to finding a function that takes
a set of LN channels as input and returns tuples of the form (entity, node) for
which it can be asserted that the LN node is controlled by the linked BTC entity.

2.5 Related Work

Single-layer security attacks on the LN topology were the focus of many recent
studies: Rohrer et al. [25] measured the LN topology and found that the LN
is highly centralized and vulnerable to targeted (e.g., DoS) attacks. Similarly,
Seres et al. [26] found that the LN provides topological stability under random
failures, but is structurally weak against rational adversaries targeting network
hubs. Also, Martinazzi and Flori [18] have shown that the LN is resilient against
random attacks, but very exposed to targeted attacks, e.g., against central play-
ers. Lin et al. [11] inspected the resilience of the LN and showed that removing
hubs leads to the collapse of the network into many components, evidence sug-
gesting that this network may be a target for the so-called split attacks. Single-
layer LN privacy has recently been studied by Kappos et al. [14], who focused
on balance discovery and showed that an attacker running an active attack can
easily infer the balance by running nodes and sending forged payments to target
nodes. Nowostawski and Ton [21] conducted an initial cross-layer analysis and
investigated footprints of the LN on the public BTC blockchain in order to find
which transactions in the BTC blockchain are used to open and close LN chan-
nels. Our work instead uses the funding and settlement transactions (and more)
as input data to investigate for the first time: (i) the link between LN nodes and
BTC entities; (ii) clustering of BTC entities allowed by blockchain footprint for
the interaction of these entities with the LN; and (iii) the associated security
and privacy implications.

3 Dataset

In this section, we present the data we collected for our analysis.

3.1 Off-chain Data: LN

We used the LN Daemon (LND) software and captured a copy of the LN topology
at regular intervals (30 min) via the describegraph command since May 21 2019.
The off-chain part of our dataset contains 98, 431 channels, 37, 996 of which
were still open on September 9, 2020. The most recent channel in our dataset
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was opened on September 9, 2020, while the oldest was opened on January
12, 2018. We also define the activity period of a node as the time that starts
with the funding transaction that opened the first public channel in which the
node appeared and ends either with the settlement transaction of its last public
channel or with 2020-09-09 (the time of preparing the dataset), if the nodes had
still public channels open. Finally, we observe that channels in our dataset were
established between 10, 910 distinct nodes.

3.2 On-chain Data: BTC Blockchain

First, for each channel in our off-chain dataset, we used the transaction hash in-
cluded in the channel’s field chpoint for retrieving the funding transaction. Then,
we checked whether the coins sent to the multisig address were spent or not. If
a coin was spent, we fetched the settlement transaction, that uses that multisig
address as input. We obtained this data by querying the open-source Graph-
Sense API8 and the Blockstream API9. We thereby extracted 98, 240 funding
transactions10 and 60, 447 settlement transactions. Next, we extracted the input
addresses of all funding transactions and the output addresses of all settlement
transactions and mapped them to funding and settlement entities, as defined
in Section 2.1. Before clustering entities, we used BlockSci [13] to filter CoinJoin
transactions because they would merge addresses of unrelated users. For the
same reason, we also made sure that no CoinJoins from Wasabi nor Samourai11

wallets were in our dataset. On the funding side, we also extracted the source
entities that were sending coins to funding entities; on the settlement side, we
retrieved destination entities that received coins from settlement entities. For
that purpose, we implemented a dedicated data extraction and analytics job for
the GraphSense Platform and executed it on a snapshot of the BTC blockchain
up to block 647, 529 (2020-09-09 23:06), amounting for a total of 566, 776, 778
transactions and 703, 443, 739 addresses clustered into 336, 847, 691 entities. Af-
ter having extracted the BTC entities that were involved in opening and closing
payment channels, we attributed them using the Chainalysis API12 and assigned
service categories (e.g., exchange, hosted wallet) to entities.

Table 1 summarizes the number of addresses (# Addr) found in funding and
settlement transactions as well as the number of resulting entities after applying
the co-spending heuristic on these addresses (# Entities). We can clearly observe
that the number of distinct source entities (196, 131) is lower than the number of
destination entities (424, 732), which is also reflected in the number of relations
(# Relations) representing monetary flows from source to funding entities and
from settlement to destination entities, respectively. These unbalanced numbers
might be due to funds going from settlement entities to mixing services, as we

8 https://api.graphsense.info/
9 https://github.com/Blockstream/esplora/blob/master/API.md

10 Some channels were opened with the same funding transaction.
11 https://github.com/nopara73/WasabiVsSamourai
12 https://www.chainalysis.com/
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Table 1. On-chain Dataset Summary.

Source Funding Settlement Destination

# Addr 170,777 88,166
# Entities 196,131 96,838 53,371 424,732
# Addr (Exp.) 70,638,581 196,818 2,243,525 107,474,279
# Services 5,812 1 5 67,969
# Relations 203,328 438,725

discuss later. Since the co-spending heuristic also groups addresses which were
not part of our dataset snapshot, we also added the number of expanded ad-
dresses (# Addr (Exp.)). The difference between the number of addresses and
entities on both the source and destination side can be explained by the presence
of super-clusters, which are responsible for large transaction inputs and outputs
and typically represent service entities such as cryptocurrency exchanges [10].
Finally, this table also lists the number of identified service entities (# Ser-
vices). We only found them in few cases for funding (1) and settlement (5)
entities, probably because mostly non-custodial wallets are used when opening
and closing channels and known services in our dataset behave only as source
and destination entities. Roughly 0.9% of all source entities were categorized,
with the majority (0.8%) being exchanges. On the settlement side, we identified
10% of all destination entities as wallets being controlled by services, with the
majority (8%) being mixing services. We can not fully account for this strong
connection to mixing, but it does suggest that many LN users are privacy-aware.
Indeed, there is evidence that the LN is recognized as a privacy technology com-
plementary to mixing. e.g., the well-known mixing wallet Wasabi suggests LN
as one way to enhance privacy when using the wallet13.

