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Abstract. Proofs of sequential work (PoSW) are proof systems where a
prover, upon receiving a statement χ and a time parameter T computes
a proof φ(χ, T ) which is efficiently and publicly verifiable. The proof can
be computed in T sequential steps, but not much less, even by a mali-
cious party having large parallelism. A PoSW thus serves as a proof that
T units of time have passed since χ was received.

PoSW were introduced by Mahmoody, Moran and Vadhan [MMV11],
a simple and practical construction was only recently proposed by Cohen
and Pietrzak [CP18].

In this work we construct a new simple PoSW in the random per-
mutation model which is almost as simple and efficient as [CP18] but
conceptually very different. Whereas the structure underlying [CP18] is
a hash tree, our construction is based on skip lists and has the interesting
property that computing the PoSW is a reversible computation.

The fact that the construction is reversible can potentially be used
for new applications like constructing proofs of replication. We also show
how to “embed” the sloth function of Lenstra and Weselowski [LW17]
into our PoSW to get a PoSW where one additionally can verify correct-
ness of the output much more efficiently than recomputing it (though
recent constructions of “verifiable delay functions” subsume most of the
applications this construction was aiming at).

1 Introduction

Timed-release cryptography was envisioned by May [May93] and realised by
Rivest, Shamir and Wagner [RSW00] in the form of a “time-lock puzzle”. For
a time parameter T , such a puzzle can be efficiently sampled together with a
solution. However, solving it requires T sequential computational steps, and this
holds even for parties aided with massive parallelism. In other words, there are no
“shortcuts” to the solution. The application envisioned in [RSW00] was “sending
a message to the future”: generate a puzzle, derive a symmetric key from the
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solution, encrypt your message using that key, then release the ciphertext and
the puzzle. Now everyone can decrypt by solving the puzzle which requires T
sequential steps.

The construction put forward in [RSW00] is in the RSA setting: the puzzle
is a tuple (N,x, T ), where N = p · q is an RSA modulus and x ∈ Z∗

N a group
element, and the solution to the puzzle is x2T mod N . Although the solution can
be computed efficiently if the factorisation of N is known, it is conjectured to
require T sequential squarings given only N .

The assumption that underlies the soundness of the [RSW00] time-lock puzzle
is rather non-standard (which is basically that the puzzle is sound, i.e., there’s
no shortcut in computing the solution) and it’s an open problem to come up
with constructions under more standard assumptions. In a negative result, Mah-
moody, Moran and Vadhan [MMV11] show that there’s no black-box construc-
tion of a time-lock puzzle in the random oracle model. In subsequent work the
same authors [MMV13] propose and construct proofs of sequential work (PoSW).
This is a proof system wherein a prover P can convince a verifier V that it spent
T sequential time steps upon receiving some challenge χ. Even though PoSW
seem related to time-lock puzzles, they are not directly comparable. In particu-
lar, a PoSW does not require that one can sample the solution together with an
instance. On the other hand, a PoSW must be publicly verifiable1 and sampling
a challenge must be public-coin2 so it can be made non-interactive by the Fiat-
Shamir heuristic. [MMV13] construct a PoSW in the random oracle model (or
under a standard model assumption on hash functions called “sequentiality”).

As possible applications for PoSW [MMV13] suggest universally verifiable
CPU benchmarks and non-interactive time-stamping. The construction given in
[MMV13] is not practical as a prover needs not only T sequential time steps but
also linear in T space to compute a proof. Cohen and Pietrzak [CP18] resolved
this issue by constructing a PoSW where the prover requires just log(T ) space.

More recently there has been renewed interest in time-delayed cryptography
as it found applications in decentralized systems, including public randomness
beacons (cf. discussion in [BBBF18]), blockchain designs like chia.net or proofs of
replication [Fis19]. For the first two applications the PoSW need to be unique,
which means it should not be possible (or at least computationally hard) to
compute more than one accepting proof for the same challenge. This notion was
introduced in [CP18] but constructing such a PoSW was left as an open problem.

Our Contribution. Constructions of hash-based PoSW start with some under-
lying graph structure, which in [MMV13] is a depth-robust graph and in [CP18] a
binary tree with some extra edges. In this paper we construct a new PoSW which

1 So everybody, not just the party who generated the challenge, can efficiently verify
correctness. Note that in the RSW time-lock puzzle only the party who generated the
challenge (which is called a puzzle in this context) and thus knows the factorization
can verify the proof efficiently.

2 This basically means that the challenge is just a uniformly random string. Note that
the RSW time-lock puzzle is not public-coin as the coins used to sample the RSA
modulus N must remain secret.

https://www.chia.net/
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is as simple and almost as efficient as [CP18] with the underlying graph being
a skip list. Our construction can be instantiated with permutations – instead of
hash functions – and is “reversible”.

Until recently the sloth hash function [LW17] was the closest we had to a
unique PoSW. It’s not a PoSW because the computation required for verification
is linear in the time parameter T (albeit around a 1000 times faster). The fact
that our PoSW is reversible allows us to “embed” sloth into our PoSW, this
way we get a PoSW where verification (of the claim that T sequential time steps
were spent) is very efficient (logarithmic in T ), while verifying correctness can be
done as efficiently as in sloth (in time O(T ) with a very small hidden constant).
We outline this construction in more detail in Sect. 1.1 below.

For applications of unique PoSW our construction is by now mostly subsumed
by very recent constructions of verifiable delay functions [BBBF18] (VDF). A
VDF is defined almost like a PoSW, but the (non-interactive) proof does not
only certify that T sequential time has been used to compute some value, but
the stronger property that this value is actually the correct value. A VDF is
thus basically a unique PoSW (the only reason it’s not exactly a unique PoSW
is that the proof itself could be malleable, but this doesn’t matter for any of
the applications). The notion of a VDF has been introduced by Boneh et al.
in [BBBF18] who also construct a VDF using rather heavy machinery like incre-
mentally verifiable computation. Subsequently two extremely simple and efficient
VDFs have been proposed [Wes19,Pie19b], both papers basically show how to
make the RSW time-lock puzzle [RSW00] publicly verifiable, that is, they give
proof systems for showing that a given tuple (x, y, T ) satisfies x2T = y in a group
of unknown order (e.g. Z∗

N as used in [RSW00]). These constructions are clearly
favourable to ours as correctness (which here means that the output is correctly
computed) can be verified much more efficiently, though as they are not post-
quantum secure, ours is arguably still the best option in a post-quantum setting
for some applications. This hopefully will change in the near future as research
on post-quantum VDFs is ongoing [FMPS19].

The fact that our PoSW is reversible seems also useful in the context of
proofs of replication [Fis19,Fis18,Pie19a] for similar reasons that “decodable”
VDFs are useful in this context as discussed in [BBBF18], we are currently
working towards constructing simple proofs of replication based on the skip list
based PoSW presented in this paper.

1.1 Hash Chains and the Sloth Function

A simple construction which is not quite a PoSW is a hash chain, where
on input x = x0 one outputs as proof xT which is recursively computed as
xi = hash(xi−1). If hash is a bijection and can be efficiently evaluated in both
directions (i.e., a permutation), then from a given state xi, one can compute the
previous state xi−1, we call such a construction reversible.

Verifying that xT has been correctly computed requires T hashes (so it’s no
a PoSW), but at least one can parallelize verification by additionally outputting
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some q intermediate values x0, xT/q, x2T/q, . . . , xT (then the proof can be verified
in T/q time assuming one can evaluate q instantiations of hash in parallel: for
every i ∈ [q], verify that T/q times hashing x(i−1)T/q gives xiT/q).

Lenstra and Wesolowski [LW17] suggest a construction called “sloth”, which
basically is a hash chain but with the additional property that it can be verified
with a few hundred times less computation than what is required to compute it.
The construction is based on the assumption that computing square roots in a
field Fp of size p is around log(p) times slower than the inverse operation, which
is just squaring. A typical value would be log(p) ≈ 1000, going much higher is
problematic as then fast multiplication methods (e.g., Karatsuba, Schönhage-
Strassen) can be applied.

Their idea is to simply use a hash chain where the hash function is some
permutation π : Fp → Fp, where Fp is a finite field of size p, followed by taking
a square root: that is xi =

√
π(xi−1). Verification goes as for a standard hash

chain, but one computes backwards, checking xi−1 = π−1(x2
i ), which – assuming

computing π, π−1 is cheap compared to squaring, and squaring is log(p) times
faster than taking square roots – gives the claimed speedup of ≈ log(p) compared
to a simple hash chain.

In Sect. 4 we show how sloth can be embedded into our skip list based PoSW
to get a construction such that it remains a good PoSW, while correctness of
the output can be verified as efficiently as in sloth, the constructions discussed
are summarized in the table below.