3.3 Ground Truth Data: LN Payments

We devised and implemented a simple process that allows us to create a ground
truth dataset of entity-node pairs that can then be compared with our linking
results as a validation step. We first run our linking algorithms resulting in an
initial set of entity-node pairs. We then found a trade-off for selecting the target
nodes: some randomly-selected linked nodes for generality purposes and some
other nodes with the highest number of settlement transactions as a sign of
being very active on the network and reusing funds, a useful aspect for the next
steps. Next, we managed to open channels, perform payments and close channels
with 52 of them. For these nodes that received coins from us, we are able to see
their settlement entity, but only 11 nodes further spent the settlement funds in
other transactions, necessary for us to capture their spending behaviors with
our heuristics. We additionally managed to have channels open to us from 3
LN nodes that provide inbound channels as a service, revealing their funding

13 https://docs.wasabiwallet.io/using-wasabi
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entities. We performed this activity at the beginning of September 2020 (block
646559) and after waiting some days to let the nodes spend our coins, we run
the linking algorithms again on our latest dataset (until block 647, 529) so that
for these targeted nodes we have both ground truth and heuristically-obtained
links to entities. In Section 5.3, we compare this ground truth data with our
linking results, while a more detailed explanation of the methodology to extract
this data is presented in Appendix A.

4 Clustering Heuristics

In this section we introduce the on-chain and off-chain clustering heuristics.

4.1 On-Chain BTC Entity Clustering (Layer 1)

LN-blockchain interactions result in monetary flows from source to funding and
from destination to settlement entities (see Figure 1). When analyzing the re-
sulting entity graph abstraction, we observed four patterns (see Figure 2).
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Fig. 2. On-chain clustering heuristics. Following the same notation of Figure 1, in the
star pattern, a source entity e1 replenishes three different funding entities creating a
single cluster (e1, e2, e3, e4). In the snake pattern, a series of funding transactions are
performed using the change address of a previous funding transaction as input and
the funding entities can be clustered (e1, e2, e3). In the collector and proxy pattern,
multiple settlement entities merge their coins in one single entity and these settlement
entities can be clustered (e1, e2, e3, e4).

First, several funding entities received funds from the same source entities
with one source entity transferring coins to several funding entities. This forms



10 M. Romiti et al.

a star-shaped pattern and reflects a current LN wallet feature, which requires14

users to transfer funds from an external wallet (source entity) to an internal
wallet (funding entity) before opening a channel. If these source entities are not
services, which is rarely the case (see Section 3), then we can assume:

Definition 1 (Star Heuristic). If a component contains one source entity that
forwards funds to one or more funding entities, then these funding entities are
likely controlled by the same user.

Second, again on the funding side, we observed a snake-like pattern in which
source entities transfer coins to a funding entity, which then opens a channel
and the change from the funding transaction is used to fund another channel,
and so on (analogous to the Bitcoin Change-Heuristic [19]).

Definition 2 (Snake Heuristic). If a component contains one source entity
that forwards funds to one or more entities, which themselves are used as source
and funding entities, then all these entities are likely controlled by the same user.

Third, we identified a so-called collector pattern, which mirrors the previ-
ously described star pattern on the settlement side: a user forwards funds from
several settlement entities, which hold the unlocked coins of closed channels in
an internal wallet, to the same destination entity, which serves as an external
collector wallet of funds and therefore fulfills a convenience function for the user.

Definition 3 (Collector Heuristic). If a component contains one destina-
tion entity that receives funds from one or more settlement entities, then these
settlement entities are likely controlled by the same user.

Fourth, we found a refined collector pattern, which we call proxy pattern:
a user first aggregates funds from several settlement transactions in a single
settlement entity and then forwards them to a single destination entity.

Definition 4 (Proxy Heuristic). If a component contains one destination
entity that receives funds from one or more entities, which themselves are used
as settlement and destination entities, then these entities are likely controlled by
the same user.

We compute the above heuristics as follows: we construct 1-hop ego-networks
for the funding and settlement entities and extract funding relations and settle-
ment relations (see Section 3). Next, we compute all weakly-connected compo-
nents in these graphs and filter them by the conditions defined above.

Table 2 shows the number of BTC entities we were able to cluster with each
heuristic. When regarding the connected components, we can clearly see the rare
occurrence of the star patterns and the dominance of the snake pattern, which
represents 31% of all funding components. On the settlement side, 23% of all

14 We note that this requirement may no longer be there if the ”fund-from-external-
wallet” functionality, already available in the recent release [27], is widely adopted.
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Table 2. On-chain clustering results.

Star (F) Snake (F) Collector (S) Proxy (S)

# Components 52 (0.3%) 5, 638 (31%) 1, 476 (14%) 989 (9%)
# Entities 139 18, 512 (19%) 3, 923 (7%) 3, 229 (6%)
# Addresses 144 18, 556 6, 146 12, 292

components either match the collector or the proxy pattern. Consequently, we
were able to group 19.39% (18, 651) of all funding entities and 13.40% (7, 152) of
all settlement entities. This corresponds to 18, 700 funding addresses and 18, 438
settlement addresses.
Discussion. Our heuristic can, by definition, also yield false positives for two
main reasons: first, an entity could represent several users if clustered addresses
are controlled by a service (e.g., exchange) on behalf of their users (custodial
wallet) or if transactions of several unrelated users are combined in a CoinJoin
transaction. Second, users could transfer ownership of BTC wallets off-chain, e.g.,
by passing a paper wallet. While the second case is hard to filter automatically,
we applied countermeasures to the first case: first, we filtered known CoinJoin
transactions (see Section 3), and second, we filtered all components containing
service entities by using Chainalysis, one of the most comprehensive attribution
dataset available.
Countermeasures. We suspect that the above patterns reflect a user behav-
ior that is already known to compromise the privacy of transactions: reuse of
TXOs (transaction outputs). If outputs of funding transactions are not reused
for opening other channels, the snake heuristic would not work; if users refrain
from funding channels from a single external source and avoid collecting funds
in a single external destination entity, the other heuristics would not yield any
significant results. Despite not pervasive on the network, Coinjoins and similar
solutions could, in theory (e.g., if used as funding transactions), obfuscate the
entity linked to an LN node behind a set of unrelated addresses.

4.2 Off-Chain LN Nodes Clustering (Layer 2)

We have also designed an algorithm to cluster LN nodes based on aliases and IPs
reported in the LN, along with their corresponding autonomous systems (AS). If
a set of node aliases share a common substring, and they are hosted on the same
AS, we cluster them. Similarly, if a set of nodes report the same IP or onion
address, we cluster them assuming they are controlled by the same entity. This
allows us to cluster 1, 251 nodes into 301 clusters. Due to space constraints, we
defer the description of this clustering to Appendix B.