2 Construction

2.1 Notation

Throughout we denote the time parameter of our construction by N = 2n with
n ∈ N and assume it’s a power of 2. We reserve w, t ∈ N to denote two statistical
security parameters, w is the block size (say w = 256) and t denotes the number
of challenges: a cheating prover who only makes N(1−ε) sequential steps (instead
N) will pass verification with probability (1 − ε)t. For integers m,m′ we denote
with [m,m′] = {m,m + 1, . . . ,m′}, [m], [m]0 are short for [1,m] and [0,m].

We define 0̃ = n + 1 and for i ≥ 1 we denote with ĩ the number of trailing
zeros in the binary representation of i, plus 1

0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, . . . = n + 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, . . .

For σ ∈ {0, 1}w·i we denote with σ(j) the jth w-bit block of σ, so that σ =
σ(1)‖ . . . ‖σ(i). σ(i...j) is short for σ(i)‖ . . . ‖σ(j).

For a permutation π over � bit strings, we denote with π̇ the function over
bit stings of length ≥ � which simply applies π to the � bit prefix of the input,
and leaves the rest untouched.
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construction (using # of stepsd # of stepsd to assumption step post reversible
time parameter T to verify verify if output quantum
and statistical sequential is correct
security parameter computation (uniqueness)
λ) O(·) of O(·) of

hash chain T T random oraclea RO call yes yesb

sloth [LW17] T/ log(p) T/ log(p) log(p) gap computing x → √
x yes yes√

x vs x2 and & RP call
random permutationa,c

PoSW [CP18] λ · log(T ) T random oraclea RO call yes no

PoSW Sect. 2 λ · log2(T )f T random permutationa,c RP call yes yes

Combined Sect. 4 λ · log2(T )f T/ log(p) like sloth x → √
x yes yes

& RP call

[Pie19b] VDF λ · log(T ) λ · log(T ) (x, T ) → x2T requires x → x2 no no
T sequential squaringse

[Wes19] VDF λ λ as above plus x → x2 no no
“root assumption”

aOr a standard model assumption called “sequential hash function”.
bIf the function used is an efficiently invertible permutation.
cThe random permutation model is equivalent to the random oracle model.
dWhat a step is depends on the construction, but evaluating the function is always
assumed to require T sequential steps.
eThis assumption can only hold in groups of unknown order.
fStrictly speaking, the number of oracle calls required to verify is just λ · log T (as in
[CP18]), but in our constructions the input consists of up to log T + 1 blocks (unlike
[CP18], where it is 2 blocks) and therefore to make a fairer comparison, we count the
cost of an oracle call on an input of length k blocks as k calls.
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Fig. 1. Illustration of the computation of σΠ = (σ0, . . . , σN ) with n = 3, N = 2n = 8.
The blocks represent the permutations, whereas the dashed vertical lines represent the
states. Note that the structure of the graph is the same as a skip list with four layers,
where a pointer in layer i, i ∈ {0, 1, 2, 3}, points to the 2i-th element to its right on the
list.

2.2 The Sequence σΠ

At the core of our construction is a mapping based on the skip list data structure
(see Fig. 1). It is built from a set of permutations Π = {πi}i∈[N ]0 , where each
πi is over {0, 1}w·̃i, and defines a sequence of states σΠ = σ0, . . . , σN , σi ∈
{0, 1}(n+1)·w, recursively as

σ0 = π̇0(0w·(n+1)) and for i > 0 : σi = π̇i(σi−1)
(
= πi(σ

(1...̃i)
i−1 )‖σ

((̃i+1)...(n+1))
i−1

)
.
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2.3 The DAG GN

It will be convenient to consider the directed acyclic graph (DAG)

GN = (V,E) , V = [N ]0 , E = {(i, j) ∈ V 2 : ∃k ≥ 0 : j − i = 2k, 2k|i}

0 1 2 3 4 5 6 7 8

Fig. 2. The graph G8 that corresponds to the computation of σΠ with n = 3.

that is derived from the computation of σΠ as follows: identify the permutation
πi with the node i and add a directed edge (i, j) if in the computation of σΠ

part of the output of πi is piped through directly to πj (see Fig. 2).
For i ∈ [N − 1] we denote with path(i) ⊆ V the subgraph of V induced by

the nodes on the shortest path in GN which starts at 0, ends at N and passes
through node i. For example, in Fig. 1,

path(5) = ({0, 4, 5, 6, 8}, {(0, 4), (0, 8), (4, 5), (4, 6), (4, 8), (5, 6), (6, 8)}).

It’s not hard to check that the number of vertices in path(i) is n + 3 − ĩ, and in
particular is never more than n + 2.

2.4 Consistent States/Paths

By construction, the σi ∈ σΠ satisfy σi = π̇−1
i+1(σi+1), and more generally, for

every edge (i, j) ∈ E and d = min(̃i, j̃)

σ
(d...n+1)
i = (π̇−1

j (σj))(d...n+1).

We say two strings are consistent for (i, j) if they satisfy this condition.

Definition 1 (Consistent States/Path). αi, αj ∈ {0, 1}(n+1)·w are consis-
tent for edge (i, j) ∈ E if with d = min(̃i, j̃)

α
(d...n+1)
i = (π̇−1

j (αj))(d...n+1) .

We say α′
i ∈ {0, 1}ĩ·w, α′

j ∈ {0, 1}j̃·w are consistent if they can be “padded” to
consistent αi, αj as above, which is the case if

α′(d)
i = π−1(α′

j)
(d).

We say {αi}i∈path(k) are consistent with path(k) if αi, αj are consistent for every
edge (i, j) ∈ path(k).

Note that if αj is computed from αi by applying π̇i+1, . . . , π̇j to αi, then those
αi, αj will be consistent with (i, j), but the converse is not true (except if j =
i + 1).
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2.5 PoSW Construction

The protocol between P,V on common input T = N = 2n, w, t goes as follows

1. V samples χ ← {0, 1}w·n and sends it to P. This χ defines a fresh set of
random permutations Π (cf. Remark 1 below).

2. P computes σ0, . . . , σN and sends φ = σN to V.
3. V samples t challenges γ = (γ1, . . . , γt) ← [N − 1]t and sends them to P.
4. P sends {σi}i∈path(j),j∈γ to V (cf. Remark 2 below).
5. V verifies for every j ∈ γ that {σi}i∈path(j) is consistent as in Definition 1. If

any check fails output reject, output accept otherwise.

Remark 1 (Seeding Random Oracles/Permutations). Ideal permutations can be
constructed from random oracles [CPS08,HKT11,DSKT16] (formally, the ideal
permutation model is indifferentiable from the random oracle model), so we
can realize Π in the standard random oracle model.3 Consider a fixed random
oracle H(·) about which a potential adversary has some auxiliary input (i.e.,
it has queried it on many inputs before, and stored some information aux).
If one samples a random seed χ and uses it as a prefix to define the function
Hχ(x) = H(χ‖x), this Hχ – from the adversaries’ perspective – is a fresh random
oracle as long as this seed is just a bit longer that log(|aux|) [DGK17]. Thus, we
can also sample a fresh Π by just sending a seed χ.

Remark 2 (P ′s Space Requirement). To avoid any extra computation in step
4., P would need to store the entire σΠ = {σi}i∈[N ]0 . By using a bit of extra
computation, one can reduce the space requirement (we remark that a similar
trade off comes up in [CP18]). Concretely, for some K = 2k, we let P only store
σi where 2k|i, thus storing only N/K states. From this, every state σi can be
computed making at most K/2 invocations to Π (and K/2 not K as we can also
compute backwards).

3 Security Proof

Theorem 1. Consider a malicious prover P̃ which

1. makes at most N −Δ sequential queries to permutations in Π before sending
φ = σN (in step 3 of the protocol); and

2. queries the permutations in Π on at most q inputs in total during execution
of the protocol.

Then P̃ will win (i.e., make V output accept) with probability at most

Pr
(
P̃ wins

)
≤ 2q2(n + 3)2

2w
+

(
N − Δ

N

)t

. (1)

3 In practice, one could e.g. use χ to sample N +1 AES keys k0, . . . , kN , and then use
AES(ki, ·) : {0, 1}256 → {0, 1}256 – i.e., AES with a fixed public key – to construct
πi, where for ĩ > 1 one would use domain extension for random permutations to
extend the domain to 256 · ĩ bits.
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The proof of Theorem 1 mainly follows the intuition that sending φ “com-
mits” the prover to a set of challenges it can respond to. We prove this fact
formally in Lemma 7. If this set is a large fraction of the possible challenges,
it implies the existence of a long sequence (as defined below) that necessarily
requires many sequential steps.

To aid the proof we begin with a couple of definitions. The first one is merely
for notational convenience.

Definition 2. We use ∼ to denote that two strings (composed of w-bit blocks)
contain an identical block

α ∼ α′ ⇐⇒ ∃i, j : α(i) = α′(j).

We then say that α and α′ collide.

The next definition characterizes the property that paths through our skiplist
construction satisfy and that we rely on for the proof.