5 Linking LN Nodes and BTC Entities

In this section, we present two algorithms that link LN nodes to the BTC enti-
ties that control them. In both of these heuristics, we do not consider settlement



12 M. Romiti et al.

transactions with more than two output entities (1.9% of the settlement transac-
tions), as they are not a cooperative close and do not allow us to unambiguously
link nodes and output entities. Furthermore, we ignore settlement transactions
that involve punishment transactions [2]. Finally, an assumption that we make
in both of the following linking algorithms is that if one node in a channel has
been linked to a settlement entity and the settlement transaction has two output
entities, then the other node can be linked to the other settlement entity.

5.1 Linking Algorithm 1: Coin Reuse

Our linking algorithm builds upon the usage pattern that appears when a pay-
ment channel is closed and the user that receives the coins from such channel
reuses them to open a new payment channel. An illustrative example of this link-
ing algorithm is included in Figure 1 where a funding entity e2 has been used to
open a channel c1 between nodes n1 and n2 with the funding transaction txF1.
Later, this channel has been closed in the settlement transaction txS , releasing
the coins in the channel to the entities e2 (i.e., the same that was used as input
in txF1) and e3. Finally, assume that the owner of entity e2 decides to open a
new channel reusing the coins from txS performing a new funding transaction
txF2 which results in the payment channel c2 between the aforementioned node
n2 and n3. In this situation, given that the entity e2 has appeared in the settle-
ment transaction of c1 and has been reused to open a new channel in the funding
transaction c2, our heuristic concludes that the entity e2 controls node n2.

Definition 5 (Linking Algorithm 1: Coin Reuse). Assume that a BTC
entity e opens an LN channel c1 := (chpoint1, n1, n2). If e is used as settle-
ment entity to close the LN channel c1 and also as funding entity to open a
new LN channel c2 := (chpoint2, n1, n3), and the nodes n2 and n3 have activity
period overlap, then the user controlling entity e also controls the LN node n1 in
common to both channels c1 and c2.

We applied the linking algorithm based on coin reuse which resulted in 83
tuples of (funding transaction, settlement transaction, funding transaction) and
22 entities reusing their addresses for opening and closing channels. Once these
22 entities are linked to LN nodes, all the other output entities in the settlement
transactions of these 22 entities can be linked to the counter-party nodes in the
channels as mentioned earlier. Finally, after these new links are created, our
heuristic can iteratively go over the settlement transactions that involve these
newly linked entities to find other entity-node pairs.

After 7 iterations, the heuristic yielded 9, 042 entities linked to 2, 170 nodes,
thus having cases where a node is linked to multiple entities. In total, considering
the number of entities we have in our dataset (138, 457 overall, both funding and
settlement side15) the heuristic is able to link 6.53% of them. This result is a lower
bound on the possible number of linked entity-node pairs because the linking

15 Here we do not consider source and destination entities as they do not directly
interact with the LN.
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algorithm mainly relies on channels to be closed (in our dataset only half of them
are) and on a specific subset of entities, namely the output entities of settlement
transactions with exactly two outputs, one per node. In fact, if we focus only
on settlement transactions with two output entities, we have 32, 321 entities,
27.98% of which can be linked, showing thereby that this linking algorithm has
a targeted but effective linking effect. Regarding the nodes percentages, we can
link 19.89% of the total (10, 910 overall) and 46.91% of the nodes for which
there exists at least one channel that has been closed using a 2-output-entity
settlement transaction, confirming the trend we observed with entities.
Discussion. We note that requiring that the same entity is used for all three
transactions (i.e., funding and settlement of the first channel as well as funding of
the second channel) may be too restrictive and leave out further links of entities
and nodes. However, we enforce this restriction to avoid false positives that could
be otherwise introduced as we describe next. Assume we control an LN node,
n2, with an associated BTC entity e1 that funds channel c1 between node n2
and n1 through txF1. Furthermore, we have an LN wallet with an associated
BTC entity, e3, on our phone provided by a third-party app. This means that
there must be another node in the LN, n3, managed by this third-party app.
When we decide to close channel c1, we specify an address provided by our
third-party app, hence belonging to entity e3, as settlement address to receive
the funds back. We finally proceed to use these funds to open a new channel,
c2, again with node n1 but from node n3, the third-party node. Without the
requirement on the same funding entity, the heuristic would link the node n1, in
common between the two channels, to the entity e3 reusing the funds, which is
false. With the same funding address requirement, instead, this case is ignored. A
further condition that needs to be satisfied to strengthen this heuristic is that the
nodes not common to the two channels (nodes n1 and n3 in Figure 1) have a time
overlap in their activity period. This excludes the unlikely, but not impossible
case that one node changes its ID (public key) from n2 to n3 keeping the same
BTC wallet (and thus entity), which could allow one to open two channels from
two different nodes, but to the same node, using the same BTC entity, creating
a false-positive case for the heuristic.
Countermeasures. The default functionality of LN wallets followed thus far
by virtually all users consists of having a single wallet per node from where to
extract the funds to open channels and where to send the coins after channels
connected to such node are closed. We conjecture that this setting favors the
usage pattern leveraged in the linking algorithm described in this section. As a
countermeasure, we advocate for the support of funding and settlement channels
of a single node from different (external) BTC wallets, helping thus to diversify
the source of funds. We observe that recent versions of the LN wallet lnd and
c-lightning have started to support this functionality [27, 5].

5.2 Linking Algorithm 2: Entity Reuse

In this linking algorithm we leverage the usage pattern that appears when a user
reuses the same BTC wallet (e.g., the one integrated within the LN wallet) to
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open several payment channels. Thus, in this linking algorithm we assume that
an entity e opened several payment channels with other entities. This common
usage pattern in practice can be detected at the blockchain by finding the set of
NC funding transactions that have e in common as the funding entity. We can
thus say that e has opened NC channels. At the LN, if there is only one node
n common to all the NC channels funded by e, we say that e controls n. An
illustrative example of this linking algorithm is shown in Appendix C.

Definition 6 (Linking Algorithm 2: Entity Reuse). If there are NC > 1
channels opened by one single funding entity e that have only one LN node n
in common, and there are at least two nodes nx and ny in these channels with
activity period overlap, then the user controlling entity e controls node n too.