Definition 3 (Π-Sequence). For a family of N permutations Π = {πi}i a Π-
sequence of length N ′ < N is an N ′-tuple of pairs of strings ((xj , yj))j together
with an N ′-tuple of strictly increasing integers (ij)j such that for all j

πij (xj) = yj and yj ∼ xj+1.

Below we show that Π-sequences are inherently sequential (cf. Lemma 6 and
Corollary 1), but that requires a few technical lemmas, so we defer the details
and proceed to the main proof. We now show how Lemma 7 and Corollary 1
imply Theorem 1.

Proof (of Theorem 1). Consider a malicious prover P̃ that convinces the verifier
on a random challenge with probability ≥ N−Δ

N . Since the correct response to
any challenge is a distinct Π-sequence from 0 to φ, Lemma 7 implies that P̃ must
be able to respond to a fraction ≥ N−Δ

N of the challenges. This is because the set
of Π-sequences from 0 to φ that P̃ can compute is essentially fixed after sending
φ and thus independent of the choice of challenges. This means there must exist
a set of N −Δ responses which can be pieced together to a Π-sequence of length
N − Δ from 0 to φ (details below). Note that all responses can be obtained by
sending all the challenges using rewinding (which does not increase the number
of queries). Then the result follows from Corollary 1.

It remains to establish the fact that the responses can be merged to a long
sequence. To see this, first assume that whenever two paths contain the same
node, the corresponding responses have the same state at this node. If this is
the case then merging the responses to k distinct challenges is easy: simply take
the “union” of the responses, which will be a Π-sequence of length at least k.

Finally, we show that different verifying reponses must have the same state
at intersecting nodes. The proof of this fact is recursive: consider the node N/2
and assume for contradiction that there are two paths that both verify and each
contains a state σN/2 and σ′

N/2, respectively, with σN/2 �= σ′
N/2. First note that
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the states σ0 and σ′
0 must both be equal to π0(0), so they are equal to each

other. Similarly, σN and σ′
N must both be equal to φ in order to both verify.

Furthermore, verification ensures that σN/2 ∼ σ′
N/2. Specifically, they are equal

in block n − 1, where they must both be equal to π−1
N (σN )(n−1), since verifi-

cation checks the edge (N/2, N) for consistency (cf. Definition 1). Analogously,
verification ensures that π−1

N/2(σN/2) ∼ π−1
N/2(σ

′
N/2), since this corresponds to the

edge (0, N/2). Note that the latter pair of values could be extracted from the
prover by sending the appropriate challenges. By Lemma 5 (proved below) this
can only happen with probability ≤ 2q2(n+3)2

2w . We conclude that σN/2 is equal
among all valid responses with overwhelming probability. This allows to recurse
on the node N/4 and 3N/4, etc. ��

We now establish the remaining lemmas used in the main proof. Throughout
the rest of this section, w.l.o.g. we only consider algorithms that do not make
redundant queries. In all results in this section pertaining to random permuta-
tions the probabilities are taken over the choice of the permutations.

First, we need a version of a PRP/PRF switching lemma that allows the
adversary oracle access to the permutation and its inverse. We have not seen
such a version in the literature so we prove it in the appendix.

Lemma 1. Let π : {0, 1}w �→ {0, 1}w be a random permutation and consider an
algorithm Aπ,π−1

with oracle access to π and π−1 that makes exactly q queries
in total. Assume that A does not repeat any queries to π nor any queries to π−1,
and that if it queries π at x, it does not query π−1 at π(x) and vice versa. Let
F1, F2 : {0, 1}w �→ {0, 1}w be independent random functions. Then for any event
E over the output of A, we have Pr

(
Aπ,π−1 ∈ E

)
≤ Pr

(
AF1,F2 ∈ E

)
+ q(q−1)

2w ,
where the first probability is over the choice of π and the second over the choice
of F1, F2.

The Lemma shows that in the analysis we can replace the random permuta-
tion and its inverse oracle with random functions. Note that by a simple hybrid
argument, Lemma 1 also holds for families of permutations, where q is the sum
over all queries and w is the minimal input/output length over all permutations.

We now show that Lemma 1 implies a few restrictions on what an algorithm
can achieve when querying random permutations. Namely, we first show that
input/output pairs are hard to guess (cf., Lemma 2), that preimages are hard to
find without using the inverse oracle (cf., Lemma 3), and that it is hard to find
queries that result in collisions with earlier queries (cf., Lemma 4).

Lemma 2. Let Π = {πi}i be a family of random permutations. For any oracle
algorithm outputting a pair (x, y) and an integer i and making q queries to Π
except x in forward or y in backward direction, the probability that πi(x) = y is
≤ q2

2w .