We can link 9, 904 entities to 2, 170 nodes which correspond to 7.15% of all
the entities and 22.84% of all the nodes respectively.
Discussion. The way this linking algorithm has been described and imple-
mented so far might yield false entity-node links. As discussed in section 5.1, a
user can open a channel from its node n2 to another node n1, then close the
channel, change its node ID to n3 keeping the same BTC wallet and finally open
a second channel to n1. For this linking algorithm, this example would cause
a false positive because n1 would be linked to the BTC entity of this user. To
prevent this from happening, we add the following condition. Consider the set of
nodes appearing in the channels funded by a single funding entity e and exclude
from this set the node that has been linked to e with this heuristic. Now, if
there is at least one pair of nodes (n2, n3 from the example above) in this set
that have an activity period overlap, then we discard the false-positive risk as
it is not possible for node n2 to change to n3 keeping two channels open. When
implementing this additional requirement, we discovered that our results do not
contain any false positive as there is at least one pair of nodes with an activity
period overlap for each entity-node link. To further validate the results of this
second linking algorithm, we report that it provides the same entity-node links
that are in common with the linking algorithm presented in Section 5.1.
Countermeasures. A countermeasure to this heuristic is to not reuse the same
funding entity to open multiple channels. This can be achieved either by having
multiple unclustered addresses in a wallet or to rely on external wallets [27, 5].

5.3 Validation

For the validation of the heuristics presented in this work we use the ground
truth dataset presented in Section 3. For each of the 11 nodes that received
funds from us, we compare their set of ground truth settlement entities with
their set of linked entities from our linking algorithms. If there is an intersection
between these two sets, we say that the link is validated. In total, we find that
7 nodes (i.e., 63%) are validated. The validation for the 3 nodes that opened
channels to us is the same, but uses their ground truth funding entities as set for
comparison with the set of linked entities from our linking algorithms. In this
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case, we can validate 2 nodes. The lack of validation for the other nodes can have
several reasons: i) as reported in Section 3, we notice that only 11 out of the 52
nodes receiving our coins (by default on newly-generated BTC addresses) also
spent them, ii) the coins spent are not merged with funds from other channels
or iii) the coins are spent and merged with funds from channels missing in our
dataset. Nevertheless, one should note that over time our ground truth data will
increase and more nodes could be validated as soon as they spend our funds.

We believe that our small ground truth dataset is a reasonable trade-off
between obtaining a representative picture of the LN main net and a responsible
and ethical behavior that does not alter the LN properties significantly. We also
see our methodology to gather ground truth data as an interesting contribution
due to its scalability features: costs are relatively low (two on-chain transactions
and LN routing fees for each targeted node) and executable in a programmatic
way. We defer a more detailed description of this methodology to Appendix A.

6 Assessing Security and Privacy Impact

We merged the results of our clustering algorithms (Section 4) and our linking
algorithms (Section 5), thereby increasing the linking between entities and nodes
as shown in Table 3. We defer to Appendix D a detailed description of the
contribution for each heuristic individually.

6.1 Privacy Impact on BTC Entities (Layer 1)

The linking algorithms and clustering algorithms described in this work allow
attributing activity to BTC entities derived from their interaction with the LN.
Assume that a cluster is formed by a certain number of BTC entities and LN
nodes, then if any of the LN nodes has publicly identifiable information (e.g.,
alias or IP address), this information can be attributed to the BTC entities as
well. In total, we can attribute tagging information to 17, 260 different entities
that in total account for 50, 456 different addresses, which represent 21.19% of
our dataset.

This deanonymization is based purely on publicly available data16 and can be
carried out by a low budget, passive adversary that simply downloads the BTC
blockchain and the information from the LN. We envision that further impact
can be achieved by a more powerful adversary (e.g., a BTC miner). Moreover,
the possible deanonymization of BTC entities hereby presented shows that it is
crucial to consider the privacy of both layers simultaneously instead of one of
them at a time as largely done so far in the literature.

6.2 Security and Privacy Impact on the LN (Layer 2)

We have evaluated the implications of our clustering and linking algorithms in
the security and privacy of the LN. In summary, we studied how the capacity of

16 We note that Chainalysis attribution data is not strictly necessary for the linking
algorithms.
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Table 3. Summary results

Linking + Clustering
% addresses

linked
% entities

linked
% nodes
linked

Linking Algorithm 1 18.16 6.53 19.89
Linking Algorithm 1 + all on/off-chain 20.96 8.14 23.64
Linking Algorithm 2 19.19 7.15 22.84
Linking Algorithm 2 + all on/off chain 29.61 12.72 45.97

the LN is distributed across actors and found that a single actor controls over
24% of the total LN capacity and as few as five actors consisting of 36 nodes
control over 33% of the total capacity. Few LN actors are thus in a privileged
situation that can be used to diminish the security and privacy of the LN. For
instance, we observed that the entity with the highest capacity can render useless
over 40% of the channels for a period of time by means of DoS attacks. Similar
issues appear from the privacy point of view, where just 5 actors can learn
the payment amounts used in up to 60% of the cheapest paths in the LN and
determine who pays to whom in up to 16% of the cheapest paths. Due to space
constraints, we defer a detailed discussion of our security and privacy assessment
to Appendix E.

7 Conclusion and Future Work

In this paper, we presented two novel linking algorithms to reveal the ownership
of BTC addresses that are controlled by LN nodes using publicly-available data.
We also developed four BTC address clustering algorithms and one LN node
clustering algorithm that allowed us to link 29.61% of the BTC addresses in our
dataset to 45.97% of the public LN nodes, and cluster 1, 251 LN nodes into 301
actors. Finally, we discussed the security and privacy implications of our findings
in the LN, where we find that a single actor controls 24% of the overall capacity
and a few actors have a large impact on value privacy and payment relationship
anonymity. These few actors also have a large overlap with those that would
be candidates for high-impact attacks, the success of which can have significant
negative effects on payment success and throughput for the entire LN.

Scalability issues appear in a broad range of blockchain applications and
layer-2 protocols are increasingly considered as possible solutions. In light of
these developments, we find an interesting venue for future work to evaluate
whether our heuristics apply to layer-2 protocols other than the LN such as the
Raiden Network for Ethereum.
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sign and applications of a blockchain analysis platform (2017), https://arxiv.
org/abs/

14. Kappos, G., Yousaf, H., Piotrowska, A., Kanjalkar, S., Delgado-Segura, S., Miller,
A., Meiklejohn, S.: An empirical analysis of privacy in the lightning network (2020),
https://arxiv.org/abs/2003.12470

15. Kus Khalilov, M.C., Levi, A.: A Survey on Anonymity and Privacy in Bitcoin-Like
Digital Cash Systems. Communications Surveys Tutorials 20(3), 2543–2585 (2018)



18 M. Romiti et al.

16. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and Privacy with Payment-Channel Networks. In: Conference on Computer and
Communications Security (2017)

17. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In: Network
and Distributed System Security Symposium (2019)