Proof. We are trying to bound the probability that the algorithm is able to guess
the input/output pair of one of the permutations in Π (after making at most q



286 H. Abusalah et al.

queries). If the πi were random functions, this probability would be ≤ 1
2w . By

Lemma 1 the bound follows. ��
Lemma 3. Let Π = {πi}i be a family of random permutations. For any algo-
rithm taking y as input and making q queries to Π except querying π−1

i for y

and outputting some x and i, the probability that πi(x) = y is ≤ q2

2w .

Proof. If πi and π−1
i were random function, the probability of finding such an x

would be 1
2w . Lemma 1 completes the proof. ��

Lemma 4. Let Π = {πi}i be a family of random permutations. For any algo-
rithm making q queries to Π the probability of a query to Π either in forward
or backward direction resulting in a response z that collides (in the sense of ∼)
with any of the previous queries (in either input or output) is ≤ 2q2(n+2)2

2w .

Proof. Assume we replace the permutations with random functions. The prob-
ability that the response to any query collides with a specific string is at most
(n+1)2/2w, since there are at most n+1 blocks in each string. By union bound,
the probability that a query collides with any of the previous queries is thus at
most 2q(n+1)2/2w, since there are two strings in each query (input and output).
Applying a final union bound to all queries shows that the probability of this
event is 2q2(n + 1)2/2w. Lemma 1 now proves the result. ��

Using the basic lemmas above, we can make statements about certain cyclic
structures that are hard to find in random permutations and about the sequen-
tiality of random permutations.

Lemma 5. Let Π = {πi}i be a family of random permutations. For any algo-
rithm making q queries to Π and outputting two distinct values, x and x′, and
an integer i, the probability that x ∼ x′ and πi(x) ∼ πi(x′) is ≤ 2q2(n+3)2

2w .

Proof. Obtaining two such pairs requires to guess one of the two input/output
pairs or find a colliding query. Union bound over the two events (which are
bounded by Lemmas 2 and 4, respectively) yields the bound. ��
Lemma 6 (Π-Sequentiality of Random Permutations). Let Π = {πi}i be
a family of random permutations. For any algorithm A taking as input x and
making a sequence Q of q queries to Π, and any Π-sequence s starting at x, the
probability of A outputting s and Q not containing the pairs in s in order and in
forward direction is ≤ 2q2(n+3)2

2w .

Proof. Producing a Π-sequence starting at a specific value without query-
ing the pairs in order and in forward direction, requires to either guess some
input/output pair (for some specific πi) or find a colliding query, similarly to
Lemma 5. ��
Corollary 1. Let Π = {πi}i be a family of random permutations. For any
algorithm taking as input x and making q sequential queries to Π, the probability
of outputting a Π-sequence of length longer than q is ≤ 2q2(n+3)2

2w . ��



Reversible Proofs of Sequential Work 287

We use the above observations to show that nothing the prover does after
sending its commitment φ will help responding to challenges.

Lemma 7. Let (PΠ
1 ,PΠ

2 ) be a pair of algorithms such that

– P1, on input x, makes q1 queries to Π, and outputs a state s1 and some y
– P2, on input s1, x, y, makes q2 queries to Π and outputs a Π-sequence s.

Let Q be the set of queries (including responses) made by P1, and let S be the
set of Π-Sequences between x and y computable4 from Q without any further
queries to Π. Then s ∈ S except with probability ≤ 2q2(n+3)2

2w , where q = q1 + q2.

Proof. Assume s /∈ S. Let (x′, y) be the last pair in s. First consider the case
that the query (x′, y) ∈ Q. Since s is a new sequence not computable from S it
must contain a pair (xi, yi) /∈ Q, so the queries in s were not made in order and
thus by Lemma 6 the probability of P2 outputting s is ≤ 2q2(n+3)2

2w .
Now consider the case (x′, y) /∈ Q. If P2 did not query x′ in forward direction,

by Lemma 6 the probability of P2 outputting s is ≤ 2q2(n+3)2

2w . Finally, if P2

queried x′ in forward direction, it did not submit an equivalent query in the
reverse direction by assumption. (Recall that we consider only algorithms that
do not make redundant queries.) It follow from Lemma 3 that the probability of
this event is ≤ q2

2w . ��
This completes the proof.

4 Embedding Sloth

As discussed in the introduction, we propose a reversible PoSW that is almost as
efficient as the construction from [CP18] but achieves a larger time gap between
the computation of the proof and the verification of correctness. To this aim, we
embed the sloth hash function from [LW17] into construction 2.5.

The idea underlying sloth is to use the fact that the best known algorithms for
computing modular square roots in a field Fp takes ≈ log(p) sequential squarings,
whereas verification of the result only takes a single modular squaring. Thus, this
gives a good candidate to build the slow-t imed hash function sloth.

Let p ≡ 3 mod 4 be a prime. We identify x ∈ Fp× with its canonical repre-
sentant in [0, p − 1]. If x ∈ Fp× is a quadratic residue, then there are two square
roots y, y′ ∈ Fp×, where y′ = p − y, one of them being even, the other one odd.
Let +

√
x, −√x denote the (unique) even and odd square root of x, respectively. If

x ∈ Fp× is not a quadratic residue, then −x is a quadratic residue, so it makes
sense to define a permutation ρ : Fp× → Fp× as

ρ(x) =

{
+
√

x, if x is a quadratic residue,
−√−x, otherwise.

4 By “computable” we mean here that there exists an algorithm for which the output
is correct with non-negligible probability.
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Its inverse is defined by

ρ−1(x) =

{
x2, if x is even,
−x2, otherwise.

Unfortunately, one cannot directly build a hash chain by iterating ρ since
reducing modulo p − 1 in the exponent would yield a much faster computation
than sequentially computing ρ. Lenstra and Wesolowski [LW17] solve this prob-
lem by prepending an easily computable (in both directions) permutation π on
Fp× to each iteration of the square rooting function ρ. Setting τ = ρ ◦ π, the
sloth function is hence defined as τN for some appropriate chain length N . Ver-
ification can be done backwards by the computation (τN )−1 = (σ−1 ◦ ρ−1)N ,
which is by a factor log p faster.

We now combine the ideas from [LW17] with our construction to achieve an
efficient PoSW while preserving the fast verification of correctness obtained by
the sloth construction. Let Π = {πi}i∈[N ]0 be a set of permutations where, for
each i ∈ [N ]0, πi : Fp× × {0, 1}w·(̃i−1). We define the sequence σ̄Π = σ̄0, . . . , σ̄N

with σ̄i ∈ Fp× × {0, 1}n·w recursively as

σ̄0 = ρ̇ ◦ π0((0, 0w·n))
(
= ρ

(
π0((0, 0w·n))(1)

)‖π0((0, 0w·n))(2...n+1)
)

and

for i > 0 : σ̄i = ρ̇ ◦ π̇i(σ̄i−1)
(
= ρ

(
πi(σ̄

(1...̃i)
i−1 )(1)

)‖πi(σ̄
(1...̃i)
i−1 )(2...̃i)‖σ̄

(̃i+1...n+1)
i−1

)
.

See Fig. 3 for an illustration of the computation of σ̄Π . Defining Π ′ =
{π′

i}i∈[N ]0 by π′
i = ρ̇ ◦ πi, it holds σ̄Π = σΠ′ . Thus, using σ̄Π in our proto-

col results in a PoSW that is secure in the random permutation model, almost
as efficient as the construction from [CP18], and at the same time achieves veri-
fication of correctness as efficient as in sloth. More formally, the efficiency of the
combined scheme can be analysed as follows: First, consider the proof size:

Fp � 0

0w

0w

0w

π0

ρ π1 ρ
π2 ρ π3 ρ

π4

ρ π5 ρ
π6 ρ π7 ρ

π8

ρ φ1

φ2

φ3

φ4

σ̄0 σ̄1 σ̄2 σ̄3 σ̄4 σ̄5 σ̄6 σ̄7 σ̄8

Fig. 3. Illustration of the computation of σ̄Π = (σ̄0, . . . , σ̄N ) with n = 3, N = 2n = 8.

|χ| = w · n, |φ| = log(p) + w · n, |γ| = t · n, |{σi}i,j | ≤ t · n(log(p) + w · n).

Hence, compared to [CP18], the proofs are by a factor n = log(N) = log(T )
larger. Next, consider the prover efficiency. To compute φ, the prover needs to
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sequentially evaluate N + 1 permutations π′
i = ρ̇ ◦ πi, i = 0, . . . , N . Storing only

the N/K states σi with K|i for some K = 2k, the prover can answer the challenge
γ after K parallel invocations to permutations (π′

i)
−1. Note, by construction

computing (π′
i)

−1 is assumed to be by a factor log(p) faster than computing π′
i.