18. Martinazzi, S., Flori, A.: The evolving topology of the Lightning Network: Central-
ization, efficiency, robustness, synchronization, and anonymity. PLOS ONE 15(1),
1–18 (01 2020)

19. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A Fistful of Bitcoins: Characterizing Payments among Men with
No Names. In: Internet Measurement Conference (2013)

20. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks (2020),
https://arxiv.org/abs/2002.06564

21. Nowostawski, M., Jardar, T.: Evaluating Methods for the Identification of Off-
Chain Transactions in the Lightning Network. Applied Sciences 9(12) (2019)

22. Poon, J., Dryja, T.: The Bitcoin Lightning Network (2016), lightning.network
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A Ground Truth Data Collection

To send coins to LN nodes and discover their settlement entities, we run two
nodes in the LN. One is the sending node, ns, and the other the receiving node,
nr. We make sure that nr is connected to the LN by a channel with a good
amount of incoming capacity, so that it can receive a number of LN payments.
We then have ns open a channel, ct, to a given target node, nt. Once ct is open,
we route a payment of amount a from ns to nr over ct. On successful payment,
we close the channel ct. We then repeat this experiment for a number of target
nodes nt.

The purpose of making a payment in this way is to increase the balance of
nt on channel ct to a before the channel is closed. This ensures that when ct



Cross-Layer Deanonymization Methods in the Lightning Protocol 19

is closed, the entity of nt receives an on-chain payment of a BTC. If the entity
further spends this amount of BTC we can apply our heuristics and attempt
to link entity to LN node. An advantage of routing the payment over nt rather
than making the payment to nt directly, is that we will not have to request an
invoice from each nt, or rely on the currently experimental key send mechanism.
Instead, we just have nr generate a set of invoices we can use for the experiment.

For each target node, we attempted to open a channel of 100,000 satoshis
capacity and make a payment of 1,000 satoshis to the receiving node. We chose
these amounts as they allow us to perform the experiments with a relatively low
amount of capital. While the payment is low, it is above the BTC dust limit of
546 satoshis, ensuring that the target node will receive the funds.

Unfortunately, in some cases the experiment would fail, either because the
channel would fail to open, or the payment was unsuccessful. When the channel
fails to open most often this is due to the target node not responding to the
channel opening request (presumably as the node is no longer on-line). Occa-
sionally, our requests to open channels will fail due to the requested channel not
meeting a policy set by the target node for opening new channels (e.g., some
nodes will only accept channels above a certain capacity). Once a channel was
established, the payment could fail because a suitable route could not be found
between receiving and sending node, although this was rare.

B Off-Chain LN Node Clustering

The operator of an LN node can announce custom node features such as an alias,
which was added to the LN to improve the usability of the system. The alias
can be changed by the operator at any time without affecting the operation of
open channels, as those are only tied to a node’s private and public key pair. We
observed that when a user is operating multiple nodes, it is likely that she will
name her nodes in a similar fashion, or along a common theme. For example, the
operator LNBIG.com enumerates its nodes on their website17, with aliases such
as LNBIG.com [lnd-25], LNBIG.com [lnd-34]. Via public chat, the developers
confirmed that LNBIG.com Billing also belongs to them. Strong alias similarities
are most likely intentional, for example, to make it easier for users to identify a
service, or the operators may want to achieve a reputation or branding effect.

In order to find nodes under the control of the same entity, we can exploit the
alias information and measure similarity. We evaluated popular string similarity
metrics (cf. [8]) such as the Levenshtein, Hamming and Jaro-Winkler distances.
Naturally, however, aliases can be similar, but do not belong to the same entity.
Examples include node aliases such as WilderLightning and GopherLightning,
which overlap textually but are not controlled by the same entity.

Apart from the alias, nodes advertise their IP address (or an address within
the Tor network) and a port. We can use this additional public information
to filter the clusters obtained through alias similarity, increasing the confidence
that the nodes are operated by the same entity.

17 https://lnbig.com/#/our-nodes
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Each IP address is part of a Classless Inter-Domain Routing (CIDR) [7] prefix
that is under the control of one or multiple network operators. An Internet Ser-
vice Provider (ISP) may operate a collection of such CIDRs, and their grouping
is called autonomous system (AS), each of which is identified by an autonomous
system number (ASN). By performing WHOIS queries, we can obtain the ASN’s
of each LN node IP address. If an alias-based node cluster consists only of IP
addresses associated to a single ASN, we conclude that the LN nodes are hosted
by the same network operator and is, therefore, more likely operated by a single
entity. In addition, we also cluster LN nodes that are (or have been in the past)
reachable via the same IP or Tor address.

Technically, we first determine pairwise alias distances by computing a dis-
tance matrix between all LN node aliases using different distance metrics. Then
we perform agglomerative hierarchical clustering to avoid early cluster merging
due to single aliases being similar to two distinct clusters. For threshold iden-
tification, we evaluate the full range of thresholds by counting the number of
LN nodes that remain when pruning clusters that are not pure with respect to
their ASNs. We then choose the threshold that results in the largest number of
clustered nodes, while ensuring the LNBIG.com cluster is identified as a single
cluster of at least 26 nodes, as we have ground truth from their website. In par-
allel, we perform IP-based clustering by grouping all LN nodes that have been
seen to be reachable via the same IP or Tor address. Finally, we join alias and
IP-based clustering and merge the resulting alias and IP-based clusters if there
is an overlap. This results in the final off-chain-based LN node clusters.

In our analysis, we considered all nodes with their history of aliases and
valid addresses. IPs within address ranges reserved for special purposes such as
private networks are excluded. We compared the performance of ten different
string distance measures (see Appendix B.1) and concluded that the relative
longest common substring measure yields the best results. In particular, 363 LN
nodes have been grouped into 126 clusters. The IP-based clustering yields 1135
clustered LN nodes, 241 of which are already part of the alias-based clusters.
By merging these clusters, the final cluster count is 301, with a total of 1, 251
LN nodes clustered. The two largest clusters are nodl-lnd-s007-* (88 nodes) and
*-lnd-gar-nodl-it (65 nodes).

Discussion. Alias/ASN and IP-based clustering can yield some false positives.
For example, if two nodes have very similar aliases, and are coincidentally hosted
on the same AS, they would be recognized as one entity. This could happen with
LN-specific hosting services or widespread services such as Amazon. Of the 301
identified clusters, 20 are hosted on Amazon servers, but are identified as distinct
clusters due to their different naming schemes. Within the overall time frame of
our dataset, 313 (2.9%) different lightning nodes have at some point in time been
hosted with Amazon. In general, however, filtering alias clusters to those running
on the same AS should result in few false positives. For the entity LNBig.com,
we had ground truth which we used to optimize the alias similarity threshold. By
reaching out to one operator, we were able to validate one cluster of LN nodes.
For privacy reasons, we refrain from naming the operator.
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Countermeasures. While the use of aliases supports the usability of the sys-
tem, the way some users choose them clearly hinders their privacy. For more
privacy, aliases should be sufficiently different from one another. While the pub-
lic announcement of IP addresses may be unavoidable for those nodes that wish
to have incoming channels in the LN, linkability across nodes of the same user
can be mitigated if the clients for each node are hosted with different service
providers (and thus ASNs and IP addresses).

B.1 Evaluation of Different String Distance Measures

As illustrated in Figure 3, we compare the string measures lcs (longest common
substring), Jaro, Jaro-Winkler, Levenshtein, Damerau-Levensthein and Ham-
ming distance. For those distances where the result is not already between 0 and
1, we normalize the distance by dividing by the longer one of the two aliases to
be compared.

For example, a popular string edit distance, the Levensthein distance, mea-
sures the minimum number of single character edits that are needed to transform
one string into another. Here an edit, refers to replacement, insertion or deletion.
For a detailed overview on text similarity approches we refer the reader to [8].

The results indicate that several normalized string distances exhibit simi-
lar performance, while the relative longest common substring yields the best
performance. The optimal threshold of 0.46 can be interpreted as follows: if a
common substring is identified between two aliases, it needs to account for about
half of the length of the longer alias. A practical similarity comparison is illus-
trated in Figure 4. We have chosen a subset of aliases that contains all observed
aliases of LNBig.com, multiple nodes containing the substring Lightning, and
some randomly selected aliases. At the threshold, 3 clusters are identified. In
two of them, all nodes are hosted on the same AS. So the initial result would be
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Fig. 3. Comparison of string distance measures for alias clustering. The relative longest
common substring (lcs) measure performs best. It grouped 363 LN nodes into 126
clusters. The threshold of 0.46 implies that for two aliases to be clustered, their longest
common substring needs to account for about half of the longer alias.
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Fig. 4. Example of a dendrogram illustrating alias similarity. Here, the relative lcs
distance metric has been used along with the optimal threshold of 0.46 (red vertical
dashed line). As a result, 3 clusters are found. However, only in the LNBig clusters,
all nodes are hosted on the same AS. Node ids behind the 2 LNBig clusters overlap.
Therefore, in this example, one LNBig.com cluster is the result.
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Fig. 5. Linking Algorithm 2: Entity reuse example. At layer 1, the funding entity
e1 is reused to perform NC = 3 funding transactions. At layer 2, the corresponding
channels are opened and there is one node, n1, common to all the NC channels and it
can be linked to the funding entity e1.

2 identified clusters. As the cluster consisting of LNBIG.com [lnd-27/old-lnd-19]
and LNBIG.com [lnd-28/old-lnd-22] are just additional aliases that have been
seen over time, but actually belong to some of the same public keys of the other
LNBig cluster, the two clusters are joined.

C Illustrative Example Linking Algorithm

An illustrative example of the linking algorithm described in Section 5.2 is shown
in Figure 5, where entity e1 funds NC := 3 channels and a node n1 is common
to all those channels. Then we can say that entity e1 controls n1.

D Details for Combining Heuristics

In the best case (last entry in Table 4) we get to 29.61% of linked addresses and
45.97% of linked LN nodes.

The reason why on-chain clustering algorithms should improve the linking
algorithms is that they better represent a user’s behavior, just like the co-spend
heuristic does. If we think about the on-chain patterns that we introduced, they
all group together entities that, based on their interaction with the LN, are
controlled by one single actor.

Table 4 shows the percentage of addresses, entities and nodes that can be
linked together when adding the clustering algorithms in the linking process.
Comparing these results with the ones from the basic implementation of the
linking algorithms, we notice that the first linking algorithm improves only by
few percentage points, while the second linking algorithm improves roughly by
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Table 4. Summary results

Linking + Clustering
% addresses

linked
% entities

linked
% nodes
linked

Linking Algorithm 1 18.16 6.53 19.89
Linking Algorithm 1 + stars 18.16 6.53 19.89
Linking Algorithm 1 + snakes 18.18 6.53 19.89
Linking Algorithm 1 + collectors 18.36 6.64 19.97
Linking Algorithm 1 + proxies 20.12 7.64 22.81
Linking Algorithm 1 + all on-chain 20.96 8.14 26.48
Linking Algorithm 1 + all on/off-chain 20.96 8.14 23.64
Linking Algorithm 2 19.19 7.15 22.84
Linking Algorithm 2 + stars 19.22 7.17 22.96
Linking Algorithm 2 + snakes 26.8 11.09 39.84
Linking Algorithm 2 + collectors 19.39 7.26 22.97
Linking Algorithm 2 + proxies 21.16 8.27 25.6
Linking Algorithm 2 + all on-chain 29.61 12.72 42.16
Linking Algorithm 2 + all on/off-chain 29.61 12.72 45.97

a factor of 2. However, not every clustering algorithm contributes the same to
the overall results. We discuss each of them next.

Star-pattern contribution. The behavior that can be modeled when com-
bining the star pattern and the linking algorithms can be described with the
following example. A user owns a wallet and additionally controls one LN node
n which runs its own LN wallet. Anytime the LN wallet needs to be replenished,
it generates a different address ai (corresponding to an entity ei of size 1) and
the wallet sends coins to it. After this, ei can be used to open a new channel
from the node n. At this point, the node n can be linked to the star that is
formed by the set of entities {ei}.

Unfortunately, this pattern, as reported in Table 2, occurs less often than the
others, a possible reason why it has no contribution for the linking algorithm 1
and an impact of less than a percentage point in linking algorithm 2.

Snake-pattern contribution. As already described in Section 4.1 the snake
pattern follows the concept of reusing the change address to fund a new channel.
Due to the frequent creation of a change in BTC, this pattern occurs much
more often than the star pattern and the proxy pattern (two and one order of
magnitudes more respectively). This also the reason why its contribution to the
linking is the most significant one for linking algorithm 2. Unfortunately, it is
not so effective with the linking algorithm 1, probably because the coin-reuse
heuristic is a stricter version of the entity-reuse heuristic.