The verifier, on the other hand, only needs t · n evaluations of (π′
i)

−1 to verify
the PoSW. Also verification of correctness can be done in backwards direction
by sequentially invocating (π′

i)
−1 for i = N, . . . , 0, which is assumed to be by a

factor log(p) faster than the computation of the prover.
When applied to a blockchain, our new PoSW allows extremely efficient

rejection of wrong proofs while additionally providing sloth-like verification of
correctness, which can be used whenever two or more distinct proofs pass the
verification.

A Proof of Lemma 1

Proof (of Lemma 1). Let X = (X1, . . . , Xq) be the random variable corre-
sponding to the responses to the queries of Aπ,π−1

and Y = (Y1, . . . , Yq) the
one corresponding to the responses to the queries of AF1,F2 . We will show that
ΔSD(X,Y ) ≤ q(q−1)

2w . The lemma then follows from standard properties of ΔSD.
In the following, we will abbreviate the conditional distributions (Xi|X1 =

x1, . . . , Xi−1 = xi−1) as (Xi|(x1, . . . , xi−1)) and similarly for Y . From sub-
additivity for joint distributions (a property of ΔSD), we have

ΔSD(X,Y ) ≤
q∑

i=1

max
x=(x1,...,xi−1)

ΔSD(Xi|x, Yi|x).

For each particular i we have

ΔSD(Xi|x, Yi|x) =
1
2

∑

y∈{0,1}w

|Pr (Xi = y|x) − Pr (Yi = y|x)|.

From the definition of F1, F2, it is clear that Pr (Yi = y|x) = 2−w for all
y ∈ {0, 1}w and x ∈ ({0, 1}w)i−1. For the other case, notice that any query to π
or π−1 fixes a particular input/output pair. Accordingly, Xi is uniform among
the remaining 2w − (i − 1), no matter if π or π−1 was queried (recall that no
input/output pair is repeated). It follows that

ΔSD(Xi|x, Yi|x) =
1
2

[
i − 1
2w

+ (2w − (i − 1))
(

1
2w − (i − 1)

− 1
2w

)]

=
i − 1
2w

for any x (in particular, the maximum). Summing over all i yields the final
bound. ��



290 H. Abusalah et al.

References

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 25

[CP18] Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 451–
467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 15

[CPS08] Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal
cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85174-5 1

[DGK17] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles
with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 16

[DSKT16] Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indif-
ferentiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 23

[Fis18] Fisch, B.: PoReps: proofs of space on useful data. IACR Cryptology ePrint
Archive 2018/678 (2018)

[Fis19] Fisch, B.: Tight proofs of space and replication. In: Advances in Cryptology
- EUROCRYPT 2019 (2019)

[FMPS19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from
supersingular isogenies and pairings. Cryptology ePrint Archive, Report
2019/166, 2019. https://eprint.iacr.org/2019/166

[HKT11] Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random ora-
cle model and the ideal cipher model, revisited. In: Proceedings of the Forty-
third Annual ACM Symposium on Theory of Computing, STOC 2011, pp.
89–98, ACM, New York (2011)

[LW17] Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth,
unicorn, and trx. IJACT 3(4), 330–343 (2017)

[May93] May, T.C.: Timed-release crypto (1993). http://www.hks.net/cpunks/
cpunks-0/1460.html

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random
oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–
50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 3

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequen-
tial work. In: Proceedings of the 4th Conference on Innovations in Theoret-
ical Computer Science, ITCS 2013, pp. 373–388, ACM, New York (2013)

[Pie19a] Pietrzak, K.: Proofs of catalytic space. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, 10–12 January 2019, San Diego,
California, USA, pp. 59:1–59:25 (2019)

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-662-49896-5_23
https://eprint.iacr.org/2019/166
http://www.hks.net/cpunks/ cpunks-0/1460.html
http://www.hks.net/cpunks/ cpunks-0/1460.html
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3


Reversible Proofs of Sequential Work 291

[Pie19b] Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in The-
oretical Computer Science Conference, ITCS 2019, 10–12 January 2019,
San Diego, California, USA, pp. 60:1–60:15 (2019). https://eprint.iacr.org/
2018/627

[RSW00] Rivest, R.L., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release
crypto. Technical report MIT/LCS/TR-684, MIT, February 2000

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Advances in Cryp-
tology - EUROCRYPT 2019 (2019)

https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/627

	Reversible Proofs of Sequential Work
	1 Introduction
	1.1 Hash Chains and the Sloth Function

	2 Construction
	2.1 Notation
	2.2 The Sequence 
	2.3 The DAG GN
	2.4 Consistent States/Paths
	2.5 PoSW Construction

	3 Security Proof
	4 Embedding Sloth
	A  Proof of Lemma 1
	References