Proxy-pattern contribution. The proxy pattern models the behavior of an
LN user that decides to merge the coins from different settlement transactions
into one single entity to avoid keeping track of funds, possibly on different wallets.
This pattern seems to have a stable contribution (around 3% for linked nodes)
for both linking algorithms when applied without the other patterns.
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Table 5. LN users controlling most capacity

User Node count Share of total capacity contributed

LNBig.com * 26 24.07%
bfx-lnd* 2 4.20%
BitRefill.com, ... 3 2.37%
CoinGate 2 1.98%
Breez 3 0.52%

Collector-pattern contribution. Similar to the proxy pattern, this behavior
merges the coins from different settlement transactions into one single entity,
with the difference that this last one is not directly involved in the LN settle-
ments. This pattern appears to be less common and powerful compared to the
proxy pattern.
Off-chain node clustering contribution. Assume there is a cluster of nodes
obtained with the heuristic presented in Appendix B and one of these nodes
has been linked to one entity. At this point, since the nodes in the cluster are
supposed to be controlled by the same LN user, we can indirectly link all the
other nodes in the cluster to the entity. We refer to these nodes as indirectly-linked
nodes. Even though we enforced strict conditions in the clustering algorithm
based on alias/IP information, we are aware of the fact that this type of linking
may be considered weaker as it relies on one additional assumption (nodes in
an alias-based cluster are correctly attributed to one actor). In total, for the
linking algorithm 1 we find 310 indirectly-linked nodes, which corresponds to an
additional 2.84% of nodes linked, while for the linking algorithm 2 we find 416
indirectly-linked nodes which correspond to an additional 3.81% of nodes linked.

E Security and Privacy Implications

In this section, we evaluate the security and privacy implications of our clustering
and linking algorithms in the security and privacy impact on the LN.

E.1 Wealth Distribution and Impact of Griefing Attacks in the LN

In this section, we first evaluate how wealth is distributed in the LN, that is,
how much capacity is controlled by each of the users found during our analysis.
For that, we take a recent snapshot of the LN from 2020-09-09 and extract the
capacity controlled by each user. If a channel has been created by a user that
has been linked to a node, we can attribute the full capacity of the channel to
that node. For all other channels, we assume that each user controls half of the
capacity. Under these assumptions, we observe that the overall capacity of the
LN is distributed as shown in Table 5. In particular, a single user controls over
24% of the overall capacity in the LN and as few as 237 nodes (3.2%) control
over 80% of the capacity. This result refines the previous study in [11] where
they find that 80% of the capacity is controlled by 10% of the nodes.
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This result shows that few LN users are in a privileged situation that they
can potentially use to selectively prevent other LN nodes from transacting in the
network, for instance, launching a griefing attack [24] against the victim nodes.
In the griefing attack, the attacker finds a path of the form n1 → n2 → . . .→ nk
where n1 and nk belong to the attacker. Using that path, the attacker routes a
payment from n1 to nk, thereby allocating funds at each channel to support the
payment transfer. However, this payment is never accepted by nk, forcing the
intermediary channels to wait to release the funds locked for the payment until
a certain timeout expires. In the current LN implementation, this timeout is in
the order of several days.

For this attack to be effective, the attacker needs to perform and lock a
payment for an amount corresponding with the capacity available at the channel
of the victim. However, as shown in Table 5, the uneven distribution of wealth in
the LN makes this a small investment if the attacker is one of the users with high
capacity. In fact, we evaluated the possible damage that each user in the LN can
infringe by launching this griefing attack with the results shown in Figure 6. As
expected from the wealth distribution, the user with the highest capacity is the
one that can infringe the most devastating attack, being able to render useless
for a period of time over 40% of the channels in the LN, which amount for about
14% of the total capacity.

We remark that although griefing attacks have a cost for the adversary (i.e.,
the adversary needs to lock some of its own channels), the adversary can still
benefit from griefing other nodes, as studied in the literature. For instance, Pérez-
Solà et al. [23] show that the adversary can launch a griefing attack to block LN
middle nodes in multi-path payments. Mizrahi and Zohar [20] as well as Rohrer
et al. [25] show how similar attacks can be used to block as many high liquidity
channels as possible, disconnect channels from the LN and isolate individual
nodes from the LN. If the adversary is successful, the attack gives the adversary
a dominant position in the LN, which can be later exploited either for exploiting
privacy (e.g., off-chain payment data gathering) or for economic rewards (e.g.,
increasing the benefits in term of fees reducing the number of competing LN
gateway nodes).

E.2 Vulnerability to DoS attacks in the LN

The growing monetary value of the LN and the existence of competitor business
within the network as well as from other available payment networks open the
door for DoS attacks. In fact, there have already been DoS attacks against the
LN reported. For instance, in March 2018, it was reportedly hit by a distributed
DoS attack that took 20% of the nodes offline18. In this state of affairs, we study
here the effect of DoS attacks targeted at the LN users found in this work.

Based on the LN snapshot we iteratively remove the nodes and channels
corresponding to a given user, starting with the users that control the most ca-
pacity. We then compare the resulting graph with the original one to evaluate

18 https://trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes
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the adversary’s advantage (i.e., attack’s success) attributed to a DoS targeted to
such user. Following [25], we characterize the notion of adversary’s advantage as

∆m :=
∣∣∣1− m′

m

∣∣∣ where m is the a priori measurement and m′ is the a posterior

one. The higher ∆m becomes, the higher the success of the attack according to
the metric m. We consider the three metrics as defined in [25]: (i) ∆r defined as
the number of nodes within the biggest component in the graph, representing
thereby the effect on the number of reachable nodes; (ii) ∆f defined as the aver-
age maximum flow between every two nodes in the graph, representing thereby
the effect of the attack on liquidity; and (iii) ∆s defined as the payment success
ratio, representing thereby the effect of the attack on the payments. Following
their approach for estimation, we perform a uniform random sampling of 1000
pairs of nodes to compute ∆f and ∆s.

We obtain the results shown in Figure 7. We observe that a possibly low
resource adversary that carry out a DoS attack targeted to a single LN user
(LNBig.com, 26 nodes in total) already gets an advantage that is only slightly
improved when targeting more users. By attacking this entity, the max-flow of
the LN can be reduced by one third, and payment success be reduced by 12%.
As each user is hosted on a single autonomous system, it could be sufficient
to attack a single hosting provider. In this regard, our results differ from those
in [25]. Multiple high degree nodes are likely using several hosting providers,
increasing the attack’s cost. Second, even with a lower budget requirement, our
DoS attack targeted at users yields a similar adversary’s advantage as in [25] for
all the metrics when only considering one user with 26 nodes.

E.3 LN Users on Payment Paths

In this section, we study to what degree the security and privacy of individual
payments between any two nodes in the LN are affected by our clustered users. In
the LN, a payment between two nodes is typically routed through the cheapest
path between them, where the cost associated to the path is calculated by the
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sum of fees charged by each intermediary node. An intermediary node charges a
fee composed of a rate fee proportional to the payment amount, and a base fee
that is independent. We computed the cheapest paths between all node pairs for
a varying payment amount. This allows us to study the value privacy property,
that is visualized in Figure 8.
Value privacy. The payment value is observed by every single intermediary in
the path. Thus, according to our results, a reduced number of users know how
many coins are being transferred in the LN, giving them undue advantage over
competitors (e.g., to set the fees or target products to users accordingly). Being
an intermediary also has a second implication, from a security point of view: a
payment between any two nodes can be aborted by a single intermediary node
that simply drops it. A single user can thus stop almost 40% of the payments in
the LN, and this fraction grows to 60% if the top 5 users were to collude. Given
the decentralized payment protocol used currently in the LN, it is not possible
for the sender to pinpoint which intermediary node has stopped the payment.
Therefore the sender needs to blindly guess what node is the malicious one and
possibly pay higher fees to circumvent it.

E.4 LN Users With Multiple Nodes on Payment Paths

From the results in the previous section, we observe that a few users are fre-
quently intermediary nodes for many paths used for payments in the LN. In this
section, we are interested in studying whether a single user has more than one
node as an intermediary in a single path. This setting has further security and
privacy implications in practice.
Relationship anonymity. Assume a path where a user has two nodes, one of
which is the immediate successor of the sender and the other is the immediate
predecessor of the receiver. In such a setting, the fact that information uniquely
identifying a payment is sent across the path (e.g., a hash value used to crypto-
graphically secure the payment), allows the user to learn the sender and receiver
for such payment, even when other simultaneous payments may be using part
of the path. This privacy attack breaks the notion of relationship anonymity as
described in [16].

We evaluated the presence of such a threat in the LN with the results shown
in Figure 8. We observe that there are between 5% and 16% of the paths prone
to this privacy issue even when as little as one user behaves adversarial. The
reason why relationship anonymity is much more vulnerable for higher payment
amounts is straightforward: Only a few channels have sufficient capacity, and
several of them are operated by the same user (i.e. LNBig.com), forcing more
payments to go through them.
Wormhole attack. Assume now a path where a user has two intermediary
nodes at any position in the path with the condition that there are other honest
nodes between them. The latter are at risk of becoming a victim of the wormhole
attack as described in [17]. They are tricked into locking capacity at their chan-
nels to facilitate the payment but never contacted again to release those funds
so that channels get locked for a certain timeout period established as system



Cross-Layer Deanonymization Methods in the Lightning Protocol 29

0 2 4 6 8 10

Top entities

0

0.2

0.4

0.6

C
u
m

u
la

ti
v
e 

fr
a
ct

io
n
 o

f
ch

ea
p
es

t 
p
a
th

s 
w

it
h
o
u
t

Measure: Value Privacy      Relationship anonymity 

1,000 10,000 100,000 1,000,000Satoshi amount:

L
N

B
ig

.c
o
m

 *

Fig. 8. Fraction of cheapest paths without
value privacy and relationship anonymity
by different amounts to be transferred.

1 2 3 4

Top entities

0.00%

0.05%

0.10%

0.15%

C
h
ea

p
es

t 
p
a
th

s 
w

it
h
 w

o
rm

h
o
le

s

ro
m

p
er

t.
co

m

n
o
d
l-
ln

d
-s

0
0
7
*

2
M

A
S
S
 J

O
2
5
3
..
.,
 .
..
.

S
ta

k
en

et
, 
..
.

S
ta

k
en

et
, 
..
.

n
o
d
l-
ln

d
-s

0
0
7
*

*
B

o
t

*
B

it
P

a
y

2
M

A
S
S
 J

O
2
5
3
..
.,
 .
..
.

T
W

ro
n
a
ld

, 
..
..

D
ea

d
 n

o
d
e,

 .
..
.

b
fx

-l
n
d
*

b
fx

-l
n
d
*

”C
h
ee

se
”

S
y
n
d
ic

a
te

 ˜
 *

1,000 10,000 100,000 1,000,000Satoshi amount:
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parameter which is on the order of days in the current implementation. While
similar in spirit to the griefing attack, the wormhole attack differs in two main
points: (i) the attacker user does not need to be the sender and receiver of the
payment; and (ii) the attacker user can successfully settle the payment at the
channels in the path other than those being attacked (i.e., channels between two
nodes of the attacker), so that the attacker also gets the fees for providing an
apparently successful payment at the eyes of the sender and the receiver.

As shown in Figure 9, surprisingly the user with the highest impact in this
attack is not LNBIG.com as in the previous attacks. In this case, the user as-
sociated to rompert.com can perform the wormhole attack for about 0.15% of
all cheapest paths in the LN. While this number is much lower than in previous
attacks, the effect of this attack actively disrupts users in the path (i.e., their
coins get locked), different to privacy-based attacks where the payment finishes
successfully and the privacy breach is computed locally and passively at the
attacker node.

These results call for the inclusion into the current LN of countermeasures
recently proposed in the literature. For instance, Egger et al. [6] and Malavolta
et al. [17] have proposed alternative payment schemes for the LN that prevent
the worhmole attack. Moreover, the payment schemes proposed by Malavolta et
al. [16, 17] and Yu et al. [28] provably prevent the relationship anonymity attack
that are otherwise currently feasible in the LN.

E.5 The Good and the Bad for Routing in the LN

The possibility of deanonymization, which opens up with the cluster and linking
algorithms proposed in this work, has the following implications arising from the
security and privacy issues in the routing of payments discussed so far.
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Honest users can use the knowledge about users to search for payment paths
that avoid them. However, this may not always be possible, especially for users
who control a node with only a few channels. In addition, alternative paths
circumventing these users may be more expensive, which represents a trade-off
between security/privacy and transaction fees.

On the other hand, the fact that honest users can learn about users and
avoid them may have a negative impact on the business model of these users.
The business incentive for the LN nodes is to offer many channels and to set
their fees so that as many payments as possible are routed through them. More
payments are also associated with higher revenue potential. From this point of
view, the deanonymization techniques presented in this work are not beneficial
for routing users.


